Ali,, S. Z., & Dey,, S. (2017). Origin of the scaling laws of sediment transport. Proceedings of the Royal Society A, 473(2197), 20160785.

Ali,, S. Z., & Dey,, S. (2018). Impact of phenomenological theory of turbulence on pragmatic approach to fluvial hydraulics. Physics of Fluids, 30(4), 045105.

Barenblatt,, G. (1996). Scaling self‐similarity, and intermediate asymptotics. Cambridge, England: Cambridge University Press.

Barenblatt,, G., & Chorin,, A. J. (1998). New perspectives in turbulence: Scaling laws, asymptotics, and intermittency. SIAM Review, 40(2), 265–291.

Bonetti,, S., Manoli,, G., Manes,, C., Porporato,, A., & Katul,, G. (2017). Manning`s formula and Strickler`s scaling explained by a co‐spectral budget model. Journal of Fluid Mechanics, 812, 1189–1212.

Brown,, G. (2002). Henry Darcy and the making of a law. Water Resources Research, 38(7), 1–12.

Brown,, G. (2003). The history of the Darcy‐Weisbach equation for pipe flow resistance. In J. R. Rogers & A. J. Fredrich (Eds.), *Proceedings from the ASCE Civil Engineering Conference and Exposition*, 2002, November 3–7, 2002, Washington, D.C., United States (pp. 34–43). https://doi.org/10.1061/9780784406502.fm

Brutsaert,, W. (1965). A model for evaporation as a molecular diffusion process into a turbulent atmosphere. Journal of Geophysical Research, 70(20), 5017–5024.

Brutsaert,, W. (1982). Evaporation into the atmosphere: Theory, history, and applications. Dordrecht, Holland: Reidel Co.

Brutsaert,, W. (2005). Hydrology: An Introduction. Cambridge, England: Cambridge University Press.

Buckingham,, E. (1914). On physically similar systems: Illustrations of the use of dimensional equations. Physical Review, 4(4), 345–376.

Businger,, J., & Yaglom,, A. (1971). Introduction to Obukhov`s paper on ‘turbulence in an atmosphere with a non‐uniform temperature’. Boundary‐Layer Meteorology, 2(1), 3–6.

Calzetta,, E. (2009). Friction factor for turbulent flow in rough pipes from Heisenberg`s closure hypothesis. Physical Review E, 79(5), 056311.

Chézy,, A. (1775). Memoire sur la vitesse de l`eau conduit dans une rigole donne. Dossier, 847, 363–368.

Chow,, V. T. (Ed.). (1959). Open Channel hydraulics. New York, NY: McGraw‐Hill.

D`arcy,, W. T. (1915). Galileo and the principle of similitude. Nature, 95(2381), 426.

Drazin,, P. G., & Reid,, W. H. (2004). Hydrodynamic stability. Cambridge, England: Cambridge University Press.

Foken,, T. (2006). 50 years of the Monin–Obukhov similarity theory. Boundary‐Layer Meteorology, 119(3), 431–447.

French,, R. H. (1985). Open‐channel hydraulics. New York, NY: McGraw‐Hill.

Frisch,, U. (Ed.). (1995). Turbulence. Cambridge, England: Cambridge University Press.

Gioia,, G., & Bombardelli,, F. (2002). Scaling and similarity in rough channel flows. Physical Review Letters, 88, 014501.

Gioia,, G., & Chakraborty,, P. (2006). Turbulent friction in rough pipes and the energy spectrum of the phenomenological theory. Physical Review Letters, 96, 044502.

Gioia,, G., Guttenberg,, N., Goldenfeld,, N., & Chakraborty,, P. (2010). Spectral theory of the turbulent mean‐velocity profile. Physical Review Letters, 105(18), 184501.

Gleick,, J. (2011). Chaos: Making a new science. London, England: Open Road Media.

Goldenfeld,, N. (2006). Roughness‐induced critical phenomena in a turbulent flow. Physical Review Letters, 96(4), 044503.

Goldenfeld,, N., & Shih,, H. (2017). Turbulence as a problem in non‐equilibrium statistical mechanics. Journal of Statistical Physics, 167(3–4), 575–594.

Guttenberg,, N., & Goldenfeld,, N. (2009). Friction factor of two‐dimensional rough‐boundary turbulent soap film flows. Physical Review E, 79(6), 065306.

