Allen, MP, Tildesley, DJ. Computer Simulations of Liquids. Oxford, New York: Clarendon Press; 1987.

Frenkel, D, Smit, B. Understanding Molecular Simulation: From Algorithms to Application. New York: Academic Press; 1996.

Mark, E. Tuckerman, Statistical Mechanics: Theory and Molecular Simulation. Oxford: Oxford University Press; 2010, 712.

Andersen, HC. Molecular dynamics simulations at constant pressure and/or temperature. J Chem Phys 1980, 72:2384–2393.

Nosé, S. A unified formulation of the constant temperature molecular dynamics method. J Chem Phys 1984, 81:511–519.

Nosé, S. A molecular dynamics method for simulation in the canonical ensemble. Mol Phys 1984, 52:255–268.

Hoover, WG. Canonical dynamics: equilibrium phase‐space distributions. Phys Rev A 1985, 31:1695–1697.

Hernandez, R, Somer, FL. Stochastic dynamics in irreversible nonequilibrium environments. 1. The fluctuation‐dissipation relation. J Phys Chem B 1999, 103:1064–1069. doi: 10.1021/jp983625g.

Somer, FL, Hernandez, R. Stochastic dynamics in irreversible nonequilibrium environments. 3. Temperature‐ramped chemical kinetics. J Phys Chem A 1999, 103:11004–11010. doi: 10.1021/jp9915836.

Popov, AV, Hernandez, R. The ontology of temperature in nonequilibrium systems. J Chem Phys 2007, 126:244506. doi: 10.1063/1.2743032.

Inglfsson, HI, Lopez, CA, Uusitalo, JJ, de Jong, DH, Gopal, SM, Periole, X, Marrink, SJ. The power of coarse graining in biomolecular simulations. Wiley Interdiscip Rev Comput Mol Sci 2013, 4:225–248. doi: 10.1002/wcms.1169.

Zhou, J, Thorpe, IF, Izvekov, S, Voth, GA. Coarse‐grained peptide modeling using a systematic multiscale approach. Biophys J 2007, 92:4289–4303. doi: 10.1529/biophysj.106.094425.

Noid, WG, Chu, J‐W, Ayton, GS, Krishna, V, Izvekov, S, Voth, GA, Das, A, Andersen, HC. The multiscale coarse‐graining method. I. A rigorous bridge between atomistic and coarse‐grained models. J Chem Phys 2008, 128:244114. doi: 10.1063/1.2938860.

Noid, WG, Liu, P, Wang, Y, Chu, J‐W, Ayton, GS, Izvekov, S, Andersen, HC, Voth, GA. The multiscale coarse‐graining method. II. Numerical implementation for coarsegrained molecular models. J Chem Phys 2008, 128:244115.

Izvekov, S, Voth, GA. Multiscale coarse graining of liquid‐state systems. J Chem Phys 2005, 123:134105. doi: 10.1063/1.2038787.

Izvekov, S, Voth, GA. Modeling real dynamics in the coarse‐grained representation of condensed phase systems. J Chem Phys 2006, 125:151101. doi: 10.1063/1.2360580.

Wang, Y, Jiang, W, Yan, T, Voth, GA. Understanding ionic liquids through atomistic and coarse‐grained molecular dynamics simulations. Acc Chem Res 2007, 40:1193–1199. doi: 10.1021/ar700160p.

Thorpe, IF, Zhou, J, Voth, GA. Peptide folding using multiscale coarse‐grained models. J Phys Chem B 2008, 112:13079–13090. doi: 10.1021/jp8015968.

Simunovic, M, Srivastava, A, Voth, GA. Linear aggregation of proteins on the membrane as a prelude to membrane remodeling. Proc Natl Acad Sci USA 2013, 110:20396–20401. doi: 10.1073/pnas.1309819110.

Hijón, C, Español, P, Vanden‐Eijnden, E, Delgado‐Buscalioni, R. Mori–zwanzig formalism as a practical computational tool. Faraday Discuss Chem Soc 2010, 144:301–322.

Sutto, L, Marzilli, S, Gervasio, FL. New advances in metadynamics. Wiley Interdiscip Rev Comput Mol Sci 2012, 2:771–779. doi: 10.1002/wcms.1103.

Newton, I. The Mathematical Principles of Natural Philosophy. New York: Daniel Adee; 1846.

Goldstein, H. Classical Mechanics. Reading, MA: Addison‐Wesley Publishing Company; 1965.

Arnold, VI. Mathematical Methods of Classical Mechanics. New York: Springer‐Verlag; 1978.

Meyer, KR, Hall, GR. Introduction to Hamiltonian Dynamical Systems and the N‐Body Problem. New York: Springer‐Verlag; 1991.

