Abdi, H. %22Multivariate analysis%22. In: Lewis‐Beck, M, Bryman, A, Futing, T, eds. Encyclopedia for Research Methods for the Social Sciences. Thousand Oaks (CA): Sage; 2003, 699–702.

Acar, E, Yener, B. Unsupervised multiway data analysis: a literature survey. IEEE Trans Knowledge Data Eng 2009, 21:6–19.

Arcidiacono, C, Sarnacchiaro, P, Velleman, R. Testing fidelity to a new psychological intervention for family members of substance misusers during implementation in Italy. J Subst Abuse 2008, 13:361–381.

Stanimirova, I, Boucon, C, Walczak, B. Relating gas chromatographic profiles to sensory measurements describing the end products of the Maillard reaction. Talanta 2011, 83:1239–1246.

Williams, LJ, Abdi, H, French, R, Orange, JB. A tutorial on multi‐block discriminant correspondence analysis (MUDICA): A new method for analyzing discourse data from clinical populations. J Speech Lang Hearing Res 2010, 53:1372–1393.

Daszykowski, M, Walczak, B. Methods for the exploratory analysis of two‐dimensional chromatographics data. Talanta 2011, 83:1088–1097.

Carlier, A, Lavit, C, Pagés, M, Pernin, M, Turlot, J. %22A comparative review of methods which handle a set of indexed data tables%22. In: Coppi, R, Bollasco, S, eds. Multiway Data Analysis. Amsterdam: North Holland; 1989, 85–101.

Derks, EPPA, Westerhuis, JA, Smilde, AK, King, BM. An introduction to multi‐blocks component analysis by means of a flavor language case study. Food Quality Prefer 2003, 14:497–506.

Escofier, B, Pagès, J. Multiple factor analysis. Comp Stat Data Anal 1990, 18:121–140.

Guebel, DV, Cánovas, M, Torres, N. 2009 Model Identification in presence of incomplete information by generalized principal component analysis: application to the common and differential responses of Escherichia coli to multiple pulse perturbation in continuous high‐biomass density culture. Biotechnol Bioeng 104:785–795

Hassani, S, Martens, M, Qannari, EM, Hanafi, M. Analysis of ‐omic data: Graphical interpretation and validation tools in multi‐block methods. Chem Intell Lab Syst 2010, 104:140–153.

Meyners, M, Kunert, J, Qannari, EM. Comparing generalized Procrustes analysis and STATIS. Food Quality Prefer 2000, 11:77–83.

Qannari, EM, Wakeling, I, MacFie, JH. A hierarchy of models for analyzing sensory data. Food Quality Prefer 1995, 6:309–314.

Smilde, AK, Westerhuis, JA, de Jong, S. A framework for sequential multiblock component methods. J Chem 2003, 17:323–337.

Van Deun, K, Smilde, AK, van der Werf, MJ, Kiers, HAL, Van Mechelen, IV. A structured overview of simultaneous component based data integration. BMC‐Bioinform 2009, 10:246–261.

Escoufier, Y. %22L`analyse conjointe de plusieurs matrices de données%22. In: Jolivet, M, ed. Biométrie et Temps. Paris: Société Française de Biométrie; 1980, 59–76.

L`Hermier des Plantes, H. Structuration des Tableaux à Trois Indices de la Statistique, Thèse de troisième cycle. Université de Montpellier, 1976.

L`Hermier des Plantes, H, Thiébaut, E. Étude de la pluviosité au moyen de la méthode STATIS. Revue Stat Appl 1977, 25:57–81.

Lavit, C. Application de la méthode STATIS. Stat Anal Données 1985, 10:103–116.

Lavit, C. Analyse Conjointe de Tableaux Quantitatifs. Paris: Masson; 1988.

Lavit, C, Escoufier, Y, Sabatier, R, Traissac, P. The ACT (STATIS) method. Comp Stat Data Anal 1994, 18:97–119.

Korth, B, Tucker, LR. Procrustes matching by congruence coefficients. Psychometrika 1976, 41:531–535.

