Slater, JC.Atomic shielding constants.Phys Rev1930,36:0057–0064.

Boys, SF.Electronic wave functions. 1. A general method of calculation for the stationary states of any molecular system.Proc R Soc London A: Math Phys Sci1950,200:542–554.

Flad, HJ,Hackbusch, W,Kolb, D,Schneider, R.Wavelet approximation of correlated wave functions. I. Basics.J Chem Phys2002,116:9641–9657.

Sekino, H,Maeda, Y,Yanai, T,Harrison, RJ.Basis set limit Hartree–Fock and density functional theory response property evaluation by multiresolution multiwavelet basis.J Chem Phys2008,129:034111.

Bischoff, FA,Valeev, EF.Low‐order tensor approximations for electronic wave functions: Hartree–Fock method with guaranteed precision.J Chem Phys2011,134:104104.

Cao, X,Dolg, M.Pseudopotentials and modelpotentials.Wiley Interdiscip Rev: Comput Mol Sci2011,1:200–210.

Dolg, M,Cao, X.Relativistic pseudopotentials: their development and scope of applications.Chem Rev2012,112:403–480.

Hehre, WJ,Ditchfie, R,Pople, JA.Self‐consistent molecular‐orbital methods. 12. Further Extensions of Gaussian‐type basis sets for use in molecular‐orbital studies of organic‐molecules.J Chem Phys1972,56:2257–2261.

Dill, JD,Pople, JA.Self‐consistent molecular‐orbital methods. 15. Extended Gaussian‐type basis sets for lithium, beryllium, and boron.J Chem Phys1975,62:2921–2923.

Francl, MM,Pietro, WJ,Hehre, WJ,Binkley, JS,Gordon, MS,Defrees, DJ,Pople, JA.Self‐consistent molecular‐orbital methods. 23. A polarization‐type basis set for 2nd‐row elements.J Chem Phys1982,77:3654–3665.

Rassolov, VA,Pople, JA,Ratner, MA,Windus, TL.6‐31G* basis set for atoms K through Zn.J Chem Phys1998,109:1223–1229.

Rassolov, VA,Ratner, MA,Pople, JA,Redfern, PC,Curtiss, LA.6‐31G*basis set for third‐row atoms.J Comput Chem2001,22:976–984.

Binning, RC,Curtiss, LA.Compact contracted basis‐sets for 3rd‐row atoms—GA‐KR.J Comput Chem1990,11:1206–1216.

Krishnan, R,Binkley, JS,Seeger, R,Pople, JA.Self‐consistent molecular‐orbital methods. 20. Basis set for correlated wave‐functions.J Chem Phys1980,72:650–654.

McLean, AD,Chandler, GS.Contracted Gaussian‐basis sets for molecular calculations. 1. Second row atoms, Z = 11‐18.J Chem Phys1980,72:5639–5648.

Curtiss, LA,McGrath, MP,Blaudeau, JP,Davis, NE,Binning, RC,Radom, L.Extension of Gaussian‐2 theory to molecules containing 3rd‐row atoms GA‐KR.J Chem Phys1995,103:6104–6113.

Blaudeau, JP,McGrath, MP,Curtiss, LA,Radom, L.Extension of Gaussian‐2 (G2) theory to molecules containing third‐row atoms K and Ca.J Chem Phys1997,107:5016–5021.

Dobbs, KD,Hehre, WJ.Molecular‐orbital theory of the properties of inorganic and organometallic compounds. 5. Extended basis‐sets for 1st‐row transition‐metals.J Comput Chem1987,8:861–879.

Wachters, AJ.Gaussian basis set for molecular wavefunctions containing third‐row atoms.J Chem Phys1970,52:1033–1036.

Hay, PJ.Gaussian basis sets for molecular calculations—representation of 3D orbitals in transition‐metal atoms.J Chem Phys1977,66:4377–4384.

Weigend, F,Ahlrichs, R.Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy.Phys Chem Chem Phys2005,7:3297–3305.

