Cazaux, S, Caselli, P, Cobut, V, Le Bourlot, J. The role of carbon grains in the deuteration of H_{2}. Astron Astrophys 2008, 483:495–508. doi: 10.1051/0004‐6361:20078612.

Goumans, TPM, Kästner, J. Hydrogen‐atom tunneling could contribute to H_{2} formation in space. Angew Chem, Int Ed 2010, 49:7350–7352. doi: 10.1002/anie.201001311.

Goumans, TPM, Andersson, S. Tunnelling in the O + CO reaction. Mon Not R Astron Soc 2010, 406:2213–2217. doi:10.1111/j.1365‐2966.2010.16836.x.

Goumans, TPM. Isotope effects for formaldehyde plus hydrogen addition and abstraction reactions: rate calculations including tunnelling. Mon Not Roy Astron Soc 2011, 413:26150–2620. doi: 10.1111/j.1365‐2966.2011.18329.x.

Goumans, TPM, Kästner, J. Deuterium enrichment of interstellar methanol explained by atom tunneling. J Phys Chem A 2011, 115:10767. doi: 10.1021/jp206048f.

Schreiner, PR, Reisenauer, HP, Pickard, FC IV, Simmonett, AC, Allen, WD, Mátyus, E, Császár, AG. Capture of hydroxymethylene and its fast disappearance through tunnelling. Nature 2008, 453:906. doi:10.1038/nature07010.

Schreiner, PR, Reisenauer, HP, Ley, D, Gerbig, D, Wu, CH, Allen, WD. Methylhydroxycarbene: tunneling control of a chemical reaction. Science 2011, 332:1300. doi:10.1126/science.1203761.

Ley, D, Gerbig, D, Schreiner, PR. Tunnelling control of chemical reactions—the organic chemist`s perspective. Org Biomol Chem 2012, 10:3781. doi: 10.1039/C2OB07170C.

Sutcliffe, MJ, Scrutton, NS. A new conceptual framework for enzyme catalysis—hydrogen tunneling coupled to enzyme dynamics in flavoprotein and quinoprotein enzymes. Eur J Biochem 2002, 269:3096. doi: 10.1046/j.1432‐1033.2002.03020.x.

Masgrau, L, Roujeinikova, A, Johannissen, LO, Hothi, P, Basran, J, Ranaghan, KE, Mulholland, AJ, Sutcliffe, MJ, Scrutton, NS, Leys, D. Atomic description of an enzyme reaction dominated by proton tunneling. Science, 2006, 312:237. doi:10.1126/science.1126002.

Hwang, JK, Warshel, A. How important are quantum mechanical nuclear motions in enzyme catalysis? J Am Chem Soc 1996, 118:11745. doi:10.1021/ja962007f.

Kamerlina, SCL, Mavrib, J, Warshel, A. Examining the case for the effect of barrier compression on tunneling, vibrationally enhanced catalysis, catalytic entropy and related issues. FEBS Lett 2010, 584:2759–2766. doi: 10.1016/j.febslet.2010.04.062.

Eyring, H, Polanyi, M. Über einfache Gasreaktionen. Z Phys Chem 1931, B12:279.

Truhlar, DG, Garrett, BC. Variational transition state theory. Ann Rev Phys Chem 1984, 35:159. doi: 10.1146/annurev.pc.35.100184.001111.

Garraway, BM, Suominen, KA. Wave‐packet dynamics: new physics and chemistry in femto‐time. Rep Prog Phys 1995, 58:365. doi:10.1088/0034‐4885/58/4/001.

Manthe, U, Meyer, HD, Cederbaum, LS. Wave‐packet dynamics within the multiconfiguration Hartree framework: general aspects and application to NOCl. J Chem Phys 1992, 97:3199–3213. doi:10.1063/1.463007.

Meyer, HD, Manthe, U, Cederbaum, LS. The multi‐configurational time‐dependent Hartree approach. Chem Phys Lett 1990, 165:73–78. doi:10.1016/0009‐2614(90)87014‐I.

Padmanaban, R, Nest, M. Origin of electronic structure and time‐dependent state averaging in the multi‐configuration time‐dependent Hartree–Fock approach to electron dynamics. Chem Phys Lett 2008, 463:263–266. doi:10.1016/j.cplett.2008.08.045.

