Aalstad,, K., Westermann,, S., Chuler,, T., Boike,, J., & Bertino,, L. (2018). Ensemble‐based assimilation of fractional snow‐covered area satellite retrievals to estimate the snow distribution at Arctic sites. The Cryosphere, 12, 247–270.

Ades,, M., & van Leeuwen,, P. J. (2015). The equivalent‐weights particle filter in a high‐dimensional system. Quarterly Journal of the Royal Meteorological Society, 141, 484–503.

Amezcua,, J., Goodliff,, M., & van Leeuwen,, P. J. (2017). A weak‐constraint 4DEnsembleVar. Part I: Formulation and simple model experiments. Tellus A, 69(1271), 564.

Amezcua,, J., & Van Leeuwen,, P. J. (2014). Gaussian anamorphosis in the analysis step of the EnKF: A joint state‐variable/observation approach. Tellus A, 66, 1–18.

Anderson,, J. L. (2001). An ensemble adjustment Kalman filter for data assimilation. Monthly Weather Review, 129, 2884–2903.

Anderson,, J. L. (2007). An adaptive covariance inflation error correction algorithm for ensemble filters. Tellus A, 59, 210–224.

Anderson,, J. L., & Anderson,, S. L. (1999). A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Monthly Weather Review, 127, 2741–2758.

Apte,, A., & Jones,, C. K. (2013). The impact of nonlinearity in Lagrangian data assimilation. Nonlinear Processes in Geophysics, 20, 329–341.

Arulampalam,, S., Maskell,, S., Gordon,, N., & Clapp,, T. (2002). A tutorial on particle filters for online nonlinear non‐Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 50, 174–188.

Asch,, M., Bocquet,, M., & Nodet,, M. (2016). Data assimilation: Methods, algorithms, and applications, fundamentals of algorithms. Philadelphia, PA: SIAM.

Auligné,, T., Ménétrier,, B., Lorenc,, A. C., & Buehner,, M. (2016). Ensemble‐variational integrated localized data assimilation. Monthly Weather Review, 144, 677–3696.

Auroux,, D., & Blum,, J. (2008). A nudging‐based data assimilation method: The back and forth nudging (bfn) algorithm. Nonlinear Processes in Geophysics, 15, 305–319.

Bain,, A., & Crisan,, D. (2009). Fundamentals of stochastic filtering (Vol. 3). New York: Springer.

Ballabrera‐Poy,, J., Kalnay,, E., & Yang,, S.‐C. (2009). Data assimilation in a system with two scales—Combining two initialization techniques. Tellus A, 61, 539–549.

Bannister,, R. N. (2017). A review of operational methods of variational and ensemble‐variational data assimilation. Quarterly Journal of the Royal Meteorological Society, 143, 607–633.

Barth,, A., Canter,, M., van Schaeybroeck,, B., Vannitsem,, S., Massonnet,, F., Zunz,, V., … Beckers,, J.‐M. (2015). Assimilation of sea surface temperature, ice concentration and ice drift in a model of the Southern Ocean. Ocean Modelling, 93, 22–39.

Bauer,, P., Thorpe,, A., & Brunet,, G. (2015). The quiet revolution of numerical weather prediction. Nature, 525, 47–55.

Bell,, B. M. (1994). The iterated Kalman smoother as a Gauss‐Newton method. SIAM Journal on Optimization, 4, 626–636.

Bengtsson,, L., Ghil,, M., & Källén,, E. (Eds.). (1981). Dynamic meteorology: Data assimilation methods. New York, NY/Heidelberg and Berlin, Germany: Springer‐Verlag.

Bennett,, A. F. (1992). Inverse methods in physical oceanography. Cambridge, UK: Cambridge University Press.

Berre,, L., Varella,, H., & Desroziers,, G. (2015). Modelling of flow‐dependent ensemble‐based background‐error correlations using a wavelet formulation in 4D‐Var at Météo‐France. Quarterly Journal of the Royal Meteorological Society, 141, 2803–2812.

Bertino,, L., Evensen,, G., & Wackernagel,, H. (2003). Sequential data assimilation techniques in oceanography. International Statistical Review, 71, 223–241.

Beskos,, A., Crisan,, D., Jasra,, A., Kamatani,, K., & Zhou,, Y. (2017). A stable particle filter for a class of high‐dimensional state‐space models. Advances in Applied Probability, 49, 24–48.

Bishop,, C. H., Etherton,, B. J., & Majumdar,, S. J. (2001). Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Monthly Weather Review, 129, 420–436.

Bleck,, R. (2002). An oceanic general circulation model in pressure coordinates. Ocean Modelling, 37, 55–88.

Bocquet,, M. (2011). Ensemble Kalman filtering without the intrinsic need for inflation. Nonlinear Processes in Geophysics, 18, 735–750.

Bocquet,, M. (2016). Localization and the iterative ensemble Kalman smoother. Quarterly Journal of the Royal Meteorological Society, 142, 1075–1089.

Bocquet,, M., & Carrassi,, A. (2017). Four‐dimensional ensemble variational data assimilation and the unstable subspace. Tellus A, 69, 1304504.

Bocquet,, M., Elbern,, H., Eskes,, H., Hirtl,, M., Zabkar,, R., Carmichael,, G. R., … Seigneur,, C. (2015). Data assimilation in atmospheric chemistry models: Current status and future prospects for coupled chemistry meteorology models. Atmospheric Chemistry and Physics, 15, 5325–5358.

Bocquet,, M., Gurumoorthy,, K. S., Apte,, A., Carrassi,, A., Grudzien,, C., & Jones,, C. K. (2017). Degenerate Kalman filter error covariances and their convergence onto the unstable subspace. SIAM/ASA Journal on Uncertainty Quantification, 5, 304–333.

Bocquet,, M., Pires,, C., & Wu,, L. (2010). Beyond Gaussian statistical modeling in geophysical data assimilation. Monthly Weather Review, 138, 2997–3023.

Bocquet,, M., Raanes,, P. N., & Hannart,, A. (2015). Expanding the validity of the ensemble Kalman filter without the intrinsic need for inflation. Nonlinear Processes in Geophysics, 22, 645–662.

Bocquet,, M., & Sakov,, P. (2012). Combining inflation‐free and iterative ensemble Kalman filters for strongly nonlinear systems. Nonlinear Processes in Geophysics, 19, 383–399.

Bocquet,, M., & Sakov,, P. (2013). Joint state and parameter estimation with an iterative ensemble Kalman smoother. Nonlinear Processes in Geophysics, 20, 803–818.

Bocquet,, M., & Sakov,, P. (2014). An iterative ensemble Kalman smoother. Quarterly Journal of the Royal Meteorological Society, 140, 1521–1535.

Bonan,, B., Nichols,, N. K., Baines,, M. J., & Partridge,, D. (2017). Data assimilation for moving mesh methods with an application to ice sheet modelling. Nonlinear Processes in Geophysics, 24, 515–534.

Bonavita,, M., Isaksen,, L., & Hólm,, E. (2012). On the use of EDA background error variances in the ECMWF 4D‐Var. Quarterly Journal of the Royal Meteorological Society, 138, 1540–1559.

Bonavita,, M., Raynaud,, L., & Isaksen,, L. (2011). Estimating background‐error variances with the ECMWF ensemble of data assimilation system: Some effects of ensemble size and day‐to‐day variability. Quarterly Journal of the Royal Meteorological Society, 137, 423–434.

Bowler,, N. E., Clayton,, A. M., Jardak,, M., Lee,, E., Lorenc,, A. C., Piccolo,, C., … Swinbank,, R. (2017). Inflation and localization tests in the development of an ensemble of 4D‐ensemble variational assimilations. Quarterly Journal of the Royal Meteorological Society, 143, 1280–1302.

Brankart,, J.‐M., Cosme,, E., Testut,, C.‐E., Brasseur,, P., & Verron,, J. (2010). Efficient adaptive error parameterization for square root or ensemble Kalman filters: Application to the control of ocean mesoscale signals. Monthly Weather Review, 138, 932–950.

