White, SR.Density‐matrix algorithms for quantum renormalization groups.Phys Rev B1993, 48:48–10356.

White, SR.Density matrix formulation for quantum renormalization groups.Phys Rev Lett1992, 69:69–2866.

Schollwöck, U.The density‐matrix renormalization group.Rev Mod Phys2005, 77:77–315.

Hallberg, KA.New trends in density matrix renormalization.Adv Phys2006, 55:55–526.

Chan, GK‐L,Dorando, JJ,Ghosh, D,Hachmann, J,Neuscamman, E,Wang, H,Yanai, T.An introduction to the density matrix renormalization group ansatz in quantum chemistry. In:Wilson, S,Grout, PJ,Maruani, J,Delgado‐Barrio, G,Piecuch, P, eds.Frontiers in Quantum Systems in Chemistry and Physics. Progress in Theoretical Chemistry and Physics. Vol. 18.Springer Netherlands, Dordrecht, The Netherlands; 2008, 49–65.

Schollwöck, U.The density‐matrix renormalization group in the age of matrix product states.Ann Phys2010, 326:326–213.

Chan, GK‐L,Sharma, S.The density matrix renormalization group in quantum chemistry.Annu Rev Phys Chem2011, 62:62–481.

Marti, KH,Reiher, M.The density matrix renormalization group algorithm in quantum chemistry.Z Phys Chem2010, 224:224–599.

Nishino, T,Okunishi, K.Product wave function renormalization group.J Phys Soc Jpn1995, 64:64–4087.

Dukelsky, J,Martin‐Delgado, MA,Nishino, T,Sierra, G.Equivalence of the variational matrix product method and the density matrix renormalization group applied to spin chains.Europhys Lett1998, 43:43–462.

Nishino, T,Hikihara, T,Okunishi, K,Hieida, Y.Density matrix renormalization group: introduction from a variational point of view.Int J Mod Phys B1999, 13:13–26.

Rommer, S,Östlund, S.Class of ansatz wave functions for one‐dimensional spin systems and their relation to the density matrix renormalization group.Phys Rev B1997, 55:55–2181.

Verstraete, F,Porras, D,Cirac, JI.Density matrix renormalization group and periodic boundary conditions: a quantum information perspective.Phys Rev Lett 2004, 93:227205.

Chan, GK‐L.Density matrix renormalisation group Lagrangians.Phys Chem Chem Phys2008, 10:10–3459.

Verstraete, F,Murg, V,Cirac, JI.Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems.Adv Phys2008, 57:57–224.

Vidal, G.Efficient simulation of one‐dimensional quantum many‐body systems.Phys Rev Lett 2004, 93:40502.

Legeza, Ö,Sólyom, J.Optimizing the density‐matrix renormalization group method using quantum information entropy.Phys Rev B 2003, 68:195116.

White, SR,Martin, RL.Ab initio quantum chemistry using the density matrix renormalization group.J Chem Phys1999, 110:110–4130.

Daul, S,Ciofini, I,Daul, C,White, SR.Full‐CI quantum chemistry using the density matrix renormalization group.Int J Quantum Chem2000, 79:79–342.

Chan, GK‐L,Head‐Gordon, M.Highly correlated calculations with a polynomial cost algorithm: a study of the density matrix renormalization group.J Chem Phys2002, 116:116–4476.

Chan, GK‐L.An algorithm for large scale density matrix renormalization group calculations.J Chem Phys2004, 120:120–3178.

Chan, GK‐L,Head‐Gordon, M.Exact solution (within a triple‐zeta, double polarization basis set) of the electronic Schrödinger equation for water.J Chem Phys2003, 118:118–8554.

Chan, GK‐L,Kállay, M,Gauss, J.State‐of‐the‐art density matrix renormalization group and coupled cluster theory studies of the nitrogen binding curve.J Chem Phys2004, 121:121–6116.

Chan, GK‐L,Van Voorhis, T.Density‐matrix renormalization‐group algorithms with nonorthogonal orbitals and non‐Hermitian operators, and applications to polyenes.J Chem Phys 2005, 122:204101.

