Shao, Y,Fusti‐Molnar, L,Jung, Y,Kussmann, J,Ochsenfeld, C,Brown, S,Gilbert, ATB,Slipchenko, LV,Levchenko, SV,O`Neill, DP, et al.Advances in methods and algorithms in a modern quantum chemistryprogram package.Phys Chem Chem Phys2006,8:3172–3191.

Kong, J,White, CA,Krylov, AI,Sherrill, CD,Adamson, RD,Furlani, TR,Lee, MS,Lee, AM,Gwaltney, SR,Adams, TR, et al.Q‐Chem 2.0: a high performance *ab initio* electronic structure program package.J Comput Chem2000,21:1532–1548.

Head‐Gordon, M.Quantum chemistry and molecular processes.J Phys Chem1996, 100:13213–13225.

Sherrill, CD.Frontiers in electronic structure theory.J Chem Phys2010,132:110902‐1–110902‐7.

Giles, J.Software company bans competitive users,Nature2004,231:429.

Grumblings about Gaussian,C.%26E.News,2004,82:29.

White, CA,Johnson, BG,Gill, PMW,Head‐Gordon, M.Linear scaling density functional calculations via the continuous fast multipole method.Chem Phys Lett1996,253:268–278.

White, CA,Head‐Gordon, M.A J‐matrix engine for density functional theory calculations.J Chem Phys1996,104:2620–2629.

Adams, TR,Adamson, RD,Gill, PMW.A tensor approach to two‐electron matrix elements.J Chem Phys1997,107:142–131.

Gill, PMW.A new gradient‐corrected exchange functional.Mol Phys1996,89:433–445.

Hachmann, J,Olivares‐Amaya, R,Atahan‐Evrenk, S,Amador‐Bedolla, C,Sánchez‐Carrera, RS,Gold‐Parker, A,Vogt, L,Brockway, AM,Aspuru‐Guzik, A.The Harvard Clean Energy Project: large‐scale computational screening and design of organic photovoltaics on the World Community Grid.J Phys Chem Lett2011,2:2241–2251.

Liang, WZ,Head‐Gordon, M.Approaching the basis set limit in density functional theory calculations using dual basis sets without diagonalization.J Phys Chem A2004,108:3206–3210.

Deng, J,Gilbert, ATB,Gill, PMW.Approaching the Hartree–Fock limit by perturbative methods.J Chem Phys2009,130:231101‐1–231101‐4.

Deng, J,Gilbert, ATB,Gill, PMW.Density functional triple jumping.Phys Chem Chem Phys2010,12:10759–10765.

Fusti‐Molnar, L,Pulay, P.The Fourier transform Coulomb method: efficient and accurate calculation of the Coulomb operator in a Gaussian basis.J Chem Phys2002,117:7827‐1–7827‐6.

Fusti‐Molnar, L,Kong, J.Fast and accurate Coulomb calculation with Gaussian functions,J Chem Phys2005,122:074108‐1–074108‐6.

Chang, C‐M,Russ, NJ,Kong, J.Efficient and accurate numerical integration of exchange‐correlation density functionals,Phys Rev A2011,84:022504‐1–022504‐5.

Gilbert, ATB,Besley, NA,Gill, PMW.Self‐consistent field calculations of excited states using the maximum overlap method (MOM),J Phys Chem A2008,112:13164–13171.

Besley, NA,Gilbert, ATB,Gill, PMW.Self‐consistent‐field calculations of core excited states.J Chem Phys2009,130:124308‐1–124308‐7.

Parr, RG,Yang, W.Density‐functional theory of the electronic structure of molecules,Annu Rev Phys Chem1995,46:701–728.

Gill, PMW,Adamson, RD,Pople, JA.Coulomb‐attenuated exchange energy density functionals.Mol Phys1996,88:1005–1009.

Iikura, H,Tsuneda, T,Yanai, T,Hirao, K.A long‐range correction scheme for generalized‐gradient‐approximation exchange functionals.J Chem Phys2001,115:3540–3544.

Chai, J‐D,Head‐Gordon, M.Systematic optimization of long‐range corrected hybrid density functionals,J Chem Phys2008,128:084106‐1–084106‐15.

Chai, J‐D,Head‐Gordon, M.Long‐range corrected hybrid density functionals with damped atom–atom dispersion interactions.Phys Chem Chem Phys2008,10:6615–6620.

Rohrdanz, MA,Martins, KM,Herbert, JM.A long‐range‐corrected density functional that performs well for both ground‐state properties and time‐dependent density functional theory excitation energies, including charge‐transfer excited states.J Chem Phys2009,130:054112. 8 pages.