Brankart,, J.‐M., Testut,, C.‐E., Béal,, D., Doron,, M., Fontana,, C., Meinvielle,, M., … Verron,, J. (2012). Towards an improved description of ocean uncertainties: Effect of local anamorphic transformations on spatial correlations. Ocean Science, 8, 121–142.

Brusdal,, K., Brankart,, J., Halberstadt,, G., Evensen,, G., Brasseur,, P., van Leeuwen,, P. J., … Verron,, J. (2003). An evaluation of ensemble based assimilation methods with a layered OGCM. Journal of Marine Systems, 40–41, 253–289.

Buehner,, M. (2005). Ensemble‐derived stationary and flow‐dependent background‐error covariances: Evaluation in a quasi‐operational NWP setting. Quarterly Journal of the Royal Meteorological Society, 131, 1013–1043.

Buehner,, M., Houtekamer,, P. L., Charette,, C., Mitchell,, H. L., & He,, B. (2010a). Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part I: Description and single‐observation experiments. Monthly Weather Review, 138, 1550–1566.

Buehner,, M., Houtekamer,, P. L., Charette,, C., Mitchell,, H. L., & He,, B. (2010b). Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part II: One‐month experiments with real observations. Monthly Weather Review, 138, 1567–1586.

Buehner,, M., McTaggart‐Cowan,, R., Beaulne,, A., Charette,, C., Garand,, L., Heilliette,, S., … Zadra,, A. (2015a). Implementation of deterministic weather forecasting systems based on ensemble‐variational data assimilation at Environment Canada. Part I: The global system. Monthly Weather Review, 143, 2532–2559.

Buehner,, M., Morneau,, J., & Charette,, C. (2013). Four‐dimensional ensemble‐variational data assimilation for global deterministic weather prediction. Nonlinear Processes in Geophysics, 20, 669–682.

Burgers,, G., van Leeuwen,, P. J., & Evensen,, G. (1998). Analysis scheme in the ensemble Kalman filter. Monthly Weather Review, 126, 1719–1724.

Carmichael,, G. R., Sandu,, A., Chai,, T., Daescu,, D., Constantinescu,, E., & Tang,, Y. (2008). Predicting air quality: Improvements through advanced methods to integrate models and measurements. Journal of Computational Physics, 227, 3540–3571.

Carrassi,, A., Bocquet,, M., Hannart,, A., & Ghil,, M. (2017). Estimating model evidence using data assimilation. Quarterly Journal of the Royal Meteorological Society, 143, 866–880.

Carrassi,, A., Ghil,, M., Trevisan,, A., & Uboldi,, F. (2008). Data assimilation as a nonlinear dynamical systems problem: Stability and convergence of the prediction‐assimilation system. Chaos, 18(023), 112.

Carrassi,, A., Guemas,, V., Doblas‐Reyes,, F., Volpi,, D., & Asif,, M. (2016). Sources of skill in near‐term climate prediction: Generating initial conditions. Climate Dynamics, 47, 3693–3712.

Carrassi,, A., Hamdi,, R., Termonia,, P., & Vannitsem,, S. (2012). Short time augmented extended Kalman filter for soil analysis: A feasibility study. Atmospheric Science Letters, 13, 268–274.

Carrassi,, A., Trevisan,, A., Descamps,, L., Talagrand,, O., & Uboldi,, F. (2008). Controlling instabilities along a 3DVar analysis cycle by assimilating in the unstable subspace: A comparison with the EnKF. Nonlinear Processes in Geophysics, 15, 503–521.

Carrassi,, A., Trevisan,, A., & Uboldi,, F. (2007). Adaptive observations and assimilation in the unstable subspace by breeding on the data‐assimilation system. Tellus A, 59, 101–113.

Carrassi,, A., & Vannitsem,, S. (2010). Accounting for model error in variational data assimilation: A deterministic formulation. Monthly Weather Review, 138, 3369–3386.

Carrassi,, A., & Vannitsem,, S. (2011). State and parameter estimation with the extended Kalman filter: An alternative formulation of the model error dynamics. Quarterly Journal of the Royal Meteorological Society, 137, 435–451.

Carrassi,, A., & Vannitsem,, S. (2016). Deterministic treatment of model error in geophysical data assimilation. In Mathematical paradigms of climate science (pp. 175–213). Springer International Publishing Switzerland: Springer.

Carrassi,, A., Vannitsem,, S., Zupanski,, D., & Zupanski,, M. (2009). The maximum likelihood ensemble filter performances in chaotic systems. Tellus A, 61, 587–600.

Carrassi,, A., Weber,, R., Guemas,, V., Doblas‐Reyes,, F., Asif,, M., & Volpi,, D. (2014). Full‐field and anomaly initialization using a low‐order climate model: A comparison and proposals for advanced formulations. Nonlinear Processes in Geophysics, 21, 521–537.

Carson,, J., Crucifix,, M., Preston,, S., & Wilkinson,, R. D. (2018). Bayesian model selection for the glacial–interglacial cycle. Journal Of The Royal Statistical Society Series C‐Applied Statistics, *67*, 25–54.

Chekroun,, M., Simonnet,, E., & Ghil,, M. (2011). Stochastic climate dynamics: Random attractors and time‐dependent invariant measures. Physica D, 240, 1685–1700.

Chen,, Z. (2003). Bayesian filtering: From Kalman filters to particle filters, and beyond. Statistics, 182, 1–69.

Chilès,, J. P., & Delfiner,, P. (2012). Geostatistics: Modeling spatial uncertainty. New York, NY: Wiley.

Chorin,, A. J., & Tu,, X. (2009). Implicit sampling for particle filters. PNAS, 106, 17249–17254.

Chustagulprom,, N., Reich,, S., & Reinhardt,, M. (2016). A hybrid ensemble transform particle filter for nonlinear and spatially extended dynamical systems. SIAM/ASA Journal on Uncertainty Quantification, 4, 592–608.

Clayton,, A. M., Lorenc,, A. C., & Barker,, D. M. (2013). Operational implementation of a hybrid ensemble/4D‐Var global data assimilation system at the Met Office. Quarterly Journal of the Royal Meteorological Society, 139, 1445–1461.

Cohn,, S. E. (1997). An introduction to estimation theory (Special issue—Data assimilation in meteology and oceanography: Theory and practice). Journal of the Meteorological Society of Japan, 75, 257–288.

Cohn,, S. E., & Dee,, D. P. (1988). Observability of discretized partial differential equations. SIAM Journal on Numerical Analysis, 25, 586–617.

Constantinescu,, E. M., Sandu,, A., Chai,, T., & Carmichael,, G. R. (2007a). Ensemble‐based chemical data assimilation. I: General approach. Quarterly Journal of the Royal Meteorological Society, 133, 1229–1243.

Constantinescu,, E. M., Sandu,, A., Chai,, T., & Carmichael,, G. R. (2007b). Ensemble‐based chemical data assimilation. II: Covariance localization. Quarterly Journal of the Royal Meteorological Society, 133, 1245–1256.

Cosme,, E., Verron,, J., Brasseur,, P., Blum,, J., & Auroux,, D. (2012). Smoothing problems in a Bayesian framework and their linear Gaussian solutions. Monthly Weather Review, 140, 683–695.

Counillon,, F., Bethke,, I., Keenlyside,, N., Bentsen,, M., Bertino,, L., & Zheng,, F. (2014). Seasonal‐to‐decadal predictions with the ensemble Kalman filter and the Norwegian Earth System Model: A twin experiment. Tellus A, 66, 21,074.

Counillon,, F., Keenlyside,, N., Bethke,, I., Wang,, Y., Billeau,, S., Shen,, M. L., & Bentsen,, M. (2016). Flow‐dependent assimilation of sea surface temperature in isopycnal coordinates with the Norwegian climate prediction model. Tellus A, 68, 1–17.

Courtier,, P., Thépaut,, J.‐N., & Hollingsworth,, A. (1994). A strategy for operational implementation of 4D‐Var, using an incremental approach. Quarterly Journal of the Royal Meteorological Society, 120, 1367–1387.

Daley,, R. (1993). Atmospheric data analysis. Cambridge, MA: Cambridge University Press.

de Rosnay,, P., Balsamo,, G., Albergel,, C., Muñoz‐Sabater,, J., & Isaksen,, L. (2014). Initialisation of land surface variables for numerical weather prediction. Surveys in Geophysics, 35, 607–621.