Hachmann, J,Cardoen, W,Chan, GK‐L.Multireference correlation in long molecules with the quadratic scaling density matrix renormalization group.J Chem Phys 2006, 125:144101.

Hachmann, J,Dorando, JJ,Avilés, M,Chan, GK‐L.The radical character of the acenes: a density matrix renormalization group study.J Chem Phys 2007, 127:134309.

Dorando, JJ,Hachmann, J,Chan, GK‐L.Targeted excited state algorithms.J Chem Phys 2007, 127:084109.

Ghosh, D,Hachmann, J,Yanai, T,Chan, GK‐L.Orbital optimization in the density matrix renormalization group, with applications to polyenes and β‐carotene.J Chem Phys 2008, 128:144117.

Dorando, JJ,Hachmann, J,Chan, GK‐L.Analytic theory of response in the density matrix renormalization group.J Chem Phys 2009, 130:184111.

Kurashige, Y,Yanai, T.High‐performance ab initio density matrix renormalization group method: applicability to large‐scale multireference problems for metal compounds.J Chem Phys 2009, 130:234114.

Legeza, Ö,Rö der, J,Hess, BA.Controlling the accuracy of the density‐matrix renormalization‐group method: the dynamical block state selection approach.Phys Rev B 2003, 67:125114.

Legeza, Ö,Rö der, J,Hess, BA.QC‐DMRG study of the ionic‐neutral curve crossing of LiF.Mol Phys2003, 101:101–2028.

Legeza, Ö,Sólyom, J.Quantum data compression, quantum information generation, and the density‐matrix renormalization‐group method.Phys Rev B 2004, 70:205118.

Luo, H‐G,Qin, M‐P,Xiang, T.Optimizing Hartree–Fock orbitals by the density‐matrix renormalization group.Phys Rev B 2010, 81:235129.

Marti, KH,Ondík, IM,Moritz, G,Reiher, M.Density matrix renormalization group calculations on relative energies of transition metal complexes and clusters.J Chem Phys 2008, 128:014104.

Mitrushenkov, AO,Fano, G,Ortolani, F,Linguerri, R,Palmieri, P.Quantum chemistry using the density matrix renormalization group.J Chem Phys2001, 115:115–6821.

Mitrushenkov, AO,Linguerri, R,Palmieri, P,Fano, G.Quantum chemistry using the density matrix renormalization group. II.J Chem Phys2003, 119:119–4158.

Moritz, G,Hess, BA,Reiher, M.Convergence behavior of the density‐matrix renormalization group algorithm for optimized orbital orderings.J Chem Phys 2005, 122:024107.

Moritz, G,Reiher, M.Decomposition of density matrix renormalization group states into a slater determinant basis.J Chem Phys 2007, 126:244109.

Moritz, G,Reiher, M.Construction of environment states in quantum‐chemical density‐matrix renormalization group calculations.J Chem Phys 2006, 124:034103.

Moritz, G,Wolf, A,Reiher, M.Relativistic DMRG calculations on the curve crossing of cesium hydride.J Chem Phys 2005, 123:184105.

Yanai, T,Kurashige, Y,Ghosh, D,Chan, GK‐L.Accelerating convergence in iterative solutions of large active‐space self‐consistent field calculations.Int J Quantum Chem2009, 109:109–2190.

Yanai, T,Kurashige, Y,Neuscamman, E,Chan, GK‐L.Multireference quantum chemistry through a joint density matrix renormalization group and canonical transformation theory.J Chem Phys 2010, 132:024105.

Zgid, D,Nooijen, M.Obtaining the two‐body density matrix in the density matrix renormalization group method.J Chem Phys 2008, 128:144115.

Zgid, D,Nooijen, M.The density matrix renormalization group self‐consistent field method: orbital optimization with the density matrix renormalization group method in the active space.J Chem Phys 2008, 128:144116.

Zgid, D,Nooijen, M.On the spin and symmetry adaptation of the density matrix renormalization group method.J Chem Phys 2008, 128:014107.

Neuscamman, E,Yanai, T,Chan, GK‐L.Strongly contracted canonical transformation theory.J Chem Phys 2010, 132:024106.