Neto, AC,Muniz, EP,Centoducatte, R,Jorge, FE.Gaussian basis sets for correlated wave functions. Hydrogen, helium, first‐ and second‐row atoms.Theochem: J Mol Struct2005,718:219–224.

Jorge, FE,Sagrillo, PS,de Oliveira, AR.Gaussian basis sets of 5 zeta valence quality for correlated wave functions.Chem Phys Lett2006,432:558–563.

Barbieri, PL,Fantin, PA,Jorge, FE.Gaussian basis sets of triple and quadruple zeta valence quality for correlated wave functions.Mol Phys2006,104:2945–2954.

Machado, SF,Camiletti, GG,Canal Neto, A,Jorge, FE,Jorge, RS.Gaussian basis set of triple zeta valence quality for the atoms from K to Kr: application in DFT and CCSD(T) calculations of molecular properties.Mol Phys2009,107:1713–1727.

Camiletti, GG,Machado, SF,Jorge, FE.Gaussian basis set of double zeta quality for atoms K through Kr: application in DFT calculations of molecular properties.J Comput Chem2008,29:2434–2444.

Thakkar, AJ,Koga, T,Saito, M,Hoffmeyer, RE.Double and quadruple zeta‐contracted Gaussian‐basis sets for hydrogen through neon.Int J Quantum Chem1993:343–354.

Tatewaki, H,Koga, T,Takashima, H.Contracted Gaussian‐type basis functions revisited. 2. Atoms Na through Ar.Theor Chem Acc1997,96:243–247.

Koga, T,Tatewaki, H,Matsuyama, H,Satoh, Y.Contracted Gaussian‐type basis functions revisited. III. Atoms K through Kr.Theor Chem Acc1999,102:105–111.

Noro, T,Sekiya, M,Koga, T,Matsuyama, H.Valence and correlated basis sets for the first‐row transition atoms from Sc to Zn.Theor Chem Acc2000,104:146–152.

Widmark, PO,Malmqvist, PA,Roos, BO.Density‐matrix averaged atomic natural orbital (ANO) basis‐sets for correlated molecular wave‐functions. 1. First row atoms.Theor Chim Acta1990,77:291–306.

Widmark, PO,Joakim, B,Persson,,Roos, BO.Density‐matrix averaged atomic natural orbital (ANO) basis‐sets for correlated molecular wave‐functions. 2. Second row atoms.Theor Chim Acta1991,79:419–432.

Pouamerigo, R,Merchan, M,Nebotgil, I,Widmark, PO,Roos, BO.Density‐matrix averaged atomic natural orbital (ANO) basis‐sets for correlated molecular wave‐functions. 3. First row transition‐metal atoms.Theor Chim Acta1995,92:149–181.

Pierloot, K,Dumez, B,Widmark, PO,Roos, BO.Density‐matrix averaged atomic natural orbital (Ano) basis‐sets for correlated molecular wave‐functions. 4. Medium‐size basis‐sets for the atoms H‐Kr.Theor Chim Acta1995,90:87–114.

Roos, BO,Lindh, R,Malmqvist, PA,Veryazov, V,Widmark, PO.Main group atoms and dimers studied with a new relativistic ANO basis set.J Phys Chem A2004,108:2851–2858.

Dunning, TH.Gaussian‐basis sets for use in correlated molecular calculations. 1. The atoms boron through neon and hydrogen.J Chem Phys1989,90:1007–1023.

Dunning, TH,Peterson, KA,Wilson, AK.Gaussian basis sets for use in correlated molecular calculations. X. The atoms aluminum through argon revisited.J Chem Phys2001,114:9244–9253.

Wilson, AK,Woon, DE,Peterson, KA,Dunning, TH.Gaussian basis sets for use in correlated molecular calculations. IX. The atoms gallium through krypton.J Chem Phys1999,110:7667–7676.