Génard, M, Souty, M, Holmes, S, Reich, M, Breuils, L. Correlations among quality parameters of peach fruits. J Sci Food Agric 1994, 66:241–245.

Qannari, EM, Wakeling, I, Courcous, P, MacFie, JH. Defining the underlying dimensions. Food Quality Prefer 2000, 11:151–154.

Schlich, P. %22Defining and validating assessor compromises about product distances and attribute correlations%22. In: Næs, T, Risvik, E, eds. Multivariate Analysis of Data in Sensory Sciences. New York: Elsevier; 1996, 229–306.

Chaya, C, Perez‐Hugalde, C, Judez, L, Wee, CS, Guinard, JX. Use of the STATIS method to analyze time‐intensity profiling data. Food Quality Prefer 2003, 15:3–12.

Abdi, H, Valentin, D, Chollet, S, Chrea, C. Analyzing assessors and products in sorting tasks: DISTATIS, theory and applications. Food Quality Prefer 2007, 18:627–640.

Abdi, H, Valentin, D. %22Some new and easy ways to describe, compare, and evaluate products and assessors%22. In: Valentin, D, Nguyen, DZ, Pelletier, L, eds. New Trends in Sensory Evaluation of Food and Non‐Food Products. Ho Chi Minh (Vietnam): Vietnam National University‐Ho Chi Minh City Publishing House; 2007, 5–18.

Blancher, G, Clavier, B, Egoroff, C, Duineveld, K, Parcon, J. A method to investigate the stability of a sorting map. Food Quality Prefer 2011, in press.

Gourvénec, S, Stanimirova, I, Saby, CA, Airiau, CY, Massart, DL. Monitoring batch processes with the STATIS approach. J Chem 2005, 19:288–300.

Stanimirova, I, Walczak, B, Massart, DL, Simeonovc, V, Sabyd, CA, & di Crescenzo, E. STATIS, a three‐way method for data analysis: application to environmental data. Chem Intell Lab Syst 2004, 73:219–233.

Thioulouse, J, Simier, M, Chessel, D. Simultaneous analysis of a sequence of paired ecological tables. Ecology 2004, 85:272–283.

Thioulouse, J. Simultaneous analysis of a sequence of paired ecological tables: a comparison of several methods. Ann Appl Stat 2011, in press.

Abdi, H, Valentin, D, O`Toole, AJ, Edelman, B. DISTATIS: The analysis of multiple distance matrices, Proceedings of the IEEE Computer Society: International Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, 2005, 42–47.

Fournier, M, Motelay‐Massei, A, Massei, N, Aubert, M, Bakalowiicz, M, Dupond, JP. Investigation of transport processes inside Karst aquifer by means of STATIS. Ground Water 2009, 47:391–400.

Gudmundsson, L, Lena, M, Tallaksen, LM, Stahl, K. Spatial cross‐correlation patterns of European low, mean and high flows. Hydrol Process 2011, 25:1034–1045.

Enachescu, C, Postelnicu, T. Patterns in journal citation data revealed by exploratory multivariate analysis. Scientometrics 2003, 56:43–59.

Kherif, F, Poline, J‐P, Mériaux, S, Benali, H, Flandin, G, Brett, M. Group analysis in functional neuroimaging: selecting subjects using similarity measures. NeuroImage 2003, 20:2197–2208.

Shinkareva, SV, Ombao, HC, Sutton, BP, Mohanty, A, Miller, GA. Classification of functional brain images with a spatio‐temporal dissimilarity map. NeuroImage 2006, 33:63–71.

Shinkareva, SV, Mason, RA, Malave, VL, Wang, W, Mitchell, TM. Using fMRI brain activation to identify cognitive states associated with perception of tools and dwellings. PLoS ONE 2008, 3:e1394. doi:10.1371/journal.pone.0001394.

Shinkareva, SV, Malave, SV, Just, MA, Mitchell, TM. Exploring commonalities across participants in the neural representation of objects. Human Brain Map 2011, in press.

Abdi, H, Dunlop, JP, Williams, LJ. How to compute reliability estimates and display confidence and tolerance intervals for pattern classifiers using the Bootstrap and 3‐way multidimensional scaling (DISTATIS). NeuroImage 2009, 45:89–95.