Dee,, D., Cohn,, S., Dalcher,, A., & Ghil,, M. (1985). An efficient algorithm for estimating noise covariances in distributed systems. IEEE Transactions on Automatic Control, 30, 1057–1065.

Dee,, D. P., Uppala,, S. M., Simmons,, A. J., Berrisford,, P., Poli,, P., Kobayashi,, S., … Bechtold, P. (2011). The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137, 553–597.

Dee,, D. P. (1995). On‐line estimation of error covariance parameters for atmospheric data assimilation. Monthly Weather Review, 123, 1128–1145.

Dee,, D. P. (2005). Bias and data assimilation. Quarterly Journal of the Royal Meteorological Society, 131, 3323–3343.

Desroziers,, G., Arbogast,, E., & Berre,, L. (2016). Improving spatial localization in 4DEnVar. Quarterly Journal of the Royal Meteorological Society, 142, 3171–3185 accepted for publication.

Desroziers,, G., Camino,, J.‐T., & Berre,, L. (2014). 4DEnVar: Link with 4D state formulation of variational assimilation and different possible implementations. Quarterly Journal of the Royal Meteorological Society, 140, 2097–2110.

Dijkstra,, H. (2013). Nonlinear climate dynamics. Cambridge, England: Cambridge University Press.

Doblas‐Reyes,, F. J., García‐Serrano,, J., Lienert,, F., Biescas,, A. P., & Rodrigues,, L. R. (2013). Seasonal climate predictability and forecasting: Status and prospects. WIREs Climate Change, 4, 245–268.

Douc,, R., & Cappé,, O. (2005). Comparison of resampling schemes for particle filtering. In *Image and Signal Processing and Analysis, ISPA 2005. Proceedings of the 4th International Symposium* (pp. 64–69). IEEE.

Doucet,, A., de Freitas,, N., & Gordon,, N. (Eds.). (2001). Sequential Monte Carlo methods in practice. New York, NY: Springer‐Verlag New York Inc.

Doucet,, A., Godsill,, S., & Andrieu,, C. (2000). On sequential Monte Carlo sampling methods for Bayesian filtering. Statistics and Computing, 10, 197–208.

Dreano,, D., Tandeo,, P., Pulido,, M., Ait‐El‐Fquih,, B., Chonavel,, T., & Hoteit,, I. (2017). Estimating model error covariances in nonlinear state‐space models using Kalman smoothing and the expectation‐maximisation algorithm. Quarterly Journal of the Royal Meteorological Society, 143, 1877–1885.

Duane,, G. S., Tribbia,, J. J., & Weiss,, J. B. (2006). Synchronicity in predictive modelling: A new view of data assimilation. Nonlinear Processes in Geophysics, 13, 601–612.

Dubinkina,, S., & Goosse,, H. (2013). An assessment of particle filtering methods and nudging for climate state reconstructions. Climate of the Past, 9, 1141–1152.

Elbern,, H., Strunk,, A., Schmidt,, H., & Talagrand,, O. (2007). Emission rate and chemical state estimation by 4‐dimensional variational inversion. Atmospheric Chemistry and Physics, 7, 3749–3769.

Emili,, E., Gürol,, S., & Cariolle,, D. (2016). Accounting for model error in air quality forecasts: An application of 4DEnVar to the assimilation of atmospheric composition using QG‐Chem 1.0. Geoscientific Model Development, 9, 3933–3959.

Evensen,, G. (1992). Using the extended Kalman filter with a multilayer quasi‐geostrophic ocean model. Journal of Geophysical Research, 97, 17905–17924.

Evensen,, G. (1994). Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics. Journal of Geophysical Research, 99, 10143–10162.

Evensen,, G. (2003). The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dynamics, 53, 343–367.

Evensen,, G. (2004). Sampling strategies and square root analysis schemes for the EnKF. Ocean Dynamics, 54, 539–560.

Evensen,, G. (2009a). The ensemble Kalman filter for combined state and parameter estimation. IEEE Control Systems Magazine, 29, 83–104.

Evensen,, G. (2009b). Data assimilation: The ensemble Kalman filter (2nd ed.). Berlin and Heildelberg, Germany: Springer‐Verlag.

Evensen,, G. (2018). Analysis of iterative ensemble smoothers for solving inverse problems. Computational Geosciences, 22, 885–908.

Fairbairn,, D., Pring,, S. R., Lorenc,, A. C., & Roulstone,, I. (2014). A comparison of 4DVar with ensemble data assimilation methods. Quarterly Journal of the Royal Meteorological Society, 140, 281–294.

Farchi,, A., & Bocquet,, M. (2018). Review article: Comparison of local particle filters and new implementations. Nonlinear Processes in Geophysics, *2018*, 1–63.

Fichtner,, A., Bunge,, H.‐P., & Igel,, H. (2006). The adjoint method in seismology: II. Applications: Traveltimes and sensitivity functionals. Physics of the Earth and Planetary Interiors, 157, 105–123.

Fisher,, M., & Andersson,, E. (2001). *Developments in 4D‐Var and Kalman filtering* (Technical Memorandum 347). Reading, UK: European Centre for Medium‐Range Weather Forecasts.

Fisher,, M., & Gürol,, S. (2017). Parallelization in the time dimension of four‐dimensional variational data assimilation. Quarterly Journal of the Royal Meteorological Society, 143, 1136–1147.

Fisher,, M., Leutbecher,, M., & Kelly,, G. (2005). On the equivalence between Kalman smoothing and weak‐constraint four‐dimensional variational data assimilation. Quarterly Journal of the Royal Meteorological Society, 131, 3235–3246.

Fisher,, M., Tremolet,, Y., Auvinen,, H., Tan,, D., & Poli,, P. (2011).*Weak‐constraint and long‐window 4D‐Var* (ECMWF Technical Report 655).

Fitzgerald,, R. (1971). Divergence of the Kalman filter. IEEE Transactions on Automatic Control, 16, 736–747.

Fletcher,, S. J. (2017). Data assimilation for the geosciences: From theory to application. Amsterdam, Holland: Elsevier.

Frei,, M., & Künsch,, H. R. (2013). Bridging the ensemble Kalman and particle filters. Biometrika, 100, 781–800.

Gaspari,, G., & Cohn,, S. E. (1999). Construction of correlation functions in two and three dimensions. Quarterly Journal of the Royal Meteorological Society, 125, 723–757.

Gelb,, A. (1974). Applied optimal estimation. Cambridge, MA and London, UK: MIT Press.

Gharamti,, M., Samuelsen,, A., Bertino,, L., Simon,, E., Korosov,, A., & Daewel,, U. (2017). Online tuning of ocean biogeochemical model parameters using ensemble estimation techniques: Application to a one‐dimensional model in the North Atlantic. Journal of Marine Systems, 168, 1–16.

Gharamti,, M. E., Tjiputra,, J., Bethke,, I., Samuelsen,, A., Skjelvan,, I., Bentsen,, M., & Bertino,, L. (2017). Ensemble data assimilation for ocean biogeochemical state and parameter estimation at different sites. Ocean Modelling, 112, 65–89.

Ghil,, M., Cohn,, S., Tavantzis,, J., Bube,, K., & Isaacson,, E. (1981). Applications of estimation theory to numerical weather prediction. In Dynamic meteorology: Data assimilation methods. New York, NY: Springer‐Verlag.

Ghil,, M., & Malanotte‐Rizzoli,, P. (1991). Data assimilation in meteorology and oceanography. Advances in Geophysics, 33, 141–266.

Giffin,, A., & Urniezius,, R. (2014). The kalman filter revisited using maximum relative entropy. Entropy, 16, 1047–1069.

Golub,, G. H., & van Loan,, C. F. (2013). Matrix computations (Vol. 3). Baltimore, MD: JHU Press.

Gordon,, N. J., Salmond,, D. J., & Smith,, A. F. M. (1993). Novel approach to nonlinear/non‐Gaussian Bayesian state estimation. IEE Proceedings F, 140, 107–113.