Balabanov, NB,Peterson, KA.Systematically convergent basis sets for transition metals. I. All‐electron correlation consistent basis sets for the 3d elements Sc‐Zn.J Chem Phys2005,123:064107.

Zhong, S,Barnes, EC,Petersson, GA.Uniformly convergent n‐tuple‐zeta augmented polarized (nZaP) basis sets for complete basis set extrapolations. I. Self‐consistent field energies.J Chem Phys2008,129:184116.

Barnes, EC,Petersson, GA,Feller, D,Peterson, KA.The CCSD(T) complete basis set limit for Ne revisited.J Chem Phys2008,129:194115.

Barnes, EC,Petersson, GA.MP2/CBS atomic and molecular benchmarks for H through Ar.J Chem Phys2010, 132:114111.

Jensen, F.Polarization consistent basis sets: principles.J Chem Phys2001,115:9113–9125.

Jensen, F.Polarization consistent basis sets: principles (vol 115, pg 9113, 2001).J Chem Phys2002,116:3502–3502.

Jensen, F,Helgaker, T.Polarization consistent basis sets. V. The elements Si‐Cl.J Chem Phys2004,121:3463–3470.

Jensen, F.Polarization consistent basis sets. 4: the elements He, Li, Be, B, Ne, Na, Mg, Al, and Ar.J Phys Chem A2007,111:11198–11204.

Jensen, F.Polarization consistent basis sets. VII. The elements K, Ca, Ga, Ge, As, Se, Br, and Kr.J Chem Phys2012,136:114107.

Jensen, F.2012(submitted).

Helgaker, T,Jørgensen, P,Olsen, J.Molecular Electronic‐Structure Theory.Chichester:John Wiley %26 Sons;2000.

Jensen, F.Introduction to Computational Chemistry.Chichester: John Wiley %26 Sons;2007.

Dunning, TH.Gaussian basis functions for use in molecular calculations. 1. Contraction of (9s5p) atomic basis sets for first‐row atoms.J Chem Phys1970,53:2823–2833.

Raffenet, Rc.General contraction of Gaussian atomic orbitals—core, valence, polarization, and diffuse basis sets—molecular integral evaluation.J Chem Phys1973,58:4452–4458.

Davidson, ER.Comment on Dunning`s correlation‐consistent basis sets.Chem Phys Lett1996,260:514–518.

Almlof, J,Faegri, K,Korsell, K.Principles for a direct SCF approach to LCAO‐MO *ab initio* calculations.J Comput Chem1982,3:385–399.

Haser, M,Ahlrichs, R.Improvements on the direct SCF method.J Comput Chem1989,10:104–111.

Lambrecht, DS,Ochsenfeld, C.Multipole‐based integral estimates for the rigorous description of distance dependence in two‐electron integrals.J Chem Phys2005,123:184101–184101.

Mulliken, RS.Criteria for construction of good self‐consistent‐field molecular orbital wave functions, and significance of LCAO‐MO population analysis.J Chem Phys1962,36:3428–3439.

Clementi, E,Popkie, H.Study of structure of molecular complexes. 1. Energy surface of a water molecule in field of a lithium positive‐ion.J Chem Phys1972,57:1077–1094.

Almlof, J,Taylor, PR.General contraction of Gaussian‐basis sets. 1. Atomic natural orbitals for 1st‐row and 2nd‐row atoms.J Chem Phys1987,86:4070–4077.

Weigend, F,Furche, F,Ahlrichs, R.Gaussian basis sets of quadruple zeta valence quality for atoms H–Kr.J Chem Phys2003,119:12753–12762.

Tatewaki, H,Huzinaga, S.A systematic preparation of new contracted Gaussian‐type orbital sets. 3. Second‐row atoms from Li through Ne.J Comput Chem1980,1:205–228.

Kari, RE,Mezey, PG,Csizmadia, IG.Quality of Gaussian basis sets—direct optimization of orbital exponents by method of conjugate gradients.J Chem Phys1975,63:581–585.