Scepi, G. %22Parametric and non parametric multivariate quality control charts%22. In: Lauro, C, Antoch, J, Esposito Vinzi, V, Saporta, G, eds. Multivariate Total Quality Control. Berlin: Physica‐Verlag; 2002, 163–189.

Niang, N, Fogliatto, F, Saporta, G. Controle multivarié de procédés par lots à l`aide de STATIS, Proceedings of the 41th “Journées de Statistique.” Bordeaux (France), 2009.

Coquet, R, Troxler, L, Wipff, G. The STATIS method: Characterization of conformational states of flexible molecules from molecular dynamics simulation in solution. J Mol Graph 1996, 14:206–212.

Márquez, EJ, Knowles, LL. Correlated evolution of multivariate traits: detecting co‐divergence across multiple dimensions. J Evol Biol 2007, 20:2334–2348.

Pavoine, S, Bailly, X. New analysis for consistency among markers in the study of genetic diversity: development and application to the description of bacterial diversity. BMC Evol Biol 2007, 7:156–172.

Raymond, O, Fiasson, JL, Jay, M. Synthetic taxonomy of Rosa races using ACT‐STATIS. Zeitschrift Naturforschung C 2000, 55:399–409.

Yanai, H, Takeuchi, K, Takane, Y. Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition. New York: Springer‐Verlag; 2011.

Abdi, H, Williams, LJ. Principal component analysis. Wiley Interdiscip Rev: Comp Stat 2010, 2:433–459.

Abdi, H. %22Singular value decomposition (SVD) and generalized singular value decomposition (GSVD)%22. In: Salkind, N, ed. Encyclopedia of Measurement and Statistics. Thousand Oaks CA: Sage; 2007, 907–912.

de Leeuw, J. Derivatives of generalized eigensystems with applications. UCLA Depart Stat Papers 2007, 1–28.

Greenacre, M. Theory and Applications of Correspondence Analysis. London: Academic Press; 1984.

Takane, Y. %22Relationships among various kinds of eigenvalue and singular value decompositions%22. In: Yanai, H, Okada, A, Shigemasu, K, Kano, Y, Meulman, J, eds. New Developments in Psychometrics. Tokyo: Springer‐Verlag; 2002, 45–46.

Caillez, F, Pagès, JP. Introduction à l`Analyse des Données. Paris: SMASH; 1976.

Dray, S, Dufour, AB. The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 2007, 22:1–20.

Escoufier, Y. %22Operators related to a data matrix: a survey%22. COMPSTAT: Proceedings in Computational Statistics; 17th Symposium Held in Rome, Italy, 2006. New York: Physica Verlag; 2007, 285–297.

Holmes, S. %22Multivariate analysis: the French way%22. In: Nolan, D, Speed, T, eds. Festschrift for David Freedman. Beachwood: IMS; 2006, 1–14.

de la Cruz, O, Holmes, S. The duality diagram in data analysis: examples of modern applications. Ann Appl Stat 2011, in press.

Sabatier, R, Vivien, M. A new linear method for analyzing four‐way multiblocks tables: STATIS‐4. J Chem 2008, 22:299–407.

Vivien, M, Sune, F. Two four‐way multiblock methods used for comparing two consumer panels of children. Food Quality Prefer 2009, 20:472–481.

Rényi, A. On measures of dependence. Acta Math Hungar 1959, 10:441–451.

Horn, RA, Johnson, , CR. Matrix Analysis. Cambridge: Cambridge University Press; 2006.

Escoufier, Y. Le traitement des variables vectorielles. Biometrics 1973, 29:751–760.

Robert, P, Escoufier, Y. A unifying tool for linear multivariate statistical methods: the RV‐coefficient. Appl Stat 1976, 25:257–265.

Abdi, H. %22RV coefficient and congruence coefficient%22. In: Salkind, NJ, ed. Encyclopedia of Measurement and Statistics. Thousand Oaks, CA: Sage; 2007, 849–853.