Huthoff,, F., Augustijn,, D., & Hulscher,, S. (2007). Analytical solution of the depth‐averaged flow velocity in case of submerged rigid cylindrical vegetation. Water Resources Research, 43(6). https://doi.org/10.1029/2006WR005625

Kader,, B., & Yaglom,, A. (1990). Mean fields and fluctuation moments in unstably stratified turbulent boundary layers. Journal of Fluid Mechanics, 212, 637–662.

Kaimal,, J. C., & Finnigan,, J. J. (1994). Atmospheric boundary layer flows: Their structure and measurement. Oxford, England: Oxford University Press.

Katul,, G., & Chu,, C.‐R. (1998). A theoretical and experimental investigation of energy‐containing scales in the dynamic sublayer of boundary‐layer flows. Boundary‐Layer Meteorology, 86(2), 279–312.

Katul,, G., Hsieh,, C.‐I., & Sigmon,, J. (1997). Energy‐inertial scale interactions for velocity and temperature in the unstable atmospheric surface layer. Boundary‐Layer Meteorology, 82(1), 49–80.

Katul,, G., Konings,, A., & Porporato,, A. (2011). Mean velocity profile in a sheared and thermally stratified atmospheric boundary layer. Physical Review Letters, 107(26), 268502.

Katul,, G., Li,, D., Chamecki,, M., & Bou‐Zeid,, E. (2013). Mean scalar concentration profile in a sheared and thermally stratified atmospheric surface layer. Physical Review E, 87(2), 023004.

Katul,, G., Li,, D., Liu,, H., & Assouline,, S. (2016). Deviations from unity of the ratio of the turbulent Schmidt to Prandtl numbers in stratified atmospheric flows over water surfaces. Physical Review Fluids, 1(3), 034401.

Katul,, G., & Liu,, H. (2017a). A Kolmogorov‐Brutsaert structure function model for evaporation into a turbulent atmosphere. Water Resources Research, 53(5), 3635–3644.

Katul,, G., & Liu,, H. (2017b). Multiple mechanisms generate a universal scaling with dissipation for the air‐water gas transfer velocity. Geophysical Research Letters, 44(4), 1892–1898.

Katul,, G., Mammarella,, I., Grönholm,, T., & Vesala,, T. (2018). A structure function model recovers the many formulations for air‐water gas transfer velocity. Water Resources Research, 54(9), 5905–5920.

Katul,, G., & Manes,, C. (2014). Cospectral budget of turbulence explains the bulk properties of smooth pipe flow. Physical Review E, 90, 063008.

Katul,, G., Manes,, C., Porporato,, A., Bou‐Zeid,, E., & Chamecki,, M. (2015). Bottlenecks in turbulent kinetic energy spectra predicted from structure function inflections using the von Kármán‐Howarth equation. Physical Review E, 92(3), 033009.

Katul,, G., Porporato,, A., Shah,, S., & Bou‐Zeid,, E. (2014). Two phenomenological constants explain similarity laws in stably stratified turbulence. Physical Review E, *89*(1), 023007.

Katul,, G., Wiberg,, P., Albertson,, J. D., & Hornberger,, G. (2002). A mixing layer theory for flow resistance in shallow streams. Water Resources Research, 38, 1–8.

Katul,, G. G., Porporato,, A., Manes,, C., & Meneveau,, C. (2013). Co‐spectrum and mean velocity in turbulent boundary layers. Physics of Fluids, 25(9), 091702.

Kellay,, H., Tran,, T., Goldburg,, W., Goldenfeld,, N., Gioia,, G., & Chakraborty,, P. (2012). Testing a missing spectral link in turbulence. Physical Review Letters, 109(25), 254502.

Keulegan,, G. H. (1938). Laws of turbulent flow in open channels (Vol. 21, pp. 707–741). Gaithersburg, MD: National Bureau of Standards US.

Kolmogorov,, A. (1941a). Dissipation of energy under locally isotropic turbulence. Doklady Akademiia Nauk SSSR, 32, 16–18.

Kolmogorov,, A. (1941b). The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Doklady Akademiia Nauk SSSR, 30, 299–303.

Kolmogorov,, A. (1962). A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. Journal of Fluid Mechanics, 13(1), 82–85.

Konings,, A., Katul,, G., & Thompson,, S. (2012). A phenomenological model for the flow resistance over submerged vegetation. Water Resources Research, 48(2). https://doi.org/10.1029/2011WR011000

Kubo,, R. (1966). The fluctuation‐dissipation theorem. Reports on Progress in Physics, 29(1), 255–284.

Lemons,, D. S. (2018). Dimensional analysis for curious undergraduates: A student`s guide to dimensional analysis. Cambridge, MA: Cambridge University Press.