Schafer, A,Horn, H,Ahlrichs, R.Fully optimized contracted Gaussian‐basis sets for atoms Li to Kr.J Chem Phys1992,97:2571–2577.

Faegri, K,Almlof, J.Energy‐optimized GTO basis‐sets for LCAO calculations—a gradient approach.J Comput Chem1986,7:396–405.

Mezey, PG,Csizmadia, IG,Kari, RE.Uniform quality Gaussian basis sets. 2. Multiple optima of small Gaussian basis sets for 1st row elements.J Chem Phys1977,67:2927–2928.

Bardo, RD,Ruedenbe,.K.Even‐tempered atomic orbitals. 6. Optimal orbital exponents and optimal contractions of Gaussian primitives for hydrogen, carbon, and oxygen in molecules.J Chem Phys1974,60:918–931.

Schmidt, MW,Ruedenberg, K.Effective convergence to complete orbital bases and to the atomic Hartree–Fock limit through systematic sequences of Gaussian primitives.J Chem Phys1979,71:3951–3962.

Silver, DM,Nieuwpoort, WC.Universal Atomic Basis Sets.Chem Phys Lett1978,57:421–422.

Moncrieff, D,Wilson, S.A universal basis set for high‐precision molecular electronic structure studies: correlation effects in the ground states of N‐2, CO, BF and NO+.J Phys B‐Atomic Mol Opt Phys1998,31:3819–3841.

Jorge, FE,de Castro, EVR.Improved generator coordinate Hartree–Fock method: application to first‐row atoms.Chem Phys Lett1999,302:454–460.

Huzinaga, S,Klobukowski, M.Well‐tempered GTF basis‐sets for the atoms K through Xe.Chem Phys Lett1985,120:509–512.

Huzinaga, S,Klobukowski, M,Tatewaki, H.The well‐tempered GTF basis‐sets and their applications in the SCF calculations on N‐2, Co, Na‐2, and P‐2.Can J Chem—Revue Canadienne De Chimie1985,63:1812–1828.

Petersson, GA,Zhong, SJ,Montgomery, JA,Frisch, MJ.On the optimization of Gaussian basis sets.J Chem Phys2003,118:1101–1109.

Cohen, AJ,Handy, NC.Density functional generalized gradient calculations using Slater basis sets.J Chem Phys2002,117:1470–1478.

Van Lenthe, E,Baerends, EJ.Optimized Slater‐type basis sets for the elements 1–118.J Comput Chem2003,24:1142–1156.

Clementi, E,Raimondi, DL.Atomic screening constants from scf functions.J Chem Phys1963,38:2686–2689.

Huzinaga, S.Gaussian‐type functions for polyatomic systems. I.J Chem Phys1965,42:1293–1302.

Hehre, WJ,Stewart, RF,Pople, JA.Self‐consistent molecular‐orbital methods. I. Use of Gaussian expansions of Slater‐type atomic orbitals.J Chem Phys1969,51:2657–2664.

Stewart, RF.Small Gaussian expansions of atomic orbitals.J Chem Phys1969,50:2485–2495.

Hehre, WJ,Ditchfie, R,Stewart, RF,Pople, JA.Self‐consistent molecular orbital methods. 4. Use of Gaussian expansions of Slater‐type orbitals—extension to second‐row molecules.J Chem Phys1970,52:2769–2773.

Frisch, MJ,Pople, JA,Binkley, JS.Self‐consistent molecular‐orbital methods. 25. Supplementary functions for Gaussian‐basis sets.J Chem Phys1984,80:3265–3269.

Roos, B,Siegbahn, P.Polarization functions for first and second row atoms in Gaussian type MO‐SCF calculations.Theor Chim Acta1970,17:199–208.

Noro, T,Sekiya, M,Koga, T.Contracted polarization functions for the atoms helium through neon.Theor Chem Acc1997,98:25–32.