Abdi, H. %22Congruence: Congruence coefficient, RV coefficient, and Mantel Coefficient%22. In: Salkind, NJ, ed. Encyclopedia of Research Design. Thousand Oaks, CA: Sage; 2010, 222–229.

Rencher, AC. Methods of Multivariate Analysis. New York: John Wiley %26 Sons; 2002.

Greenacre, M. Biplots in Practice. Barcelona: Fundación BBVA; 2010.

Gower, JC, Lubbe, S, le Roux, N. Understanding Biplots. New York: John Wiley %26 Sons; 2011.

Abdi, H, Valentin, D. %22STATIS%22. In: Salkind, NJ, ed. Encyclopedia of Measurement and Statistics. Thousand Oaks, CA: Sage; 2007, 955–962.

Gaertner, JC, Chessel, D, Bertrand, J. Stability of spatial structures of dermersal assemblages: a multitable approach. Aquatic Living Resour 1998, 11:75–85.

Bhattacharyya, A. On a measure of divergence between two multinomial populations. Sankhya 1941, 7:401–406.

Escofier, B. Analyse factorielle et distances répondant au principe d`équivalence distributionnelle. Revue Stat Appl 1978, 26:29–37.

Domenges, D, Volle, M. Analyse factorielle sphérique: une exploration. Ann l`INSEE 1979, 35:3–83.

Rao, CR. %22Use of Hellinger distance in graphical displays%22. In: Tiit, E‐M, Kollo, T, Niemi, H, eds. Multivariate Statistics and Matrices in Statistics. Leiden: Brill Academic Publisher; 1995, 143–161.

Abdi, H. %22Distance%22. In: Salkind, N, ed. Encyclopedia of Measurement and Statistics. Thousand Oaks, CA: Sage; 2007, 280–284.

Tucker, LR. %22The extension of factor analysis to three‐dimensional matrices%22. In: Frederiksen, N, Gulliken, H, eds. Contributions to Mathematical Psychology. New York: Holt; 1964, 110–182.

Westerhuis, JA, Kourti, T, MacGregor, JF. Analysis of multiblock and hierarchical PCA and PLS models. J Chem 1998, 12:301–321.

Næs, T, Brockhoff, PB, Tomic, O. Statistics for Sensory and Consumer Science. London: John Wiley %26 Sons; 2010.

Escofier, B, Pagès, J. Analyses Factorielles Simples et Multiples: Objectifs, Méthodes, Interprétation. Paris: Dunod; 1990.

Abdi, H, Valentin, D. %22Multiple factor analysis%22. In: Salkind, NJ, ed. Encyclopedia of Measurement and Statistics. Thousand Oaks, CA: Sage; 2007, 657–663.

Lebart, L, Piron, M, Morineau, A. Statistique Exploratoire Multidimensionnelle: Visualisations et Inférences en Fouille de Données. Paris: Dunod; 2006.

Gower, JC. Adding a point to vector diagrams in multivariate analysis. Biometrika 1968, 55:582–585.

Lazraq, A, Hanafi, M, Cléroux, R, Allaire, J, Lepage, Y. Une approche inférentielle pour la validation du compromis de la méthode STATIS. JSoc Francaise Stat 2008, 149:97–109.

Areia, A, Oliveira, MM, Mexia, JT. Models for a series of studies based on geometrical representation. Stat Methodol 2008, 5:277–288.

Oliveira, MM, Mexia, JT. Modelling series of studies with a common structure. Comp Stat Data Anal 2007, 51:5876–5885.

Oliveira, MM, Mexia, JT. ANOVA‐like analysis of matched series of studies with a common structure. J Stat Plan Infer 2007, 137:1862–1870.

Good, P. Permutation, Parametric, and Bootstrap Tests of Hypotheses. New York: Springer‐Verlag; 2005.

Abdi, H, Williams, LJ. %22Jackknife%22. In: Salkind, NJ, ed. Encyclopedia of Research Design. Thousand Oaks, CA: Sage; 2010, 655–660.

Efron, B, Tibshirani, RJ. An Introduction to the Bootstrap. New York: Chapman and Hall; 1993.