Greybush,, S. J., Kalnay,, E., Miyoshi,, T., Ide,, K., & Hunt,, B. R. (2011). Balance and ensemble Kalman filter localization techniques. Monthly Weather Review, 139, 511–522.

Griffith,, A. K., & Nichols,, N. K. (2000). Flow, turbulence and combustion. Adjoint methods in data assimilation for estimating model error (Vol. 65, pp. 469–488). New York, NY: Springer.

Grudzien,, C., Carrassi,, A., & Bocquet,, M. (2018a). Chaotic dynamics and the role of covariance inflation for reduced rank kalman filters with model error. Nonlinear Processes in Geophysics, 2018, 1–25. https://doi.org/10.5194/npg-2018-4

Grudzien,, C., Carrassi,, A., & Bocquet,, M. (2018b). Asymptotic forecast uncertainty and the unstable subspace in the presence of additive model error. SIAM/ASA Journal on Uncertainty Quantification Manuscript submitted for publication.

Gurumoorthy,, K. S., Grudzien,, C., Apte,, A., Carrassi,, A., & Jones,, C. K. (2017). Rank deficiency of Kalman error covariance matrices in linear time‐varying system with deterministic evolution. SIAM Journal on Control and Optimization, 55, 741–759.

Gustafsson,, N., Bojarova,, J., & Vignes,, O. (2014). A hybrid variational ensemble data assimilation for the high resolution limited area model (HIRLAM). Nonlinear Processes in Geophysics, 21, 303–323.

Hamill,, T. M., & Snyder,, C. (2000). A hybrid ensemble Kalman filter‐3D variational analysis scheme. Monthly Weather Review, 128, 2905–2919.

Hamill,, T. M., Whitaker,, J. S., & Snyder,, C. (2001). Distance‐dependent filtering of background error covariance estimates in an ensemble Kalman filter. Monthly Weather Review, 129, 2776–2790.

Hanea,, R. G., Velders,, G. J. M., Segers,, A. J., Verlaan,, M., & Heemink,, A. W. (2007). A hybrid Kalman filter algorithm for large‐scale atmospheric chemistry data assimilation. Monthly Weather Review, 135, 140–151.

Hannart,, A., Carrassi,, A., Bocquet,, M., Ghil,, M., Naveau,, P., Pulido,, M., … Tandeo,, P. (2016). DADA: Data assimilation for the detection and attribution of weather and climate‐related events. Climatic Change, 136, 155–174.

Harlim,, J., & Majda,, A. J. (2010). Filtering turbulent sparsely observed geophysical flows. Monthly Weather Review, 138, 1050–1083.

Harlim,, J., Majda,, A. J., et al. (2010). Catastrophic filter divergence in filtering nonlinear dissipative systems. Communications in Mathematical Sciences, 8, 27–43.

Haugen,, V. E., & Evensen,, G. (2002). Assimilation of SLA and SST data into an OGCM for the Indian ocean. Ocean Dynamics, 52, 133–151.

Haussaire,, J.‐M., & Bocquet,, M. (2016). A low‐order coupled chemistry meteorology model for testing online and offline data assimilation schemes: L95‐GRS (v1.0). Geoscientific Model Development, 9, 393–412.

Hazeleger,, W., Guemas,, V., Wouters,, B., Corti,, S., Andreu‐Burillo,, I., Doblas‐Reyes,, F., … Caian,, M. (2013). Multiyear climate predictions using two initialization strategies. Geophysical Research Letters, 40, 1794–1798.

Hoke,, J. E., & Anthes,, R. A. (1976). The initialization of numerical models by a dynamic‐initialization technique. Monthly Weather Review, 104, 1551–1556.

Horn,, R. A., & Johnson,, C. R. (2012). Matrix analysis. New York, NY: Cambridge University Press.

Hoteit,, I., Pham,, D.‐T., Gharamti,, M., & Luo,, X. (2015). Mitigating observation perturbation sampling errors in the stochastic EnKF. Monthly Weather Review, 143, 2918–2936.

Houtekamer,, P., & Zhang,, F. (2016). Review of the ensemble Kalman filter for atmospheric data assimilation. Monthly Weather Review, 144, 4489–4532.

Houtekamer,, P. L., & Mitchell,, H. L. (2001). A sequential ensemble Kalman filter for atmospheric data assimilation. Monthly Weather Review, 129, 123–137.

Houtekamer,, P. L., Mitchell,, H. L., Pellerin,, G., Buehner,, M., Charron,, M., Spacek,, L., & Hansen,, B. (2005). Atmospheric data assimilation with an ensemble Kalman filter: Results with real observations. Monthly Weather Review, 133, 604–620.

Hunt,, B., Kostelich,, E. J., & Szunyogh,, I. (2007). Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D, 230, 112–126.

Hunt,, B. R., Kalnay,, E., Kostelich,, E. J., Ott,, E., Patil,, D. J. D. J., Sauer,, T., … Zimin,, A. V. (2004). Four‐dimensional ensemble Kalman filtering. Tellus A, 56, 273–277.

Ide,, K., Kuznetsov,, L., & Jones,, C. K. (2002). Lagrangian data assimilation for point vortex systems*. Journal of Turbulence, 3(053).

Janjić,, T., Bormann,, N., Bocquet,, M., Carton,, J. A., Cohn,, S. E., Dance,, S. L., … Weston,, P. (2017). On the representation error in data assimilation. Quarterly Journal of the Royal Meteorological Society accepted for publication. https://doi.org/10.1002/qj.3130

Janjić,, T., McLaughlin,, D., Cohn,, S. E., & Verlaan,, M. (2014). Conservation of mass and preservation of positivity with ensemble‐type Kalman filter algorithms. Monthly Weather Review, 142, 755–773.

Jardak,, M., & Talagrand,, O. (2018). Ensemble variational assimilation as a probabilistic estimator. Part i: The linear and weak non‐linear case. Nonlinear Processes in Geophysics, In review. https://doi.org/10.5194/npg-2018-5

Järvinen,, H., Andersson,, E., & Bouttier,, F. (1999). Variational assimilation of time sequences of surface observations with serially correlated errors. Tellus A, 51, 469–488.

Jazwinski,, A. H. (1970). Stochastic processes and filtering theory. New York, NY: Academic Press.

Kadakia,, N., Armstrong,, E., Breen,, D., Morone,, U., Daou,, A., Margoliash,, D., & Abarbanel,, H. D. (2016). Nonlinear statistical data assimilation for hvc_ RA neurons in the avian song system. Biological Cybernetics, 110, 417–434.

Kalman,, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of Fluids Engineering, 82, 35–45.

Kalnay,, E. (2002). Atmospheric modeling, data assimilation and predictability. Cambridge, England: Cambridge University Press.

Kalnay,, E., & Dalcher,, A. (1987). Forecasting forecast skill. Monthly Weather Review, 115, 349–356.

Kalnay,, E., Li,, H., Miyoshi,, T., Yang,, S.‐C., & Ballabrera‐Poy,, J. (2007). 4‐D‐Var or ensemble Kalman filter? Tellus A, 59, 758–773.

Kalnay,, E., Ota,, Y., Miyoshi,, T., & Liu,, J. (2012). A simpler formulation of forecast sensitivity to observations: Application to ensemble Kalman filters. Tellus A, 64(18), 462.

Kalnay,, E., & Yang,, S.‐C. (2010). Accelerating the spin‐up of ensemble Kalman filtering. Quarterly Journal of the Royal Meteorological Society, 136, 1644–1651.

Kang,, J.‐S., Kalnay,, E., Liu,, J., Fung,, I., Miyoshi,, T., & Ide,, K. (2011). “Variable localization” in an ensemble Kalman filter: Application to the carbon cycle data assimilation. Journal of Geophysical Research, 116, D09110.

Kepert,, J. D. (2009). Covariance localisation and balance in an ensemble Kalman filter. Quarterly Journal of the Royal Meteorological Society, 135, 1157–1176.

Kleist,, D. T., & Ide,, K. (2015). An OSSE‐based evaluation of hybrid variational–ensemble data assimilation for the NCEP GFS. Part I: System description and 3D‐hybrid results. Monthly Weather Review, 143, 433–451.

