Home
This Title All WIREs
WIREs RSS Feed
How to cite this WIREs title:
WIREs Comp Stat

Grand tour and the Andrews plot

Full article on Wiley Online Library:   HTML PDF

Can't access this content? Tell your librarian.

The relationship between Andrews plot and Grand Tour (GT) stems from the fact that both view multiprojections of hyperdimensional data. The difference, however, is that GT views all possible projections of the data, while Andrews plot views only sets of projections. In this paper, we give a quick introduction to GT and Andrews plot and some visualization examples. Copyright © 2009 John Wiley & Sons, Inc.

Figure 1.

Andrews plot of Iris data using different normal vectors Φλt: (a) with λ = 1,2, and (b) with \documentclass{article}\usepackage{amsmath}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{amsfonts}\pagestyle{empty}\begin{document}$\lambda = 1, \sqrt{2}$\end{document}. Clearly, there is one highly separated class in this data (with red color) and two highly overlapped ones.

[ Normal View | Magnified View ]
Figure 2.

The 3D Andrews plot, \documentclass{article}\usepackage{amsmath}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{amsfonts}\pagestyle{empty}\begin{document}$(y_{it} = \bf{x}_{i}^{T}\Phi_{\lambda t}, z_{it} = \bf{x}_{i}^{T}\Psi_{\lambda t}), $\end{document} with λi = i (a), and \documentclass{article}\usepackage{amsmath}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{amsfonts}\pagestyle{empty}\begin{document}$\lambda =(1, \sqrt{2})$\end{document} (b).

[ Normal View | Magnified View ]
Figure 3.

The 3D Andrews plot with \documentclass{article}\usepackage{amsmath}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{amsfonts}\pagestyle{empty}\begin{document}$y_{it} = \bf{x}_{i}^{T}\Phi_{\lambda t}$\end{document} and \documentclass{article}\usepackage{amsmath}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{amsfonts}\pagestyle{empty}\begin{document}$z_{it} = \bf{x}_{i}^{T} \Psi_{\lambda t}$\end{document}, where we use λi = i, in (a) and \documentclass{article}\usepackage{amsmath}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{amsfonts}\pagestyle{empty}\begin{document}$\lambda = (1, \sqrt{2}), $\end{document} in (b).

[ Normal View | Magnified View ]
Figure 4.

Andrews plot in 2D for the remote‐sensing data. The plot is severely cluttered and no information can be gained regarding any structure that might be in this data.

[ Normal View | Magnified View ]

Related Articles

Exploratory data analysis
Statistical data mining
Scientific Visualization

Browse by Topic

Data Visualization > Visualization of High Dimensional Data

Access to this WIREs title is by subscription only.

Recommend to Your
Librarian Now!

The latest WIREs articles in your inbox

Sign Up for Article Alerts

Twitter: WileyCompSci Follow us on Twitter