Benjamin,, J. R., & Cornell,, A. A. (1970). Probability, statistics, and decision for civil engineers. New York, NY: McGraw‐Hill.

Bras,, R. (1990). Hydrology: An introduction to hydrologic science. Reading, MA: Addison‐Wesley.

Brunner,, M. I., Seibert,, J., & Favre,, A.‐C. (2016). Bivariate return periods and their importance for flood peak and volume estimation. WIREs Water, 3(6), 819–833. https://doi.org/10.1002/wat2.1173

Bunde,, A., Eichner,, J. F., Havlin,, S., & Kantelhardt,, J. W. (2003). The effect of long‐term correlations on the return periods of rare events. Physica A: Statistical Mechanics and its Applications, 330(1–2), 1–7. https://doi.org/10.1016/j.physa.2003.08.004

Calenda,, G., Mancini,, C., & Volpi,, E. (2009). Selection of the probabilistic model of extreme floods: The case of the river Tiber in Rome. Journal of Hydrology, 371(1–4), 1–11. https://doi.org/10.1016/j.jhydrol.2009.03.010

Cancelliere,, A. (2017). Non stationary analysis of extreme events. Water Resources Management, 31, 3097–3110. https://doi.org/10.1007/s11269-017-1724-4

Cheng,, L., AghaKouchak,, A., Gilleland,, E., & Katz,, R. W. (2014). Non‐stationary extreme value analysis in a changing climate. Climatic Change, 127(2), 353–369.

Chow,, V. T., Maidment,, D. R., & Mays,, L. W. (1988). Applied hydrology. New York, NY: McGraw‐Hill.

Cohn,, T., & Lins,, H. F. (2005). Natures style: Naturally trendy. Geophysical Research Letters, 32, L23402. https://doi.org/10.1029/2005GL024476

Coles,, S. (2001). An introduction to statistical modeling of extreme values. London, England: Springer.

Coles,, S., & Tawn,, J. (1994). Statistical methods for multivariate to structural design extremes: An application. Applied Statistics, 43, 1–48.

Cooley,, D. (2013). Return periods and return levels under climate change. In Extremes in a changing climate (pp. 97–114). Dordrecht, Netherlands: Springer.

Douglas,, E. M., Vogel,, R. M., & Kroll,, C. N. (2002). Impact of stream flow persistence on hydrologic design. Journal of Hydrologic Engineering, 7(3), 220–227. https://doi.org/10.1061/(ASCE)1084-0699(2002)7:3(220)

Du,, T., Xiong,, L., Xu,, C., Gippel,, C., Guo,, S., & Liu,, P. (2015). Return period and risk analysis of nonstationary low‐flow series under climate change. Journal of Hydrology, 527, 220–227. https://doi.org/10.1016/j.jhydrol.2015.04.041

Eichner,, J. F., Kantelhardt,, J. W., Bunde,, A., & Havlin,, S. (2011). The statistics of return intervals, maxima, and centennial events under the influence of long term correlation. In extremis (pp. 3–43). Berlin, Heidelberg: Springer‐Verlag.

Feller,, W. (1968). An introduction to probability theory and its applications. New York, NY: John Wiley %26 Sons.

Fernández,, B., & Salas,, J. D. (1999a). Return period and risk of hydrologic events. II: Applications. Journal of Hydrologic Engineering, 4(4), 308–316. https://doi.org/10.1061/(ASCE)1084-0699(1999)4:4(308)

Fernández,, B., & Salas,, J. D. (1999b). Return period and risk of hydrologic events. I: Mathematical formulation. Journal of Hydrologic Engineering, 4(4), 297–307. https://doi.org/10.1061/(ASCE)1084-0699(1999)4:4(297)

Gaume,, E. (2018). Flood frequency analysis: The Bayesian choice. WIREs Water, 5(4), e1290. https://doi.org/10.1002/wat2.1290

Gräler,, B., van den Berg,, M., Vandenberghe,, S., Petroselli,, A., Grimaldi,, S., De Baets,, B., & Verhoest,, N. (2013). Multivariate return periods in hydrology: A critical and practical review focusing on synthetic design hydrograph estimation. Hydrology and Earth System Sciences, 17(4), 1281–1296. https://doi.org/10.5194/hess-17-1281-2013

Khaliq,, M., Ouarda,, T., Ondo,, J.‐C., Gachon,, P., & Bobee,, B. (2006). Frequency analysis of a sequence of dependent and/or non‐stationary hydro‐meteorological observations: A review. Journal of Hydrology, 329(3–4), 534–552.