Kondrashov,, D., Sun,, C., & Ghil,, M. (2008). Data assimilation for a coupled ocean–atmosphere model. Part II: Parameter estimation. Monthly Weather Review, 136, 5062–5076.

Kong,, A., Liu,, J. S., & Wong,, W. H. (1994). Sequential imputations and Bayesian missing data problems. Journal of the American Statistical Association, 89, 278–288.

Kotsuki,, S., Miyoshi,, T., Terasaki,, K., Lien,, G. Y., & Kalnay,, E. (2017). Assimilating the global satellite mapping of precipitation data with the nonhydrostatic icosahedral atmospheric model (NICAM). Journal of Geophysical Research, 122, 631–650.

Kuptsov,, P. V., & Parlitz,, U. (2012). Theory and computation of covariant Lyapunov vectors. Journal of Nonlinear Science, 22, 727–762.

Kuznetsov,, L., Ide,, K., & Jones,, C. K. (2003). A method for assimilation of lagrangian data. Monthly Weather Review, 131, 2247–2260.

Lakshmivarahan,, S., & Lewis,, J. M. (2013). Nudging methods: A critical overview. In S. K. Park, & L. Xu, (Eds.), Data assimilation for atmospheric, oceanic and hydrologic applications (Vol. II, pp. 27–57). Berlin and Heidelberg, Germany: Springer.

Laloyaux,, P., Balmaseda,, M., Dee,, D., Mogensen,, K., & Janssen,, P. (2016). A coupled data assimilation system for climate reanalysis. Quarterly Journal of the Royal Meteorological Society, 142, 65–78.

Lauvernet,, C., Brankart,, J.‐M. M., Castruccio,, F., Broquet,, G., Brasseur,, P., & Verron,, J. (2009). A truncated Gaussian filter for data assimilation with inequality constraints: Application to the hydrostatic stability condition in ocean models. Ocean Modelling, 27, 1–17.

Law,, K., Stuart,, A., & Zygalakis,, K. (2015). Data assimilation: A mathematical introduction (Vol. 62). Cham, Switerland: Springer. ISBN 978‐3‐319‐20325‐6.

Lawless,, A., Nichols,, N., Boess,, C., & Bunse‐Gerstner,, A. (2008). Using model reduction methods within incremental four‐dimensional variational data assimilation. Monthly Weather Review, 136, 1511–1522.

Le Dimet,, F.‐X., & Talagrand,, O. (1986). Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects. Tellus A, 38, 97–110.

Le Gland,, F., Monbet,, V., & Tran,, V.‐D. (2009). *Large sample asymptotics for the ensemble Kalman filter* (Ph.D. thesis). INRIA.

Legras,, B.., & Vautard,, R. (1996). A guide to Lyapunov vectors. In *Proceedings 1995 ECMWF Seminar on Predictability* (Vol. 1, pp. 143–156). Reading, UK.

Leutbecher,, M., & Palmer,, T. N. (2008). Ensemble forecasting. Journal of Computational Physics, 227, 3515–3539.

Lewis,, J. M., & Derber,, J. C. (1985). The use of adjoint equations to solve a variational adjustment problem with advective constraints. Tellus A, 37, 309–322.

Li,, H., Kalnay,, E., & Miyoshi,, T. (2009). Simultaneous estimation of covariance inflation and observation errors within an ensemble Kalman filter. Quarterly Journal of the Royal Meteorological Society, 135, 523–533.

Li,, L., Zhou,, H., Hendricks Franssen,, H. J., & Gómez‐Hernández,, J. J. (2012). Groundwater flow inverse modeling in non‐multiGaussian media: Performance assessment of the normal‐score ensemble Kalman filter. Hydrology and Earth System Sciences, 16, 573–590.

Liang,, X., Zheng,, X., Zhang,, S., Wu,, G., Dai,, Y., & Li,, Y. (2012). Maximum likelihood estimation of inflation factors on error covariance matrices for ensemble Kalman filter assimilation. Quarterly Journal of the Royal Meteorological Society, 138, 263–273.

Lien,, G. Y., Kalnay,, E., & Miyoshi,, T. (2013). Effective assimilation of global precipitation: Simulation experiments. Tellus A: Dynamic Meteorology and Oceanography, 65, 19915.

Lien,, G.‐Y., Kalnay,, E., Miyoshi,, T., & Huffman,, G. J. (2016). Statistical properties of global precipitation in the NCEP GFS model and TMPA observations for data assimilation. Monthly Weather Review, 144, 663–679.

Lien,, G.‐Y., Miyoshi,, T., & Kalnay,, E. (2016). Assimilation of TRMM multisatellite precipitation analysis with a low‐resolution NCEP global forecast system. Monthly Weather Review, 144, 643–661.

Lindskog,, M., Dee,, D., Tremolet,, Y., Andersson,, E., Radnoti,, G., & Fisher,, M. (2009). A weak‐constraint four‐dimensional variational analysis system in the stratosphere. Quarterly Journal of the Royal Meteorological Society, 135, 695–706.

Lions,, J. L. (1971). Optimal control of systems governed by partial differential equations. Berlin: Springer.

Lisæter,, K. A., Rosanova,, J., & Evensen,, G. (2003). Assimilation of ice concentration in a coupled ice‐ocean model, using the ensemble Kalman filter. Ocean Dynamics, 53, 368–388.

Liu,, C., Xiao,, Q., & Wang,, B. (2008). An ensemble‐based four‐dimensional variational data assimilation scheme. Part I: Technical formulation and preliminary test. Monthly Weather Review, 136, 3363–3373.

Liu,, C., Xiao,, Q., & Wang,, B. (2009). An ensemble‐based four‐dimensional variational data assimilation scheme. Part II: Observing system simulation experiments with advanced research WRF (ARW). Monthly Weather Review, 137, 1687–1704.

Liu,, Y., Haussaire,, J.‐M., Bocquet,, M., Roustan,, Y., Saunier,, O., & Mathieu,, A. (2017). Uncertainty quantification of pollutant source retrieval: Comparison of Bayesian methods with application to the Chernobyl and Fukushima‐Daiichi accidental releases of radionuclides. Quarterly Journal of the Royal Meteorological Society, 143, 2886–2901.

Livings,, D. M., Dance,, S. L., & Nichols,, N. K. (2008). Unbiased ensemble square root filters. Physica D, 237, 1021–1028.

Lorenc,, A. (1986). Analysis methods for numerical weather prediction. Quarterly Journal of the Royal Meteorological Society, 112, 1177–1194.

Lorenc,, A. (2013). *Recommended nomenclature for EnVar data assimilation methods*. Retreived from http://www.wcrp-climate.org/WGNE/BlueBook/2013/individual-articles/01\_Lorenc\_Andrew\_EnVar\_nomenclature.pdf

Lorenc,, A. C. (2003). The potential of the ensemble Kalman filter for NWP—A comparison with 4D‐Var. Quarterly Journal of the Royal Meteorological Society, 129, 3183–3203.

Lorenc,, A. C., Bowler,, N. E., Clayton,, A. M., Pring,, S. R., & Fairbairn,, D. (2015). Comparison of hybrid‐4DEnVar and hybrid‐4DVar data assimilation methods for global NWP. Monthly Weather Review, 143, 212–229.

Lorenc,, A. C., & Payne,, T. (2007). 4D‐Var and the butterfly effect: Statistical four‐dimensional data assimilation for a wide range of scales. Quarterly Journal of the Royal Meteorological Society, 133, 607–614.

Lorenz,, E. (1963). Deterministic non‐periodic flow. Journal of the Atmospheric Sciences, 20, 130–141.

Lorenz,, E. N. (1996). Predictability—A problem partly solved. In Proceedings 1995 ECMWF seminar on predictability (Vol. 1). Reading, UK.

Lorenz,, E. N. (2005). Designing chaotic models. Journal of the Atmospheric Sciences, 62, 1574–1587.

Lorenz,, E. N., & Emanuel,, K. A. (1998). Optimal sites for supplementary weather observations: Simulation with a small model. Journal of the Atmospheric Sciences, 55, 399–414.