Gutzwiller, MC. Chaos in Classical and Quantum Mechanics. New York: Springer–Verlag; 1990.

Landau, LD, Lifshitz, EM. Course of Theoretical Physics: Mechanics. Oxford: Butterworth Heinemann; 1982, 170.

de Castro, AS. Point transformations are canonical transformations. Eur J Phys 1999, 20:L11.

Brooks, BR, Bruccoleri, RE, Olafson, BD, States, DJ, Swaminathan, S, Karplus, M. Charmm: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 1983, 4:187–217.

MacKerell, AD Jr, Brooks, B, Brooks, CL III, Nilsson, L, Roux, B, Won, Y, Karplus, M. CHARMM: the energy function and its parameterization with an overview of the program. In: The Encyclopedia of Computational Chemistry. Athens, GA: John Wiley %26 Sons; 1998, 271–277.

Pearlman, DA, Case, DA, Caldwell, JW, Ross, WR, Cheatham, TE III, DeBolt, S, Ferguson, D, Seibel, G, Kollman, P. Amber, a computer program for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to elucidate the structures and energies of molecules. Comp Phys Commun 1995, 91:1–41.

Hornak, V, Abel, R, Okur, A, Strockbine, B, Roitberg, A, Simmerling, C. Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins Struct Funct Bioinform 1996, 65:712–725. doi: 10.1002/prot.21123.

Kostansek, EC. The role of hydrophobicity in latex stability. Trends Polym Sci 1996, 4:383–387.

Hagy, MC, Hernandez, R. Dynamical simulation of dipolar janus colloids: equilibrium structure and thermodynamics. J Chem Phys 2012, 137:044505. doi: 10.1063/1.4737432.

Hagy, MC, Hernandez, R. Dynamical simulation of dipolar janus colloids: dynamical properties. J Chem Phys 2013, 138:184903. doi: 10.1063/1.4803864.

Hagy, MC, Hernandez, R. Dynamical simulation of electrostatic striped colloidal particles. J Chem Phys 2014, 140:034701. doi: 10.1063/1.4859855.

Mas, EM, Bukowski, R, Szalewicz, K. Ab initio three‐body interactions for water. I. Potential and structure of water trimer. J Chem Phys 2003, 118:4386–4403.

Mas, EM, Bukowski, R, Szalewicz, K. Ab initio three‐body interactions for water. II. Effects on structure and energetics of liquid. J Chem Phys 2003, 118:4404–4413.

Bukowski, R, Szalewicz, K, Groenenboom, GC, van der Avoird, A. Predictions of the properties of water from first principles. Science 2007, 315:1249–1252.

Tainter, CJ, Pieniazek, PA, Lin, Y‐S, Skinner, JL. Robust three‐body water simulation model. J Chem Phys 2011, 134:184501.

Pieniazek, PA, Tainter, CJ, Skinner, JL. Surface of liquid water: three‐body interactions and vibrational sum‐frequency spectroscopy. J Am Chem Soc 2011, 133:10360–10363.

Turney, JM, Simmonett, AC, Parrish, RM, Hohenstein, EG, Evangelista, FA, Fermann, JT, Mintz, BJ, Burns, LA, Wilke, JJ, Abrams, ML, et al. Psi4: an open‐source ab initio electronic structure program. Wiley Interdiscip Rev Comput Mol Sci 2012, 2:556–565. doi: 10.1002/wcms.93.

Mazzanti, A, Casarini, D. Recent trends in conformational analysis. Wiley Interdiscip Rev Comput Mol Sci 2012, 2:613–641. doi: 10.1002/wcms.96.

Glendening, ED, Landis, CR, Weinhold, F. Natural bond orbital methods. Wiley Interdiscip Rev Comput Mol Sci 2012, 2:1–42. doi: 10.1002/wcms.51.

Gerbig, D, Ley, D. Computational methods for contemporary carbene chemistry. Wiley Interdiscip Rev Comput Mol Sci 2013, 3:242–272. doi: 10.1002/wcms.1124.

Aquilante, F, Pedersen, TB, Veryazov, V, Lindh, R. Molcasa software for multiconfigurational quantum chemistry calculations. Wiley Interdiscip Rev Comput Mol Sci 2013, 3:143–149. doi: 10.1002/wcms.1117.

Cao, X, Dolg, M. Pseudopotentials and modelpotentials. Wiley Interdiscip Rev Comput Mol Sci 2011, 1:200–210. doi: 10.1002/wcms.28.

Acevedo, O, Jorgensen, WL. Quantum and molecular mechanical Monte Carlo techniques for modeling condensed‐phase reactions. Wiley Interdiscip Rev Comput Mol Sci 2014. doi: 10.1002/wcms.1180.