Mizukami, W,Kurashige, Y,Yanai, T.Novel quantum states of electron spins in polycarbenes from ab initio density matrix renormalization group calculations.J Chem Phys 2010, 133:091101.

Barcza, G,Legeza, Ö,Marti, KH,Reiher, M.Quantum‐information analysis of electronic states of different molecular structures.Phys Rev A 2011, 83:012508.

Marti, KH,Reiher, M.New electron correlation theories for transition metal chemistry.Phys Chem Chem Phys2011, 13:13–6759.

Nishino, T,Okunishi, K,Hieida, Y,Maeshima, N,Akutsu, Y.Self‐consistent tensor product variational approximation for 3D classical models.Nucl Phys B2000, 575:575–512.

Nishino, T,Hieida, Y,Okunishi, K,Maeshima, N,Akutsu, Y,Gendiar, A.Two‐dimensional tensor product variational formulation.Prog Theor Phys2001, 105:105–417.

Maeshima, N,Hieida, Y,Akutsu, Y,Nishino, T,Okunishi, K.Vertical density matrix algorithm: a higher‐dimensional numerical renormalization scheme based on the tensor product state ansatz.Phys Rev E 2001, 64:016705.

Kraus, CV,Schuch, N,Verstraete, F,Cirac, JI.Fermionic projected entangled pair states.Phys Rev A 2010, 81:052338.

Verstraete, F,Cirac, JI.Renormalization algorithms for quantum‐many body systems in two and higher dimensions. *Arxiv preprint cond‐mat/0407066*, 2004.

Murg, V,Verstraete, F,Cirac, JI.Variational study of hard‐core bosons in a two‐dimensional optical lattice using projected entangled pair states.Phys Rev A 2007, 75:033605.

Shi, Y,Duan, L,Vidal, G.Classical simulation of quantum many‐body systems with a tree tensor network.Phys Rev A 2006, 74:22320.

Tagliacozzo, L,Evenbly, G,Vidal, G.Simulation of two‐dimensional quantum systems using a tree tensor network that exploits the entropic area law.Phys Rev B 2009, 80:235127.

Vidal, G.Class of quantum many‐body states that can be efficiently simulated.Phys Rev Lett 2008, 101:110501.

Murg, V,Verstraete, F,Ö., Legeza,Noack, RM.Simulating strongly correlated quantum systems with tree tensor networks.Phys Rev B 2010, 82:205105.

Vidal, G.Entanglement renormalization.Phys Rev Lett 2007, 99:220405.

Evenbly, G,Vidal, G.Entanglement renormalization in two spatial dimensions.Phys Rev Lett 2009, 102:180406.

Corboz, P,Vidal, G.Fermionic multiscale entanglement renormalization ansatz.Phys Rev B 2009, 80:165129.

Vidal, G.Entanglement renormalization: an introduction. *Arxiv preprint arXiv:0912.1651*, 2009.

Marti, KH,Bauer, B,Reiher, M,Troyer, M,Verstraete, F.Complete‐graph tensor network states: a new fermionic wave function ansatz for molecules.New J Phys 2010, 12:103008.

Kohn, W.Nobel lecture: Electronic structure of matter wave functions and density functionals.Rev Mod Phys1999, 71:71–1266.

Schmidt, MW,Ruedenberg, KE.Effective convergence to complete orbital bases and to the atomic Hartree–Fock limit through systematic sequences of gaussian primitives.J Chem Phys1979, 71:71–3962.

Kutzelnigg, W.Theory of the expansion of wavefunctions in a gaussian basis.Int J Quantum Chem.1994, 51:51–463.

Pahl, FA,Handy, NC.Plane waves and radial polynomials: a new mixed basis.Mol Phys2002, 100:100–3224.

Harrison, RJ,Fann, GI,Yanai, T,Gan, Z,Beylkin, G.Multiresolution quantum chemistry: basic theory and initial applications.J Chem Phys2004, 121:121–11598.

Szabo, A,Ostlund, NS.Modern Quantum Chemistry.Mineola, NY: Dover Publications;1996.