Lu,, F., Liu,, Z., Zhang,, S., & Liu,, Y. (2015). Strongly coupled data assimilation using leading averaged coupled covariance (LACC). Part I: Simple model study. Monthly Weather Review, 143, 3823–3837.

MacKay,, D. J. C. (2003). Information theory, inference and learning algorithms. Cambridge, England: Cambridge University Press.

Magnusson,, L., Alonso‐Balmaseda,, M., Corti,, S., Molteni,, F., & Stockdale,, T. (2013). Evaluation of forecast strategies for seasonal and decadal forecasts in presence of systematic model errors. Climate Dynamics, 41, 2393–2409.

Mandel,, J., Bergou,, E., Gürol,, S., Gratton,, S., & Kasanický,, I. (2016). Hybrid Levenberg‐Marquardt and weak‐constraint ensemble Kalman smoother method. Nonlinear Processes in Geophysics, 23, 59–73.

Miller,, R., Ghil,, M., & Gauthiez,, F. (1994). Advanced data assimilation in strongly nonlinear dynamical systems. Journal of the Atmospheric Sciences, 51, 1037–1056.

Mitter,, S. K., & Newton,, N. J. (2005). Information and entropy flow in the kalman–bucy filter. Journal of Statistical Physics, 118, 145–176.

Miyoshi,, T. (2011). The Gaussian approach to adaptive covariance inflation and its implementation with the local ensemble transform Kalman filter. Monthly Weather Review, 139, 1519–1535.

Miyoshi,, T., Kalnay,, E., & Li,, H. (2013). Estimating and including observation‐error correlations in data assimilation. Inverse Problems in Science and Engineering, 21, 387–398.

Morzfeld,, M., Tu,, X., Atkins,, E., & Chorin,, A. J. (2012). A random map implementation of implicit filters. Journal of Computational Physics, 231, 2049–2066.

Natvik,, L. J., & Evensen,, G. (2003). Assimilation of ocean colour data into a biochemical model of the North Atlantic. Part 1. Data assimilation experiments. Journal of Marine Systems, 40‐41, 127–153.

Nerger,, L., Janjić,, T., Schröter,, J., & Hiller,, W. (2012). A unification of ensemble square root Kalman filters. Monthly Weather Review, 140, 2335–2345.

Ng,, G.‐H. C., McLaughlin,, D., Entekhabi,, D., & Ahanin,, A. (2011). The role of model dynamics in ensemble Kalman filter performance for chaotic systems. Tellus A, 63, 958–977.

Ngodock,, H., & Carrier,, M. (2014). A 4DVAR system for the Navy Coastal Ocean Model. Part II: Strong and weak constraint assimilation experiments with real observations in Monterey Bay. Monthly Weather Review, 142, 2108–2117.

Ni,, B., & Zhang,, Q. (2016). Stability of the Kalman filter for continuous time output error systems. Systems and Control Letters, 94, 172–180.

Nicolis,, C. (2003). Dynamics of model error: Some generic features. Journal of the Atmospheric Sciences, 60, 2208–2218.

Nino Ruiz,, E. D., & Sandu,, A. (2016). A derivative‐free trust region framework for variational data assimilation. Journal of Computational and Applied Mathematics, 293, 164–179.

Nodet,, M. (2006). Variational assimilation of lagrangian data in oceanography. Inverse Problems, 22, 245–263.

Ott,, E., Hunt,, B. R., Szunyogh,, I., Zimin,, A. V., Kostelich,, E. J., Corazza,, M., … Yorke,, A. (2004). A local ensemble Kalman filter for atmospheric data assimilation. Tellus A, 56, 415–428.

Palatella,, L., Carrassi,, A., & Trevisan,, A. (2013). Lyapunov vectors and assimilation in the unstable subspace: Theory and applications. Journal of Physics A: Mathematical and Theoretical, 46, 254020.

Palatella,, L., & Trevisan,, A. (2015). Interaction of Lyapunov vectors in the formulation of the nonlinear extension of the Kalman filter. Physical Review E, 91(042), 905.

Palatella,, L., Trevisan,, A., & Rambaldi,, S. (2013). Nonlinear stability of traffic models and the use of lyapunov vectors for estimating the traffic state. Physical Review E, 88, 022901.

Pazo,, D., Carrassi,, A., & Lopez,, J. (2016). Data assimilation by delay‐coordinate nudging. Quarterly Journal of the Royal Meteorological Society, 142, 1290–1299.

Penenko,, V., & Obraztsov,, N. (1976). A variational initialization method for the fields of the meteorological elements. Soviet Meteorology and Hydrology, 11, 1–11.

Penny,, S. G., & Hamill,, T. M. (2017). Coupled data assimilation for integrated earth system analysis and prediction. Bulletin of the American Meteorological Society, 98, ES169–ES172.

Penny,, S. G., & Miyoshi,, T. (2016). A local particle filter for high dimensional geophysical systems. Nonlinear Processes in Geophysics, 23, 391–405.

Pham,, D. T. (2001). Stochastic methods for sequential data assimilation in strongly nonlinear systems. Monthly Weather Review, 129, 1194–1207.

Pham,, D. T., Verron,, J., & Roubaud,, M. C. (1998). A singular evolutive extended Kalman filter for data assimilation in oceanography. Journal of Marine Systems, 16, 323–340.

Pires,, C., Vautard,, R., & Talagrand,, O. (1996). On extending the limits of variational assimilation in nonlinear chaotic systems. Tellus A, 48, 96–121.

Poli,, P., Hersbach,, H., Dee,, D. P., Berrisford,, P., Simmons,, A. J., Vitart,, F., et al. (2016). Era‐20c: An atmospheric reanalysis of the twentieth century. Journal of Climate, 29, 4083–4097.

Poterjoy,, J. (2016). A localized particle filter for high‐dimensional nonlinear systems. Monthly Weather Review, 144, 59–76.

Poterjoy,, J., & Zhang,, F. (2015). Systematic comparison of four‐dimensional data assimilation methods with and without the tangent linear model using hybrid background error covariance: E4DVar versus 4DEnVar. Monthly Weather Review, 143, 1601–1621.

Pulido,, M., Tandeo,, P., Bocquet,, M., Carrassi,, A., & Lucini,, M. (2018). Stochastic parameterization identification using ensemble kalman filtering combined with maximum likelihood methods. Tellus A, 70, 1442099.

Quinn,, J. C., & Abarbanel,, H. D. (2010). State and parameter estimation using Monte Carlo evaluation of path integrals. Quarterly Journal of the Royal Meteorological Society, 136, 1855–1867.

Raanes,, P. N. (2016). On the ensemble rauch‐tung‐striebel smoother and its equivalence to the ensemble Kalman smoother. Quarterly Journal of the Royal Meteorological Society, 142, 1259–1264.

Raanes,, P. N., Carrassi,, A., & Bertino,, L. (2015). Extending the square root method to account for additive forecast noise in ensemble methods. Monthly Weather Review, 143, 3857–3873.

Rampal,, P., Bouillon,, S., Ólason,, E., & Morlighem,, M. (2016). neXtSIM: A new Lagrangian Sea ice model. The Cryosphere, 10, 1055–1073.

Raynaud,, L., Berre,, L., & Desroziers,, G. (2009). Objective filtering of ensemble‐based background‐error variances. Quarterly Journal of the Royal Meteorological Society, 135, 1177–1199.

Raynaud,, L., Berre,, L., & Desroziers,, G. (2011). An extended specification of flow‐dependent background error variances in the Météo‐France global 4D‐Var system. Quarterly Journal of the Royal Meteorological Society, 137, 607–619.

Reich,, S. (2013). A nonparametric ensemble transform method for Bayesian inference. SIAM Journal on Scientific Computing, 35, A2013–A2014.

Reich,, S., & Cotter,, C. (2015). Probabilistic forecasting and Bayesian data assimilation. Cambridge: Cambridge University Press.

Robert,, C., Durbiano,, S., Blayo,, E., Verron,, J., Blum,, J., & Le Dimet,, F. X. (2005). A reduced‐order strategy for 4D‐Var data assimilation. Journal of Marine Systems, 57, 70–82.