Chernick, MR. Bootstrap Methods: A Guide for Practitioners and Researchers. New York: John Wiley %26 Sons; 2008.

Milan, M. Applications of the parametric bootstrap to models that incorporate a singular value decomposition. Appl Stat 1995, 44:31–49.

Lebart, L. Which Bootstrap for principal axes methods? Selected Contributions in Data Analysis and Classification. Studies in Classification, Data Analysis, and Knowledge Organization; 2007, 581–588.

Abdi, H. %22The Bonferonni and Sidàk corrections for multiple comparisons%22. In: Salkind, N, ed. Encyclopedia of Measurement and Statistics. Thousand Oaks, CA: Sage; 2007, 104–107.

Jaffrenou, PA. *Sur l`Analyse des Familles Finies de Variables* *Vectorielles: Bases Alg**é**briques et Applications* *à* *la Description* *Statistique*, Thèse de Troisième Cycle. Université de Lyon, 1978.

Thioulouse, J, Chessel, D. Les analyses multitableaux en écologie factorielle. I. De la théorie d`état à la typologie de fonctionnement par l`analyse triadique. Acta Oecol, Oecol General 1987, 8:463–480.

Simier, M, Blanc, L, Pellegrin, F, Nandris, D. Approche simultanée de *K* couples de tableaux: application à l`étude ds relations pathologie végétale‐environnement. Revue Stat Appl 1999, 47:31–46.

Rolland, A, Bertrand, F, Maumy, M, Jacquet, S. Assessing phytoplankton structure and spatio‐temporal dynamics in a freshwater ecosystem using a powerful multiway statistical analysis. Water Res 2009, 43:3155–3168.

Bertrand, F, Maumy, M. Using partial triadic analysis for depicting the temporal evolution of spatial structures: assessing phytoplankton structure and succession in a water reservoir. Case Studies Business, Industry Govern Stat 2010, 4:23–43.

Mendes, S, Gómez, JF, Pereira, MJ, Azeiteiro, UM, Galindo‐Villardón, MP. The efficiency of the partial triadic analysis methods: an ecological application. Biometr Lett 2010, 47:83–106.

Tucker, LR. Some mathematical notes on three‐mode factor analysis. Psychometrika 1966, 31:279–311.

Kiers, HAL. Hierarchical relations among three‐way methods. Psychometrika 1991, 56:449–470.

Tucker, LR. An inter‐battery method of factor analysis. Psychometrika 1958, 23:111–136.

Krishnan, A, Williams, LJ, McIntosh, AR, Abdi, H. Partial Least Squares (PLS) methods for neuroimaging: a tutorial and review. NeuroImage 2011, 56:455–475.

McIntosh, AR, Lobaugh, NJ. Partial least squares analysis of neuroimaging data: applications and advances. NeuroImage 2004, 23:250–263.

Tucker, LR, Messick, S. An individual difference model for multidimensional scaling. Psychometrika 1963, 28:333–367.

Horst, P. Factor Analysis of Data Matrices. New York: Holt; 1965.

Ballester, J, Abdi, H, Langlois, J, Peyron, D, Valentin, D. The odor of colors: can wine experts and novices distinguish the odors of white, red, and rosé wines? Chem Percep 2009, 2:203–213.

Chollet, S, Lelièvre, M, Abdi, H, Valentin, D. Sort and Beer: Everything you wanted to know about the sorting task but did not dare to ask. Food Quality Prefer 2011, 22:507–520.

Santosa, M, Abdi, H, Guinard, JX. A modified sorting task to investigate consumer perceptions of extra virgin olive oils. Food Quality Prefer 2010, 21:881–892.

Lelièvre, M, Chollet, S, Abdi, H, Valentin, D. Beer trained and untrained assessors rely more on vision than on taste when they categorize beers. Chem Percep 2009, 2:143–153.

Churchill, N, Oder, A, Abdi, H, Tam, F, Lee, W, Thomas, C, Graham, S, Strother, S. Optimizing correction of head motion and physiological noise in single‐subject fMRI analyses: 1. Standard temporal‐based methods. Human Brain Mapp 2011, in press.