Kiang,, J. E., Gazoorian,, C., McMillan,, H., Coxon,, G., Le Coz,, J., Westerberg,, I. K., … Mason,, R. (2018). A comparison of methods for stream flow uncertainty estimation. Water Resources Research, 54(10), 7149–7176.

Klemeš,, V. (2000a). Tall tales about tails of hydrological distributions. I. Journal of Hydrologic Engineering, 5(3), 227–231.

Klemeš,, V. (2000b). Tall tales about tails of hydrological distributions. II. Journal of Hydrologic Engineering, 5(3), 232–239.

Kottegoda,, N. T., & Rosso,, R. (1997). Probability, statistics, and reliability for civil and environmental engineers. Milan, Italy: McGraw‐Hill.

Koutsoyiannis,, D. (2008). Probability and statistics for geophysical processes. Athens, Greece: National Technical University of Athens.

Koutsoyiannis,, D. (2016). Generic and parsimonious stochastic modelling for hydrology and beyond. Hydrological Sciences Journal, 61(2), 225–244. https://doi.org/10.1080/02626667.2015.1016950

Koutsoyiannis,, D., & Montanari,, A. (2015). Negligent killing of scientific concepts: The stationarity case. Hydrological Sciences Journal, 60(7–8), 2–22. https://doi.org/10.1080/02626667.2014.959959

Leadbetter,, M. R. (1983). Extremes and local dependence in stationary sequences. Probability Theory and Related Fields, 65(2), 291–306.

Lloyd,, E. H. (1970). Return periods in the presence of persistence. Journal of Hydrology, 10(3), 291–298.

Loaiciga,, H. A., & Mariño,, M. A. (1991). Recurrence interval of geophysical events. Journal of Water Resources Planning and Management, 117, 367–382.

Luke,, A., Vrugt,, J. A., AghaKouchak,, A., Matthew,, R., & Sanders,, B. F. (2017). Predicting nonstationary flood frequencies: Evidence supports an updated stationarity thesis in the United States. Water Resources Research, 53, 5469–5494. https://doi.org/10.1002/2016WR019676

McMillan,, H., & Westerberg,, I. (2015). Rating curve estimation under epistemic uncertainty. Hydrological Processes, 29(7), 1873–1882.

Merz,, B., Aerts,, J., Arnbjerg‐Nielsen,, K., Baldi,, M., Becker,, A., Bichet,, A., … Nied,, M. (2014). Floods and climate: Emerging perspectives for flood risk assessment and management. Natural Hazards and Earth System Sciences, 14(7), 1921–1942.

Merz,, B., Hall,, J., Disse,, M., & Schumann,, A. (2010). Fluvial flood risk management in a changing world. Natural Hazards and Earth System Sciences, 10(3), 509–527.

Merz,, B., Kreibich,, H., Schwarze,, R., & Thieken,, A. (2010). Review article: "Assessment of economic flood damage". Natural Hazards and Earth System Sciences, 10(8), 1697–1724.

Milly,, P. C. D., Betancourt,, J., Falkenmark,, M., Hirsch,, R. M., Kundzewicz,, Z. W., Let‐tenmaier,, D. P., … Krysanova,, V. (2015). On critiques of "Stationarity is dead: Whither water management?". Water Resources Research, 51, 7785–7789. https://doi.org/10.1002/2015WR017408

Milly,, P. C. D., Betancourt,, J., Falkenmark,, M., Hirsch,, R. M., Kundzewicz,, Z. W., Lettenmaier,, D. P., & Stouffer,, R. J. (2008). Stationarity is dead: Whither water management? Science, 319(5863), 573–574.

Obeysekera,, J., & Salas,, J. D. (2016). Frequency of recurrent extremes under nonstationarity. Journal of Hydrologic Engineering, 21, 04016005. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001339

Olsen,, J. R., Lambert,, J. H., & Haimes,, Y. Y. (1998). Risk of extreme events under nonstationary conditions. Risk Analysis, 18, 497–510.

Papoulis,, A. (1991). Probability, random variables and stochastic processes. New York, NY: McGraw‐Hill.

Parey,, S., Hoang,, T. T. H., & Dacunha‐Castelle,, D. (2010). Different ways to compute temperature return levels in the climate change context. Environmetrics, 21(7–8), 698–718. https://doi.org/10.1002/env.1060

Pielke,, R. A. (1999). Nine fallacies of floods. Climatic Change, 42, 413–438.