Robert,, S., & Künsch,, H. R. (2017). Localizing the ensemble Kalman particle filter. Tellus A, 69, 1282016.

Saha,, S., Moorthi,, S., Pan,, H.‐L., Wu,, X., Wang,, J., Nadiga,, S., … Goldberg,, M. (2010). The ncep climate forecast system reanalysis. Bulletin of the American Meteorological Society, 91, 1015–1057.

Sakov,, P., & Bertino,, L. (2011). Relation between two common localisation methods for the EnKF. Computational Geosciences, 15, 225–237.

Sakov,, P., Counillon,, F., Bertino,, L., Lisæter,, K., Oke,, P., & Korablev,, A. (2012). TOPAZ4: An ocean‐sea ice data assimilation system for the North Atlantic and Arctic. Ocean Science, 8, 633–656.

Sakov,, P., Evensen,, G., & Bertino,, L. (2010). Asynchronous data assimilation with the EnKF. Tellus Series A, 62A, 24–29.

Sakov,, P., & Oke,, P. R. (2008a). Implications of the form of the ensemble transform in the ensemble square root filters. Monthly Weather Review, 136, 1042–1053.

Sakov,, P., & Oke,, P. R. (2008b). A deterministic formulation of the ensemble Kalman filter: An alternative to ensemble square root filters. Tellus Series A, 60, 361–371.

Sakov,, P., Oliver,, D. S., & Bertino,, L. (2012). An iterative EnKF for strongly nonlinear systems. Monthly Weather Review, 140, 1988–2004.

Salman,, H., Kuznetsov,, L., Jones,, C., & Ide,, K. (2006). A method for assimilating Lagrangian data into a shallow‐water‐equation ocean model. Monthly Weather Review, 134, 1081–1101.

Santitissadeekorn,, N., & Jones,, C. (2015). Two‐stage filtering for joint state‐parameter estimation. Monthly Weather Review, 143, 2028–2042.

Sasaki,, Y. (1970). Some basic formalism in numerical variational analysis. Monthly Weather Review, 98, 875–883.

Schölzel,, C., & Friederichs,, P. (2008). Multivariate non‐normally distributed random variables in climate research‐introduction to the copula approach. Nonlinear Processes in Geophysics, 15, 761–772.

Simon,, E., & Bertino,, L. (2009). Application of the Gaussian anamorphosis to assimilation in a 3‐D coupled physical‐ecosystem model of the North Atlantic with the EnKF: A twin experiment. Ocean Science, 5, 495–510.

Simon,, E., & Bertino,, L. (2012). Gaussian anamorphosis extension of the DEnKF for combined state parameter estimation: Application to a 1D ocean ecosystem model. Journal of Marine Systems, 89, 1–18.

Simon,, E., Samuelsen,, A., Bertino,, L., & Mouysset,, S. (2015). Experiences in multiyear combined state‐parameter estimation with an ecosystem model of the North Atlantic and Arctic oceans using the ensemble Kalman filter. Journal of Marine Systems, 152, 1–17.

Slivinski,, L., & Snyder,, C. (2016). Exploring practical estimates of the ensemble size necessary for particle filters. Monthly Weather Review, 144, 861–875.

Slivinski,, L., Spiller,, E., Apte,, A., & Sandstede,, B. (2015). A hybrid particle‐ensemble Kalman filter for Lagrangian data assimilation. Monthly Weather Review, 143, 195–211.

Sluka,, T. C., Penny,, S. G., Kalnay,, E., & Miyoshi,, T. (2016). Assimilating atmospheric observations into the ocean using strongly coupled ensemble data assimilation. Geophysical Research Letters, 43, 752–759.

Smith,, D. M., Eade,, R., & Pohlmann,, H. (2013). A comparison of full‐field and anomaly initialization for seasonal to decadal climate prediction. Climate Dynamics, 41, 3325–3338.

Smith,, D. M., & Murphy,, J. M. (2007). An objective ocean temperature and salinity analysis using covariances from a global climate model. Journal of Geophysical Research: Oceans, 112(C2).

Smith,, P. J., Fowler,, A. M., & Lawless,, A. S. (2015). Exploring strategies for coupled 4D‐Var data assimilation using an idealised atmosphere–ocean model. Tellus A, 67, 27025.

Snyder,, C., Bengtsson,, T., Bickel,, P., & Anderson,, J. L. (2008). Obstacles to high‐dimensional particle filtering. Monthly Weather Review, 136, 4629–4640.

Snyder,, C., Bengtsson,, T., & Morzfeld,, T. (2015). Performance bounds for particle filters using the optimal proposal. Monthly Weather Review, 143, 4750–4761.

Stewart,, L. M., Dance,, S., & Nichols,, N. (2008). Correlated observation errors in data assimilation. International Journal for Numerical Methods in Fluids, 56, 1521–1527.

Stockdale,, T. N. (1997). Coupled ocean–atmosphere forecasts in the presence of climate drift. Monthly Weather Review, 125, 809–818.

Stordal,, A. S., Karlsen,, H. A., Nævdal,, G., Skaug,, H. J., & Vallès,, B. (2011). Bridging the ensemble Kalman filter and particle filters: The adaptive Gaussian mixture filter. Computational Geosciences, 15, 293–305.

Stott,, P. A., Allen,, M., Christidis,, N., Dole,, R. M., Hoerling,, M., Huntingford,, C., … Stone,, D. (2013). Attribution of weather and climate‐related events. In G. R. Asrar, & J. W. Hurrell, (Eds.), Climate science for serving society (pp. 307‐337). Netherlands: Springer.

Sugiura,, N., Awaji,, T., Masuda,, S., Mochizuki,, T., Toyoda,, T., Miyama,, T., … Ishikawa,, Y. (2008). Development of a four‐dimensional variational coupled data assimilation system for enhanced analysis and prediction of seasonal to interannual climate variations. Journal of Geophysical Research: Oceans, 113(C10).

Sun,, C., Hao,, Z., Ghil,, M., & Neelin,, J. D. (2002). Data assimilation for a coupled ocean–atmosphere model. Part I: Sequential state estimation. Monthly Weather Review, 130, 1073–1099.

Talagrand,, O. (1997). Assimilation of observations, an introduction (special issue—Data assimilation in meteology and oceanography: Theory and practice). Journal of the Meteorological Society of Japan, 75, 191–209.

Talagrand,, O. (2010). Variational assimilation. In Data assimilation: Making Sense of Observations (pp. 41–67). Berlin Heidelberg: Springer‐Verlag.

Talagrand,, O., & Courtier,, P. (1987). Variational assimilation of meteorological observations with the adjoint vorticity equation. I: Theory. Quarterly Journal of the Royal Meteorological Society, 113, 1311–1328.

Tandeo,, P., Pulido,, M., & Lott,, F. (2015). Offline parameter estimation using EnKF and maximum likelihood error covariance estimates: Application to a subgrid‐scale orography parametrization. Quarterly Journal of the Royal Meteorological Society, 141, 383–395.

Tardif,, R., Hakim,, G. J., & Snyder,, C. (2014). Coupled atmosphere–ocean data assimilation experiments with a low‐order climate model. Climate Dynamics, 43, 1631–1643.

Tardif,, R., Hakim,, G. J., & Snyder,, C. (2015). Coupled atmosphere–ocean data assimilation experiments with a low‐order model and CMIP5 model data. Climate Dynamics, 45, 1415–1427.

Thacker,, C. (2007). Data assimilation with inequality constraints. Ocean Modelling, 16, 264–276.

Thompson,, P. D. (1969). Reduction of analysis error through constraints of dynamical consistency. Journal of Applied Meteorology, 8, 738–742.

Tippett,, M. K., Anderson,, J. L., Bishop,, C. H., Hamill,, T. M., & Whitaker,, J. S. (2003). Ensemble square‐root filters. Monthly Weather Review, 131, 1485–1490.

Trémolet,, Y. (2006). Accounting for an imperfect model in 4D‐Var. Quarterly Journal of the Royal Meteorological Society, 132, 2483–2504.

Trémolet,, Y. (2007). Model‐error estimation in 4D‐Var. Quarterly Journal of the Royal Meteorological Society, 133, 1267–1280.