Hammer, T, Coutinho‐Neto, MD, Viel, A, Manthe, U. Multiconfigurational time‐dependent Hartree calculations for tunneling splittings of vibrational states: theoretical considerations and application to malonaldehyde. J Chem Phys 2009, 131:224109. doi:10.1063/1.3272610.

Hansen, NF, Andersen, HC. Properties of quantum transition state theory and its corrections. J Phys Chem 1996, 199:1137–1143. doi:10.1021/jp951605y.

Cheney, BG, Andersen, HC. Dynamical corrections to quantum transition state theory. J Chem Phys 2003, 118:9542–9551. doi:10.1063/1.1570404.

Feynman, RP. Space‐time approach to non‐relativistic quantum mechanics. Rev Mod Phys 1948, 20:367 doi:10.1103/RevModPhys.20.367.

Cao, J, Voth, GA. The formulation of quantum statistical mechanics based on the feynman path centroid density. iii. phase space formalism and analysis of centroid molecular dynamics. J Chem Phys 1994, 101:6157 doi:10.1063/1.468503.

Voth, GA. Path‐integral centroid methods in quantum statistical mechanics and dynamics. Adv Chem Phys 1996, 93:135 doi:10.1002/9780470141526.ch4.

Pollak, E, Liao, JL. A new quantum transition state theory. J Chem Phys 1998, 108:2733 doi:10.1063/1.475665.

Richardson, JO, Althorpe, SC. Ring‐polymer molecular dynamics rate‐theory in the deep‐tunneling regime: connection with semiclassical instanton theory. J Chem Phys 2009, 131:214106 doi:10.1063/1.3267318.

Craig, IR, Manolopoulos, DE. Chemical reaction rates from ring polymer molecular dynamics. J Chem Phys 2005, 122:084106 doi:10.1063/1.1850093.

Marx, D, Parrinello, M. Ab initio path integral molecular dynamics: basic ideas. J Chem Phys 1996, 104:4077 doi:10.1063/1.471221.

Tuckerman, ME, Marx, D, Klein, ML, Parrinello, M. Efficient and general algorithms for path integral Car–Parrinello molecular dynamics. J Chem Phys 1996, 104:5579 doi:10.1063/1.471771.

Marx, D, Tuckerman, ME, Martyna, GM. Quantum dynamics via adiabatic ab initio centroid molecular dynamics. Comput Phys Commun 1999, 118:166 doi:10.1016/S0010‐4655(99)00208‐8.

Car, R, Parrinello, M. Unified approach for molecular dynamics and density‐functional theory. Phys Rev Lett 1985, 55:2471.

Gillan, MJ. Quantum‐classical crossover of the transition rate in the damped double well. J Phys C 1987, 20:3621 doi:10.1088/0022‐3719/20/24/005.

Voth, GA, Chandler, D, Miller, WH. Rigorous formulation of quantum transition state theory and its dynamical corrections. J Chem Phys 1989, 91:7749 doi:10.1063/1.457242.

Voth, GA. Feynman path integral formulation of quantum mechanical transition‐state theory. J Phys Chem 1993, 97:8365 doi:10.1021/j100134a002.

Mills, G, Schenter, GK, Makarov, DE, Jónsson, H. Generalized path integral based quantum transition state theory. Chem Phys Lett 1997, 278:91 doi:10.1016/S0009‐2614(97)00886‐5.

Mills, G, Schenter, GK, Makarov, DE, Jónsson, H. %22RAW quantum transition state theory%22. In: Berne, BJ, Ciccotti, G, Coker, DF, eds. Classical and Quantum Dynamics in Condensed Phase Simulations. Singapore: World Scientific; 1998, 405.

Wentzel, G. Eine Verallgemeinerung der Quantenbedingungen für die Zwecke der Wellenmechanik. Z Phys 1926, 38:518 doi:10.1007/BF01397171.

Kramers, HA. Wellenmechanik und halbzählige Quantisierung. Z Phys 1926, 39:828–840. doi:10.1007/BF01451751.

Brillouin, L. La mécanique ondulatoire de Schrödinger: une méthode générale de resolution par approximations successives. C R Acad Sci Paris 1926, 183:24–26.

Gamow, G. Zur Quantentheorie des Atomkernes. Z Phys 1928, 51:204 doi:10.1007/BF01343196.