Caspi, Y, Axelrod, A, Matsushita, Y, Gamliel, A. Dynamic stills and clip trailers. Visual Comp 2006, 22:642–652.

Young, G, Householder, AS. Discussion of a set of points in terms of their mutual distances. Psychometrika 1938, 3:19–22.

Torgerson, W. Theory and Methods of Scaling. New York: John Wiley %26 Sons; 1958.

Abdi, H. %22Metric multidimensional scaling%22. In: Salkind, N, ed. Encyclopedia of Measurement and Statistics. Thousand Oaks, CA: Sage; 2007, 598–605.

Vallejo‐Arboleda, A, Vicente‐Villardón, JL, Galindo‐Villardón, MP. Canonical STATIS: Biplot analysis of multi‐table group structured data based on STATIS‐ACT methodology. Comp Stat Data Anal 2007, 51:4193–4205.

Abdi, H, Williams, LJ. %22Barycentric discriminant analysis (BADIA)%22. In: Salkind, NJ, ed. Encyclopedia of Research Design. Thousand Oaks, CA: Sage; 2010, 64–75.

Lachenbruch, PA. Discriminant Analysis. New York: Macmillan; 1975.

Pelé, J, Abdi, H, Moreau, M, Thybert, D, Chabbert, M. Multidimensional scaling reveals the main evolutionary pathways of class A G‐protein‐coupled receptors. PLoS One 2011, 6:1–10. doi:10.1371/journal.pone. 0019094.

Rao, CR, Mitra, SK. Generalized Inverse of Matrices and its Applications. New York: John Wiley %26 Sons; 1971.

Bénasséni, J, Bennani Dosse, M. Analyzing multiset data by the power STATIS‐ACT method. Adv Data Anal Classif 2011, 5, in press.

Bennani Dosse, M, Groenen, P, Abdi, H. Anisotropic STATIS, submitted.

Sauzay, L, Hanafi, M, Qannari, EM, Schlich, P. Analyse de *K* + 1 tableaux à l`aide de la méthode STATIS: application en évaluation sensorielle, *9i**è**me Journ**é**es Europ**é**ennes Agro‐industrie et M**é**thodes* *Statistiques.* Montpellier (France). 2006, 1–23.

Abdi, H. Partial least square regression, projection on latent structure regression, PLS‐Regression. Wiley Interdiscip Rev: Comp Stat 2010, 2:97–106.

Vivien, M, Sabatier, R. A generalization of STATIS‐ACT strategy: DO‐ACT for two multiblocks tables. Comp Stat Data Anal 2004, 46:155–171.

Horst, P. Generalized canonical correlations and their applications to experimental data. J Clin Psychol 1961, 17:331–347.

Takane, Y, Yanai, M, Hwang, H. An improved method for generalized constrained canonical correlation analysis. Comp Stat Data Anal 2006, 50:221–241.

Takane, Y, Hwang, H, Abdi, H. Regularized multiple set canonical correlation analysis. Psychometrika 2008, 73:753–775.

Gower, JC, Dijksterhuis, GB. Procrustes Problems. Oxford: Oxford University Press; 2004.

Pagès, J. Eléments de comparaison entre l`analyse factorielle multiple et la méthode STATIS. Revue Stat Appl 1996, 44:81–95.

Husson, F, Pagès, J. INDSCAL model: geometrical interpretation and methodology. Comp Stat Data Anal 2006, 50:358–378.

Dray, S, Dufour, AB, Chessel, D. The ade4 package‐II: two‐table and *K*‐table methods. R News 2007, 7: 47–52.

Harville, DA. Matrix Algebra from a Statistician`s Perspective. New York: Springer‐Verlag; 2008.

Gentle, JE. Matrix Algebra: Theory, Computation and Applications in Statistics. New York: Springer‐Verlag; 2007.

Mkhadri, A, Celeux, G, Nasroallah, A. Regularization in discriminant analysis: an overview. Comp Stat Data Anal 1997, 23:403–423.