Baer, R,Livshits, E,Salzner, U.Tuned range‐separated hybrids in density functional theory.Annu Rev Phys Chem2010,61:85–109.

Grimme, S.Accurate description of van der Waals complexes by density functional theory including empirical corrections.J Comput Chem2004,25:1463–1473.

Kong, J,Gan, ZT,Proynov, E,Freindorf, M,Furlani, TR.Efficient computation of the dispersion interaction with density‐functional theory.Phys Rev A2009,79:042510. 10 pages.

Truhlar, D.The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06‐class functionals and 12 other functionals.Theor Chim Acta2008,120:215–241.

Shao, Y,Head‐Gordon, M,Krylov, AI.The spin‐flip approach within time‐dependent density functional theory: theory and applications to diradicals.J Chem Phys2003,118:4807–4818.

Bernard, YA,Shao, Y,Krylov, AI.General formulation of spin‐flip time‐dependent density functional theory using non‐collinear kernels: theory, implementation, and benchmarks.J Chem Phys2012,136:204103‐1–204103‐17.

Wesolowski, T,Muller, RP,Warshel, A.*Ab initio* frozen density functional calculations of proton transfer reactions in solution.J Phys Chem1996,100:15444–15449.

Wu, Q,Van Voorhis, T.Constrained density functional theory and its application in long‐range electron transfer.J Chem Theory Comput2006,2:765–774.

Pople, JA.Theoretical models for chemistry. In:Smith, DW,McRae, WB, eds.Energy, Structure and Reactivity: Proceedings of the 1972 Boulder Summer Research Conference on Theoretical Chemistry.New York: John Wiley %26 Sons;1973, 51–61.

Deng, J,Gill, PMW.A new approach to dual‐basis second‐order Møller–Plesset calculations.J Chem Phys2011,134:081103‐1–081103‐4.

Weigend, F,Haser, M,Patzelt, H,Ahlrichs, R.RI‐MP2: optimized auxiliary basis sets and demonstration of efficiency.Chem Phys Lett1998,294:143–152.

Landau, A,Khistyaev, K,Dolgikh, S,Krylov, AI.Frozen natural orbitals for ionized states within equation‐of‐motion coupled‐cluster formalism.J Chem Phys2010,132:014109‐1–014109‐13.

Jung, Y,Lochan, RC,Dutoi, AD,Head‐Gordon, M.Scaled opposite spin second order Moller–Plesset correlation energy: an economical electronic structure method.J Chem Phys2004,121:9793–9802.

DiStacio, Jr RA,Head‐Gordon, M.Optimized spin‐component scaled second order Møller–Plesset perturbation theory for intermolecular interaction energies.Mol Phys2007,105:1073–1083.

Krylov, AI.Equation‐of‐motion coupled‐cluster methods for open‐shell and electronically excited species: the Hitchhiker`s guide to Fock space.Annu Rev Phys Chem2008,59:433–462.

Sneskov, K,Christiansen, O.Excited state coupled cluster methods,WIREs: Comput Mol Sci2011,2:566–584.

Bartlett, RJ.Coupled‐cluster theory and its equation‐of‐motion extensions.WIREs: Comput Mol Sci2012,2:126–138.

Nakatsuji, H,Hirao, K.Cluster expansion of the wavefunction. Symmetry‐adapted‐cluster expansion, its variational determination, and extension of open‐shell orbital theory.J Chem Phys1978,68:2053–2065.

Krylov, AI.The spin‐flip equation‐of‐motion coupled‐cluster electronic structure method for a description of excited states, bond‐breaking, diradicals, and triradicals.Acc Chem Res2006,39:83–91.

Casanova, D,Slipchenko, LV,Krylov, AI,Head‐Gordon, M.Double spin‐flip approach within equation‐of‐motion coupled cluster and conguration interaction formalisms: theory, implementation and examples.J Chem Phys2009,130:044103‐1–044103‐12.

Kuś, T,Krylov, AI.Using the charge stabilization technique in the double ionization potential equation‐of‐motion calculations with dianion references.J Chem Phys2011,135:084109‐1–084109‐13.

Oana, CM,Krylov, AI.Dyson orbitals for ionization from the ground and electronically excited states within equation‐of‐motion coupled‐cluster formalism: theory, implementation, and examples.J Chem Phys2007,127:234106‐1–234106‐14.

Manohar, PU,Krylov, AI.A non‐iterative perturbative triples correction for the spin‐flipping and spin‐conserving equation‐of‐motion coupled‐cluster methods with single and double substitutions.J Chem Phys2008,129:194105‐1–194105‐10.