Eckart, C. The penetration of a potential barrier by electrons. Phys Rev 1930, 35:1303 doi:10.1103/PhysRev.35.1303.

Kuppermann, A, Truhlar, DG. Exact tunneling calculations. J Am Chem Soc 1971, 93:1840 doi:10.1021/ja00737a002.

Marcus, RA, Coltrin, ME. A new tunneling path for reactions such as H+H_{2} → H_{2}+H. J Chem Phys 1977, 67:2609 doi:10.1063/1.435172.

Skodje, RT, Truhlar, DG, Garrett, BC. A general small‐curvature approximation for transition‐state‐theory transmission coefficients. J Phys Chem 1981, 85:3019–3023. doi:10.1021/j150621a001.

Garrett, BC, Truhlar, DG, Wagner, AF, Dunning, TH Jr. Variational transition state theory and tunneling for a heavy–light–heavy reaction using an ab initio potential energy surface. J Chem Phys 1983, 78:4400 doi:10.1063/1.445323.

Garrett, BC, Abusalbi, N, Kouri, DJ, Truhlar, DG. Test of variational transition state theory and the least‐action approximation for multidimensional tunneling probabilities against accurate quantal rate constants for a collinear reaction involving tunneling into an excited state. J Chem Phys 1985, 83:2252 doi:10.1063/1.449318.

Liu, YP, Lu, DH, Gonzalez‐Lafont, A, Truhlar, DG, Garrett, BC. Direct dynamics calculation of the kinetic isotope effect for an organic hydrogen‐transfer reaction, including corner‐cutting tunneling in 21 dimensions. J Am Chem Soc 1993, 115:7806–7817. doi:10.1021/ja00070a029.

Meana‐Paneda, R, Truhlar, DG, Fernández‐Ramos, A. Least‐action tunneling transmission coefficient for polyatomic reactions. J Chem Theory Comput 2010, 6:6–17. doi:10.1021/ct900420e.

Wigner, EP. Über das Überschreiten von Potentialschwellen bei chemischen Reaktionen. Z Phys Chem 1932, 15:203.

Bell, RP. Quantum mechanical effects in reactions involving hydrogen. Proc Royal Soc A 1935, 148:241–250. doi:10.1098/rspa.1935.0016.

Bell, RP. The tunnel effect correction for parabolic potential barriers. Trans Faraday Soc 1959, 55:1 doi:10.1039/TF9595500001.

Langer, JS. Theory of the condensation point. Ann Phys (NY) 1967, 41:108 doi:10.1016/0003‐4916(67)90200‐X.

Langer, JS. Statistical theory of the decay of metastable states. Ann Phys (NY) 1969, 54:258–275. doi:10.1016/0003‐4916(69)90153‐5.

Miller, WH. Semiclassical limit of quantum mechanical transition state theory for nonseparable systems. J Chem Phys 1975, 62:1899 doi:10.1063/1.430676.

Coleman, S. Fate of the false vacuum: Semiclassical theory. Phys Rev D 1977, 15:2929 doi:10.1103/PhysRevD.15.2929.

Callan, CG Jr, Coleman, S. Fate of the false vacuum. ii. first quantum corrections. Phys Rev D 1977, 16:1762 doi:10.1103/PhysRevD.16.1762.

Gildener, E, Patrascioiu, A. Pseudoparticle contributions to the energy spectrum of a one‐dimensional system. Phys Rev D 1977, 16:423 doi:10.1103/PhysRevD.16.423.

Simon, B. Functional Integration and Quantum Physics. New York: Academic Press; 1979.

Rommel, JB, Goumans, TPM, Kästner, J. Locating instantons in many degrees of freedom. J Chem Theory Comput 2011, 7:690 doi:10.1021/ct100658y.

Rommel, JB, Kästner, J. Adaptive integration grids in instanton theory improve the numerical accuracy at low temperature. J Chem Phys 2011, 134:184107 doi:10.1063/1.3587240.

Kästner, J, Carr, JM, Keal, TW, Thiel, W, Wander, A, Sherwood, P. DL‐FIND: an open‐source geometry optimizer for atomistic simulations. J Phys Chem A 2009, 113:11856 doi:10.1021/jp9028968.

ChemShell, a computational chemistry shell. Available at: www.chemshell.org. (Accessed May 24, 2013).