Read,, L. K., & Vogel,, R. M. (2015). Reliability, return periods, and risk under nonstationarity. Water Resources Research, 51, 6381–6398. https://doi.org/10.1002/2015WR017089

Read,, L. K., & Vogel,, R. M. (2016). Hazard function analysis for flood planning under nonstationarity. Water Resources Research, 52, 4116–4131. https://doi.org/10.1002/2015WR018370

Renard,, B., Kochanek,, K., Lang,, M., Garavaglia,, F., Paquet,, E., Neppel,, L., … Auffray,, A. (2013). Data‐based comparison of frequency analysis methods: A general framework. Water Resources Research, 49(2), 825–843.

Rootzén,, H., & Katz,, R. (2013). Design life level: Quantifying risk in a changing climate. Water Resources Research, 49, 5964–5972. https://doi.org/10.1002/wrcr.20425

Rosbjerg,, D. (1977). Crossing and extremes in dependent annual series. Nordic Hydrology, 8, 257–266.

Salas,, J. D., & Obeysekera,, J. (2014). Revisiting the concepts of return period and risk for nonstationary hydrologic extreme events. Journal of Hydrologic Engineering, 19(3), 554–568. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000820

Salas,, J. D., Obeysekera,, J., & Vogel,, R. (2018). Techniques for assessing water infrastructure for nonstationary extreme events: A review. Hydrological Sciences Journal, 63(3), 325–352. https://doi.org/10.1080/02626667.2018.1426858

Salvadori,, G., De Michele,, C., Kottegoda,, N., & Rosso,, R. (2007). Extremes in nature—An approach using copulas. New York, NY: Springer.

Salvadori,, G., Durante,, F., & De Michele,, C. (2013). Multivariate return period calculation via survival functions. Water Resources Research, 49(4), 2308–2311. https://doi.org/10.1002/wrcr.20204

Schumann,, A. (2017). Flood safety versus remaining risks—Options and limitations of probabilistic concepts in flood management. Water Resources Management, 31(10), 3131–3145. https://doi.org/10.1007/s11269-017-1700-z

Sen,, Z. (1999). Simple risk calculations in dependent hydrological series. Hydrological Sciences Journal, 44(6), 871–878.

Serinaldi,, F. (2015). Dismissing return periods! Stochastic Environmental Research and Risk Assessment, 29, 1–11. https://doi.org/10.1007/s00477-014-0916-1

Serinaldi,, F., & Kilsby,, C. (2015). Stationarity is undead: Uncertainty dominates the distribution of extremes. Advances in Water Resources, 77, 17–36. https://doi.org/10.1016/j.advwatres.2014.12.013

Serinaldi,, F., & Kilsby,, C. (2016). Understanding persistence to avoid underestimation of collective flood risk. Water, 8(4), 152. https://doi.org/10.3390/w8040152

Stedinger,, J. R. (2017). Flood frequency analysis. In V. Singh, (Ed.), Handbook of applied hydrology (Ch. 76, pp. 76.1 ‐ 76.8). New York, NY: McGraw‐Hill.

Stedinger,, J. R., Vogel,, R. M., & Foufoula‐Georgiou,, E. (1993). Frequency analysis of extreme events. In D. Maidment, (Ed.), Handbook of hydrology. New York, NY: McGraw‐Hill.

Strupczewski,, W., Kochanek,, K., Bogdanowicz,, E., & Markiewicz,, I. (2013). Inundation risk for embanked rivers. Hydrology and Earth System Sciences, 17, 3111–3125. https://doi.org/10.5194/hess-17-3111-2013

Tariq,, M. A. U. R., Hoes,, O., & Ashraf,, M. (2014). Risk‐based design of dike elevation employing alternative enumeration. Journal of Water Resources Planning and Management, 140(8), 05014002. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000377

Vogel,, R., & Castellarin,, A. (2017). Risk, reliability, and return periods and hydrologic design. In V. Singh, (Ed.), Handbook of applied hydrology (Ch. 78, pp. 78.1‐78.10). New York, NY: McGraw‐Hill.

Volpi,, E., & Fiori,, A. (2014). Hydraulic structures subject to bivariate hydrological loads: Return period, design, and risk assessment. Water Resources Research, 50, 885–897. https://doi.org/10.1002/2013WR014214

Volpi,, E., Fiori,, A., Grimaldi,, S., Lombardo,, F., & Koutsoyiannis,, D. (2015). One hundred years of return period: Strengths and limitations. Water Resources Research, 51, 1–16. https://doi.org/10.1002/2015WR017820

Wolf,, J. (2009). Coastal flooding: Impacts of coupled wavesurgetide models. Natural Hazards, 49, 241–260. https://doi.org/10.1007/s11069-008-9316-5

Zorzetto,, E., Botter,, G., & Marani,, M. (2016). On the emergence of rainfall extremes from ordinary events. Geophysical Research Letters, 43, 8076–8082. https://doi.org/10.1002/2016GL069445