Harihara, PC,Pople, JA.Influence of polarization functions on molecular‐orbital hydrogenation energies.Theor Chim Acta1973,28:213–222.

Ahlrichs, R,Driessler, F,Lischka, H,Staemmler, V,Kutzelnigg, W.PNO‐CI (pair natural orbital configuration interaction) and CEPA‐PNO (coupled electron pair approximation with pair natural orbitals) calculations of molecular systems. 2. Molecules BEH2, BH, BH3, CH4, CH‐3, NH3 (planar and pyramidal), H2O, OH+3, HF and NE atom.J Chem Phys1975,62:1235–1247.

Magnusson, E.Supplementary d and f functions in molecular wave‐functions at large and small internuclear separations.J Comput Chem1993,14:67–74.

Woon, DE,Dunning, TH.Gaussian‐basis sets for use in correlated molecular calculations. 5. Core‐valence basis‐sets for boron through neon.J Chem Phys1995,103:4572–4585.

Peterson, KA,Dunning, TH.Accurate correlation consistent basis sets for molecular core‐valence correlation effects: the second row atoms Al‐Ar, and the first row atoms B‐Ne revisited.J Chem Phys2002,117:10548–10560.

Noro, T,Sekiya, M,Koga, T.Segmented contracted basis sets for atoms H through Xe: Sapporo‐(DK)‐nZP sets (*n* = D, T, Q).Theor Chem Acc2012,131.

Chandrasekhar, J,Andrade, JG,Schleyer, PV.Efficient and accurate calculation of anion proton affinities.J Am Chem Soc1981,103:5609–5612.

Kendall, RA,Dunning, TH,Harrison, RJ.Electron‐affinities of the 1st‐row atoms revisited—systematic basis‐sets and wave‐functions.J Chem Phys1992,96:6796–6806.

Woon, DE,Dunning, TH.Gaussian‐basis sets for use in correlated molecular calculations. 4. Calculation of static electrical response properties.J Chem Phys1994,100:2975–2988.

Peterson, KA,Dunning, TH.The CO molecule: the role of basis set and correlation treatment in the calculation of molecular properties.Theochem: J Mol Struct1997,400:93–117.

Camiletti, GG,Canal Neto, A,Jorge, FE,Machado, SF.Augmented Gaussian basis sets of double and triple zeta valence qualities for the atoms K and Sc‐Kr: applications in HF, MP2, and DFT calculations of molecular electric properties.Theochem: J Mol Struct‐2009,910:122–125.

Rappoport, D,Furche, F.Property‐optimized Gaussian basis sets for molecular response calculations.J Chem Phys2010,133.

Jensen, F.Polarization consistent basis sets. III. The importance of diffuse functions.J Chem Phys2002,117:9234–9240.

Jensen, F.Describing anions by density functional theory: fractional electron affinity.J Chem Theory Comput2010,6:2726–2735.

Dunning, TH.Gaussian basis functions for use in molecular calculations. 3. Contraction of (10s6p) atomic basis sets for first‐row atoms.J Chem Phys1971,55:716–723.

Ditchfie, R,Hehre, WJ,Pople, JA.Self‐consistent molecular‐orbital methods. 9. Extended Gaussian‐type basis for molecular‐orbital studies of organic molecules.J Chem Phys1971,54:724–728.

Gordon, MS,Binkley, JS,Pople, JA,Pietro, WJ,Hehre, WJ.Self‐consistent molecular‐orbital methods. 22. Small split‐valence basis‐sets for 2nd‐row elements.J Am Chem Soc1982,104:2797–2803.

Binkley, JS,Pople, JA,Hehre, WJ.Self‐consistent molecular‐orbital methods. 21. Small split‐valence basis‐sets for 1st‐row elements.J Am Chem Soc1980,102:939–947.

Schafer, A,Huber, C,Ahlrichs, R.Fully optimized contracted Gaussian‐basis sets of triple zeta valence quality for atoms LI to KR.J Chem Phys1994,100:5829–5835.