Müller, K, Brown, LD. Location of saddle points and minimum energy paths by a constrained simplex optimization procedure. Theor Chim Acta 1979, 53:75 doi:10.1007/BF00547608.

Affleck, I. Quantum‐statistical metastability. Phys Rev Lett 1981, 46:388–391. doi:10.1103/PhysRevLett.46. 388.

Coleman, S. Quantum tunneling and negative eigenvalues. Nucl Phys B 1988, 298:178 doi:10.1016/0550‐3213(88)90308‐2.

Hänggi, P, Talkner, P, Borkovec, M. Reaction‐rate theory: fifty years after kramers. Rev Mod Phys 1990, 62:251 doi:10.1103/RevModPhys.62.251.

Benderskii, VA, Makarov, DE, Wight, CA. One‐dimensional models. Adv Chem Phys 1994, 88:55 doi:10.1002/9780470141472.ch3.

Messina, M, Schenter, GK, Garrett, BC. A variational centroid density procedure for the calculation of transmission coefficients for asymmetric barriers at low temperature. J Chem Phys 1995, 103:3430 doi:10.1063/1.470227.

Althorpe, SC. On the equivalence of two commonly used forms of semiclassical instanton theory. J Chem Phys 2011, 134:114104 doi:10.1063/1.3563045.

Chapman, S, Garrett, BC, Miller, WH. Semiclassical transition state theory for nonseparable systems: application to the collinear H+H_{2} reaction. J Chem Phys 1975, 63:2710 doi:10.1063/1.431620.

Mills, G, Jónsson, H. Quantum and thermal effects in H_{2} dissociative adsorption: evaluation of free energy barriers in multidimensional quantum systems. Phys Rev Lett 1994, 72:1124 doi:10.1103/PhysRevLett.72.1124.

Mills, G, Jónsson, H, Schenter, GK. Reversible work transition state theory: application to dissociative adsorption of hydrogen. Surf Sci 1995, 324:305–337. doi:10.1016/0039‐6028(94)00731‐4.

Siebrand, W, Smedarchina, Z, Zgierski, MZ, Fernández‐Ramos, A. Proton tunnelling in polyatomic molecules: a direct‐dynamics instanton approach. Int Rev Phys Chem, 1999, 18:5 doi:10.1080/014423599229992.

Smedarchina, Z, Siebrand, W, Fernández‐Ramos, A, Cui, Q. Kinetic isotope effects for concerted multiple proton transfer: a direct dynamics study of an active‐site model of carbonic anhydrase II. J Am Chem Soc 2003, 125:243–251. doi:10.1021/ja0210594.

Qian, T, Ren, W, Shi, J, E W, Shen, P. Numerical study of metastability due to tunneling: the quantum string method. Phys A 2007, 379:491 doi:10.1016/j.physa.2007.01.005.

Andersson, S, Nyman, G, Arnaldsson, A, Manthe, U, Jónsson, H. Comparison of quantum dynamics and quantum transition state theory estimates of the H + CH_{4} reaction rate. J Phys Chem A 2009, 113:4468 doi:10.1021/jp811070w.

Goumans, TPM. Hydrogen chemisorption on polycyclic aromatic hydrocarbons via tunnelling. Mon Not R Astron Soc 2011, 415:3129–3134. doi:10.1111/j.1365‐2966.2011.18924.x.

Meisner, J, Rommel, JB, Kästner, J. Kinetic isotope effects calculated with the instanton method. J Comput Chem 2011, 32:3456 doi:10.1002/jcc.21930.

Jónsson, H. Simulation of surface processes. Proc Nat Acad Sci USA 2010, 108:944–949. doi:10.1073/pnas.1006670108.

Einarsdóttir, DM, Arnaldsson, A, Óskarsson, F, Jónsson, H. Path optimization with application to tunneling. Lect Notes Comput Sci 2012, 7134:45 doi:10.1007/978‐3‐642‐28145‐7_5.

Rommel, J, Liu, Y, Werner, HJ, Kästner, J. Role of tunneling in the enzyme glutamate mutase. J Phys Chem B 2012, 116:13682 doi:10.1021/jp308526t.

Kästner, J. The path length determines the tunneling decay of substituted carbenes. Chem Eur J 2013, 19:8207–8212. doi:10.1002/chem.201203651.