Manohar, PU,Stanton, JF,Krylov, AI.Perturbative triples correction for the equation‐of‐motion coupled‐cluster wave functions with single and double substitutions for ionized states: theory, implementation, and examples.J Chem Phys2009,131:114112‐1–114112‐13.

Knippenberg, S,Starcke, J,Wormit, M,Dreuw, A.The low‐lying excited states of neutral polyacenes and their radical cations: a quantum chemical study employing the algebraic diagrammatic construction scheme of second order.Mol Phys2010,108:2801–2813.

Rhee, YM,Head‐Gordon, M.Scaled second order perturbation corrections to configuration interaction singles: efficient and reliable excitation energy methods.J Phys Chem A2007,111:5314–5326.

Warshel, A,Levitt, M.Theoretical studies of enzymatic reactions: Dielectric electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme.J Mol Biol1976,103:227–249.

Shao, Y,Kong, J.Yinyang atom: a simple combined *ab initio* quantum mechanical molecular mechanical model.J Phys Chem A2007,111:3661–3671.

Woodcock, III HL,Hodoscek, M,Gilbert, ATB,Gill, PMW,Schaefer, III HF,Brooks, BR.Interfacing Q‐Chem and CHARMM to perform QM/MM reaction path calculations.J Comput Chem2007,28:1485–1502.

Bravaya, K,Grigorenko, BL,Nemukhin, AV,Krylov, AI.Quantum chemistry behind bioimaging: insights from *ab initio* studies of fluorescent proteins and their chromophores.Acc Chem Res2012,45:265–275.

Gordon, MS,Freitag, MA,Bandyopadhyay, P,Jensen, JH,Kairys, V,Stevens, WJ.The effective fragment potential method: a QM‐based MM approach to modeling environmental effects in chemistry.J Phys Chem A2001,105:293–307.

Gordon, MS,Slipchenko, L,Li, H,Jensen, JH.The effective fragment potential: a general method for predicting intermolecular interactions. In:Spellmeyer, DC,Wheeler, R, eds.Annual Reports in Computational Chemistry. Vol. 3.Elsevier;2007, 177–193.

Slipchenko, LV.Solvation of the excited states of chromophores in polarizable environment: orbital relaxation versus polarization.J Phys Chem A2010,114:8824–8830.

Ghosh, D,Kosenkov, D,Vanovschi, V,Williams, C,Herbert, J,Gordon, MS,Schmidt, M,Slipchenko, LV,Krylov, AI.Non‐covalent interactions in extended systems described by the effective fragment potential method: theory and application to nucleobase oligomers.J Phys Chem A2010,114:12739–12745.

Ghosh, D,Isayev, O,Slipchenko, LV,Krylov, AI.The effect of solvation on vertical ionization energy of thymine: from microhydration to bulk.J Phys Chem A2011,115:6028–6038.

Gilbert, ATB.IQmol molecular viewer. Available at:http://iqmol.org. (Accessed October, 2012).

Glendening, ED,Badenhoop, JK,Reed, AE,Carpenter, JE,Bohmann, JA,Morales, CM,Weinhold, F.NBO 5.0. Madison, WI: Theoretical Chemistry Institute, University of Wisconsin; 2001.

Head‐Gordon, M,Grana, AM,Maurice, D,White, CA.Analysis of electronic transitions as the difference of electron attachment and detachment densities.J Phys Chem1995,99:14261–14270.

Vura‐Weis, J,Newton, M,Wasilewski, M,Subotnik, J.Characterizing the locality of diabatic states for electronic excitation transfer by decomposing the diabatic coupling.J Phys Chem C2010,114:20449–20460.

Thom, AJW,Sundstrom, EJ,Head‐Gordon, M.LOBA: a localized orbital bonding analysis to calculate oxidation states, with application to a model water oxidation catalyst.Phys Chem Chem Phys2009,11:11297–11304.

Bravaya, K,Khrenova, MG,Grigorenko, BL,Nemukhin, AV,Krylov, AI.The effect of protein environment on electronically excited and ionized states of the green fluorescent protein chromophore.J Phys Chem B2011,8:8296–8303.

Epifanovsky, E,Wormit, M,Kuś, T,Landau, A,Zuev, D,Khistyaev, K,Kaliman, I,Manohar, P,Dreuw, A,Krylov, AI.New implementation of high‐level correlated methods using a general block‐tensor libraryfor high‐performance electronic structure calculations. 2011. Available at:http://iopenshell.usc.edu/downloads/tensor/. (Accessed October, 2012).