Godbout, N,Salahub, DR,Andzelm, J,Wimmer, E.Optimization of Gaussian‐type basis‐sets for local spin‐density functional calculations. 1. Boron through neon, optimization technique and validation.Can J Chem—Revue Canadienne De Chimie1992,70:560–571.

Chiodo, S,Russo, N,Sicilia, E.Newly developed basis sets for density functional calculations.J Comput Chem2005,26:175–183.

Porezag, D,Pederson, MR.Optimization of Gaussian basis sets for density‐functional calculations.Phys Rev A1999,60:2840–2847.

Veillard, A.Gaussian basis set for molecular wavefunctions containing second‐row atoms.Theor Chim Acta1968,12:405–411.

Jensen, F.Contracted basis sets for density functional calculations: segmented versus general contraction.J Chem Phys2005,122:074111.

Almlof, J,Taylor, PR.Atomic natural orbital (ANO) basis‐sets for quantum‐chemical calculations.Adv Quantum Chem1991,22:301–373.

Klopper, W,Kutzelnigg, W.Gaussian‐basis sets and the nuclear cusp problem.Theochem: J Mol Struct1986,135:339–356.

Kutzelnigg, W.Theory of the expansion of wave‐functions in a Gaussian‐basis.Int J Quantum Chem1994,51:447–463.

McKemmish, LK,Gill, PMW.Gaussian expansions of orbitals.J Chem Theory Comput2012.

Jensen, F.The basis set convergence of the Hartree–Fock energy for H‐3(+), Li‐2 and N‐2.Theor Chem Acc2000,104:484–490.

Christensen, KA,Jensen, F.The basis set convergence of the density functional energy for H‐2.Chem Phys Lett2000,317:400–403.

Kutzelnigg, W,Morgan, JD.Rates of convergence of the partial‐wave expansions of atomic correlation energies.J Chem Phys1992,96:4484–4508.

Kutzelnigg, W.Correction.J Chem Phys1992,97:8821–8821.

Petersson, GA,Bennett, A,Tensfeldt, TG,Allaham, MA,Shirley, WA,Mantzaris, J.A complete basis set model chemistry. 1. The total energies of closed‐shell atoms and hydrides of the 1st‐row elements.J Chem Phys1988,89:2193–2218.

Klopper, W,Manby, FR,Ten‐No, S,Valeev, EF.R12 methods in explicitly correlated molecular electronic structure theory.Int Rev Phys Chem2006,25:427–468.

Peterson, KA,Adler, TB,Werner, H‐J.Systematically convergent basis sets for explicitly correlated wavefunctions: the atoms H, He, B‐Ne, and Al‐Ar.J Chem Phys2008,128:084102.

Hill, JG,Peterson, KA.Correlation consistent basis sets for explicitly correlated wavefunctions: valence and core‐valence basis sets for Li, Be, Na, and Mg.Phys Chem Chem Phys2010,12:10460–10468.

Feller, D,Peterson, KA,Hill, JG.On the effectiveness of CCSD(T) complete basis set extrapolations for atomization energies.J Chem Phys2011,135:044102.

Curtiss, LA,Redfern, PC,Raghavachari, K.G*n* theory.Wiley Interdiscip Rev: Comput Mol Sci2011,1:810–825.

Karton, A,Rabinovich, E,Martin, JML,Ruscic, B.W4 theory for computational thermochemistry: in pursuit of confident sub‐kJ/mol predictions.J Chem Phys2006,125:144108.

DeYonker, NJ,Cundari, TR,Wilson, AK.The correlation consistent composite approach (ccCA): an alternative to the Gaussian‐*n* methods.J Chem Phys2006,124:114104.

Feller, D,Peterson, KA,Dixon, DA.A survey of factors contributing to accurate theoretical predictions of atomization energies and molecular structures.J Chem Phys2008,129:204105.