Li,, D., Katul,, G., & Bou‐Zeid,, E. (2012). Mean velocity and temperature profiles in a sheared diabatic turbulent boundary layer. Physics of Fluids, 24(10), 105105.

Li,, D., Katul,, G., & Bou‐Zeid,, E. (2015). Turbulent energy spectra and cospectra of momentum and heat fluxes in the stable atmospheric surface layer. Boundary‐Layer Meteorology, 157(1), 1–21.

Li,, D., & Katul,, G. G. (2017). On the linkage between the *k*^{−5/3} spectral and *k*^{−7/3} cospectral scaling in high‐Reynolds number turbulent boundary layers. Physics of Fluids, 29(6), 065108.

Li,, D., Katul,, G. G., & Zilitinkevich,, S. S. (2015). Revisiting the turbulent Prandtl number in an idealized atmospheric surface layer. Journal of the Atmospheric Sciences, 72(6), 2394–2410.

Li,, D., Salesky,, S., & Banerjee,, T. (2016). Connections between the Ozmidov scale and mean velocity profile in stably stratified atmospheric surface layers. Journal of Fluid Mechanics, 797, R3. https://doi.org/10.1017/jfm.2016.311

Lorenz,, E. N. (1963). Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 20(2), 130–141.

Manes,, C., & Brocchini,, M. (2015). Local scour around structures and the phenomenology of turbulence. Journal of Fluid Mechanics, 779, 309–324.

Manes,, C., Ridolfi,, L., & Katul,, G. (2012). A phenomenological model to describe turbulent friction in permeable‐wall flows. Geophysical Research Letters, 39(14). https://doi.org/10.1029/2012GL052369

Manning,, R. (1891). On the flow of water in open channels and pipes. Transactions of the Institution of Civil Engineers of Ireland, 20, 161–207.

McColl,, K. A., Katul,, G. G., Gentine,, P., & Entekhabi,, D. (2016). Mean‐velocity profile of smooth channel flow explained by a cospectral budget model with wall‐blockage. Physics of Fluids, 28(3), 035107.

McColl,, K. A., van Heerwaarden,, C. C., Katul,, G. G., Gentine,, P., & Entekhabi,, D. (2017). Role of large eddies in the breakdown of the Reynolds analogy in an idealized mildly unstable atmospheric surface layer. Quarterly Journal of the Royal Meteorological Society, 143(706), 2182–2197.

Mehrafarin,, M., & Pourtolami,, N. (2008). Intermittency and rough‐pipe turbulence. Physical Review E, 77(5), 055304.

Merlivat,, L. (1978). The dependence of bulk evaporation coefficients on air‐water interfacial conditions as determined by the isotopic method. Journal of Geophysical Research: Oceans, 83(C6), 2977–2980.

Monin,, A., & Obukhov,, A. (1954). Basic laws of turbulent mixing in the surface layer of the atmosphere. Trudy Geofiz, Instituta Akademii Nauk, SSSR, 24(151), 163–187.

Moody,, L. (1944). Friction factors for pipe flow. Transactions of the ASME, 66, 671–684.

Pomeau,, Y. (2016). The long and winding road. Nature Physics, 12(3), 198–199.

Pope,, S. B. (Ed.). (2000). Turbulent flows. Cambridge, England: Cambridge Univeristy Press.

Rayleigh,, L. (1915). The principle of similitude. Nature, 95, 66–68.

Richardson,, L. F. (1922). Weather prediction by numerical methods. Cambridge, England: Cambridge University Press.

Salesky,, S., Katul,, G., & Chamecki,, M. (2013). Buoyancy effects on the integral lengthscales and mean velocity profile in atmospheric surface layer flows. Physics of Fluids, 25(10), 105101.

Succi,, S. (2001). The lattice Boltzmann equation: For fluid dynamics and beyond. Oxford, England: Oxford University Press.

Tennekes,, H., & Lumley,, J. L. (1972). A first course in turbulence. Cambridge, MA: MIT press.

Townsend,, A. (1976). The structure of turbulent shear flow. Cambridge, MA: Cambridge University Press.

Tran,, T., Chakraborty,, P., Guttenberg,, N., Prescott,, A., Kellay,, H., Goldburg,, W., … Gioia,, G. (2010). Macroscopic effects of the spectral structure in turbulent flows. Nature Physics, 6(6), 438–441.

Willcocks,, W., & Holt,, R. (Eds.). (1899). Elementary hydraulics. Cairo, Egypt: National Printing Office.