Helgaker, T,Olsen, J,Jorgensen, P.Molecular Electronic Structure Theory.Chichester, UK: John Wiley %26 Sons;2000.

Bartlett, RJ,Musial, M.Coupled‐cluster theory in quantum chemistry.Rev Mod Phys2007, 79:79–352.

Bartlett, RJ.Many‐body perturbation theory and coupled cluster theory for electron correlation in molecules.Annu Rev Phys Chem1981, 32:32–401.

Jastrow, R.Many‐body problem with strong forces.Phys. Rev.1955, 98:98–1484.

Umrigar, CJ,Wilson, KG,Wilkins, JW.Optimized trial wave functions for quantum Monte Carlo calculations.Phys Rev Lett1988, 60:60–1722.

Boys, SF,Handy, NC.The determination of energies and wavefunctions with full electronic correlation.Proc R Soc London A: Math Phys Sci1969, 310:310–61.

Blaizot, JP,Ripka, G.Quantum Theory of Finite Systems.Cambridge, MA: MIT Press; 1986.

Coleman, AJ.Structure of fermion density matrices. II. Antisymmetrized geminal powers.J Math Phys1965, 6:6–1431.

Weiner, B,Goscinski, O.Calculation of optimal generalized antisymmetrized geminal‐power functions and their associated excitation spectrum.Phys Rev A1980, 22:22–2391.

Bajdich, M,Mitas, L,Drobn, G,Wagner, LK,Schmidt, KE.Pfaffian pairing wave functions in electronic‐structure quantum monte carlo simulations.Phys Rev Lett 2006, 96:130201.

Jeziorski, B,Paldus, J.Valence universal exponential ansatz and the cluster structure of multireference configuration interaction wave function.J Chem Phys1989, 90:90–2731.

Mahapatra, US,Datta, B,Bandyopadhyay, B,Mukherjee, D.State‐specific multi‐reference coupled cluster formulations: two paradigms.Adv Quantum Chem1998, 30:30–193.

Evangelista, FA,Gauss, J.An orbital‐invariant internally contracted multireference coupled cluster approach.J Chem Phys 2011, 134:114102.

HanrathM. An exponential multireference wave‐function ansatz.J Chem Phys 2005, 123:084102.

Evangelista, FA,Simmonett, AC,Allen, WD,Schaefer III, HF,Gauss, J.Triple excitations in state‐specific multireference coupled cluster theory: Application of mk‐mrcc sdt and mk‐mrccsdt‐n methods to model systems.J Chem Phys 2008, 128:124104.

Luchow, A.Quantum monte carlo methods.Comput Mol Sci2011, 1:1–402.

GoddardIII, WA,Dunning Jr, TH,Hunt, WJ,Hay, PJ.Generalized valence bond description of bonding in low‐lying states of molecules.Acc Chem Res1973, 6:6–376.

Van Voorhis, T,Head‐Gordon, M.Connections between coupled cluster and generalized valence bond theories.J Chem Phys2001, 115:115–7821.

Voter, AF,Goddard, III WA.A method for describing resonance between generalized valence bond wavefunctions.Chem Phys1981, 57:57–259.

Cooper, DL,Gerratt, J,Raimondi, M.Applications of spin‐coupled valence bond theory.Chem Rev1991, 91:91–964.

Hiberty, PC,Shaik, S.A survey of recent developments in ab initio valence bond theory.J Comput Chem2007, 28:28–151.

Audretsch, J.Entangled Systems: New Directions in Quantum Physics.John Wiley %26 Sons; 2007.

Eisert, J,Cramer, M,Plenio, MB.Colloquium: area laws for the entanglement entropy.Rev Mod Phys2010, 82:82–306.

Hastings, MB.An area law for one‐dimensional quantum systems.J Stat Mech 2007, 2007:08024.

HastingsMB. Entropy and entanglement in quantum ground states.Phys Rev B 2007, 76:035114.

Stoudenmire, EM,White, SR.Studying two dimensional systems with the density matrix renormalization group.Ann Rev Cond Mat Phys2011, 3:3–128.

Reatto, L,Masserini, GL.Shadow wave function for many‐boson systems.Phys Rev B1988, 38:38–4522.