Trevisan,, A., D`Isidoro,, M., & Talagrand,, O. (2010). Four‐dimensional variational assimilation in the unstable subspace and the optimal subspace dimension. Quarterly Journal of the Royal Meteorological Society, 136, 487–496.

Trevisan,, A., & Palatella,, L. (2011a). On the Kalman filter error covariance collapse into the unstable subspace. Nonlinear Processes in Geophysics, 18, 243–250.

Trevisan,, A., & Palatella,, L. (2011b). Chaos and weather forecasting: The role of the unstable subspace in predictability and state estimation problems. International Journal of Bifurcation and Chaos, 21, 3389–3415.

Trevisan,, A., & Uboldi,, F. (2004). Assimilation of standard and targeted observations within the unstable subspace of the observation‐analysis‐forecast cycle. Journal of the Atmospheric Sciences, 61, 103–113.

Uboldi,, F., & Kamachi,, M. (2000). Time‐space weak‐constraint data assimilation for nonlinear models. Tellus A, 52, 412–421.

Uboldi,, F., & Trevisan,, A. (2006). Detecting unstable structures and controlling error growth by assimilation of standard and adaptive observations in a primitive equation ocean model. Nonlinear Processes in Geophysics, 16, 67–81.

Ueno,, G., & Nakamura,, N. (2014). Iterative algorithm for maximum‐likelihood estimation of the observation‐error covariance matrix for ensemble‐based filters. Quarterly Journal of the Royal Meteorological Society, 140, 295–315.

Ueno,, G., & Nakamura,, N. (2016). Bayesian estimation of the observation‐error covariance matrix in ensemble‐based filters. Quarterly Journal of the Royal Meteorological Society, 142, 2055–2080.

van Leeuwen,, P. J. (2009). Particle filtering in geophysical systems. Monthly Weather Review, 137, 4089–4114.

van Leeuwen,, P. J., Cheng,, Y., & Reich,, S. (2015). Nonlinear data assimilation (Vol. 2). Cham, Switzerland; Heidelberg, Germany; New York, NY; Dordrecht, the Netherlands, and London, UK: Springer.

Vannitsem,, S. (2017). Predictability of large‐scale atmospheric motions: Lyapunov exponents and error dynamics. Chaos, 27(032), 101.

Vidard,, P., Piacentini,, A., & Le Dimet,, F.‐X. (2004). Variational data analysis with control of the forecast bias. Tellus A, 56, 177–188.

Wackernagel,, H. (2003). Multivariate Geostatistics (3rd ed.). Berlin, Germany: Springer Verlag.

Wang,, S., Xue,, M., Schenkman,, A. D., & Min,, J. (2013). An iterative ensemble square root filter and tests with simulated radar data for storm‐scale data assimilation. Quarterly Journal of the Royal Meteorological Society, 139, 1888–1903.

Wang,, X., & Bishop,, C. H. (2003). A comparison of breeding and ensemble transform Kalman filter ensemble forecast schemes. Journal of the Atmospheric Sciences, 60, 1140–1158.

Wang,, X., Bishop,, C. H., & Julier,, S. J. (2004). Which is better, an ensemble of positive–negative pairs or a centered spherical simplex ensemble? Monthly Weather Review, 132, 1590–1605.

Wang,, X., Snyder,, C., & Hamill,, T. M. (2007). On the theoretical equivalence of differently proposed ensemble‐3DVAR hybrid analysis schemes. Monthly Weather Review, 135, 222–227.

Wang,, Y., Counillon,, F., & Bertino,, L. (2016). Alleviating the bias induced by the linear analysis update with an isopycnal ocean model. Quarterly Journal of the Royal Meteorological Society, 142, 1064–1074.

Weber,, R. J., Carrassi,, A., & Doblas‐Reyes,, F. J. (2015). Linking the anomaly initialization approach to the mapping paradigm: A proof‐of‐concept study. Monthly Weather Review, 143, 4695–4713.

Whitaker,, J. S., & Hamill,, T. M. (2002). Ensemble data assimilation without perturbed observations. Monthly Weather Review, 130, 1913–1924.

Whitaker,, J. S., & Hamill,, T. M. (2012). Evaluating methods to account for system errors in ensemble data assimilation. Monthly Weather Review, 140, 3078–3089.

Wiener,, N. (1949). Extrapolation, interpolation and smoothing of stationary time series. In With engineering applications. Cambridge, MA: MIT Press.

Wikle,, C. K., & Berliner,, L. M. (2007). A Bayesian tutorial for data assimilation. Physica D, 230, 1–16.

Winiarek,, V., Vira,, J., Bocquet,, M., Sofiev,, M., & Saunier,, O. (2011). Towards the operational estimation of a radiological plume using data assimilation after a radiological accidental atmospheric release. Atmospheric Environment, 45, 2944–2955.

Wu,, L., Mallet,, V., Bocquet,, M., & Sportisse,, B. (2008). A comparison study of data assimilation algorithms for ozone forecasts. Journal of Geophysical Research, 113, D20310.

Xie,, J., Bertino,, L., Counillon,, F., Lisæter,, K. A., & Sakov,, P. (2017). Quality assessment of the topaz4 reanalysis in the arctic over the period 1991‐2013. Ocean Science, 13, 123–144.

Yang,, S.‐C., Corazza,, M., Carrassi,, A., Kalnay,, E., & Miyoshi,, T. (2009). Comparison of local ensemble transform Kalman filter, 3DVAR, and 4DVAR in a quasigeostrophic model. Monthly Weather Review, 137, 693–709.

Yano,, J., Ziemiański,, M. Z., Cullen,, M., Termonia,, P., Onvlee,, J., Bengtsson,, L., … Wyszogrodzki, A. A. (2018). Scientific challenges of convective‐scale numerical weather prediction. Bulletin of the American Meteorological Society, 99, 699–710. https://doi.org/10.1175/BAMS-D-17-0125.1

Ye,, J., Kadakia,, N., Rozdeba,, P., Abarbanel,, H., & Quinn,, J. (2015). Improved variational methods in statistical data assimilation. Nonlinear Processes in Geophysics, 22, 205–213.

Ying,, M., & Zhang,, F. (2015). An adaptive covariance relaxation method for ensemble data assimilation. Quarterly Journal of the Royal Meteorological Society, 141, 2898–2906.

Zhang,, M., & Zhang,, F. (2012). E4DVar: Coupling an ensemble Kalman filter with four‐dimensional variational data assimilation in a limited‐area weather prediction model. Monthly Weather Review, 140, 587–600.

Zhang,, S., Harrison,, M., Rosati,, A., & Wittenberg,, A. (2007). System design and evaluation of coupled ensemble data assimilation for global oceanic climate studies. Monthly Weather Review, 135, 3541–3564.

Zhang,, Y., Bocquet,, M., Mallet,, V., Seigneur,, C., & Baklanov,, A. (2012). Real‐time air quality forecasting, part II: State of the science, current research needs, and future prospects. Atmospheric Environment, 60, 656–676.

Zheng,, X. G. (2009). An adaptive estimation of forecast error covariance parameters for Kalman filtering data assimilation. Advances in Atmospheric Sciences, 26, 154–160.

Zhou,, H., Li,, L., Hendricks Franssen,, H.‐J., & Gómez‐Hernández,, J. J. (2012). Pattern recognition in a bimodal aquifer using the normal‐score ensemble Kalman filter. Mathematical Geoscience, 44, 169–185.

Zhu,, M., van Leeuwen,, P.‐J., & Amezcua,, J. (2016). Implicit equal‐weights particle filter. Quarterly Journal of the Royal Meteorological Society, 142, 1904–1919.

Zupanski,, D. (1997). A general weak constraint applicable to operational 4DVAR data assimilation systems. Monthly Weather Review, 125, 2274–2292.

Zupanski,, M. (1996). A preconditioning algorithm for four‐dimensional variational data assimilation. Monthly Weather Review, 124, 2562–2573.

Zupanski,, M. (2005). Maximum likelihood ensemble filter: Theoretical aspects. Monthly Weather Review, 133, 1710–1726.