Warshel, A, Weiss, RM. An empirical valence bond approach for comparing reactions in solutions and in enzymes. J Am Chem Soc 1980, 102:6218–6226. doi: 10.1021/ja00540a008.

Schmitt, UW, Voth, GA. Multistate empirical valence bond model for proton transport in water. J Phys Chem B 1998, 102:5547–5551. doi: 10.1021/jp9818131.

Warshel, A, Florián, J. The empirical valence bond (EVB) method. In: Encyclopedia of Computational Chemistry. John Wiley %26 Sons; 2002. doi: 10.1002/0470845015.cu0002.

Wu, Y, Chen, H, Wang, F, Paesani, F, Voth, GA. An improved multistate empirical valence bond model for aqueous proton solvation and transport. J Phys Chem B 2008, 112:467–482. doi: 10.1021/jp076658h pMID: 17999484.

Kamerlin, SCL, Warshel, A. The empirical valence bond model: theory and applications. Wiley Interdiscip Rev Comput Mol Sci 2011, 1:30–45. doi: 10.1002/wcms.10.

van Duin, ACT, Dasgupta, S, Lorant, F, Goddard, WA. ReaxFF: a reactive force field for hydrocarbons. J Phys Chem A 2001, 105:9396–9409. doi: 10.1021/jp004368u.

Strachan, A, van Duin, ACT, Chakraborty, D, Dasgupta, S, Goddard, WA. Shock waves in high‐energy materials: the initial chemical events in nitramine RDX. Phys Rev Lett 2003, 91:098301. doi: 10.1103/PhysRevLett.91.098301.

van Duin, ACT, Strachan, A, Stewman, S, Zhang, Q, Xu, X, Goddard, WA. ReaxFFSiO reactive force field for silicon and silicon oxide systems. J Phys Chem A 2003, 107:3803–3811. doi: 10.1021/jp0276303.

Zhang, Q, Çağın, T, van Duin, A, Goddard, WA, Qi, Y, Hector, LG. Adhesion and nonwetting‐wetting transition in the A1/α–Al_{2}o_{3} interface. Phys Rev B 2004, 69:045423. doi: 10.1103/PhysRevB.69.045423.

Strachan, A, Kober, EM, van Duin, ACT, Oxgaard, J, Goddard, WA. Thermal decomposition of RDX from reactive molecular dynamics. J Chem Phys 2005, 122:054502. doi: 10.1063/1.1831277.

Valentini, P, Schwartzentruber, TE, Cozmuta, I. Molecular dynamics simulation of O2 sticking on Pt(111) using the ab initio based ReaxFF reactive force field. J Chem Phys 2010, 133:084703. doi: 10.1063/1.3469810.

Schlegel, HB. Ab initio molecular dynamics with Born‐Oppenheimer and extended Lagrangian methods using atom centered basis functions. Bull Korean Chem Soc 2003, 24:837–842. doi: 10.5012/bkcs.2003.24.6.837.

Sun, R, Park, K, de Jong, WA, Lischka, H, Windus, TL, Hase, WL. Direct dynamics simulation of dioxetane formation and decomposition via the singlet ·O−O−CH_{2} −CH_{2}· biradical: non‐RRKM dynamics. J Chem Phys 2012, 137:044305. doi: 10.1063/1.4736843.

Paranjothy, M, Sun, R, Zhuang, Y, Hase, WL. Direct chemical dynamics simulations: coupling of classical and quasiclassical trajectories with electronic structure theory. Wiley Interdiscip Rev Comput Mol Sci 2013, 3:296–316. doi: 10.1002/wcms.1132.

Komornicki, A, Ishida, K, Morokuma, K, Ditchfield, R, Conrad, M. Efficient determination and characterization of transition states using ab‐initio methods. Chem Phys Lett 1977, 45:595–602. doi: 10.1016/0009‐2614(77)80099‐7.

Leforestier, C. Classical trajectories using the full ab initio potential energy surface H− + CH4 → CH4 + H−. J Chem Phys 1978, 68:4406–4410. doi: 10.1063/1.435520.

Sun, L, Hase, WL. Born‐Oppenheimer direct dynamics classical trajectory simulations. In: Reviews in Computational Chemistry, vol. 19. Hoboken, NJ: John Wiley %26 Sons; 2003, 79–146. doi: 10.1002/0471466638.ch3.

Fermi, E. On the origin of the cosmic radiation. Phys Rev 1949, 75:1169. doi: 10.1103/PhysRev.75.1169.

Sturrock, PA. Stochastic acceleration. Phys Rev 1966, 141:186. doi: 10.1103/PhysRev.141.186.

Makhnovskii, YA, Pollak, E. Hamiltonian theory of stochastic acceleration. Phys Rev E 2006, 73:041105. doi: 10.1103/PhysRevE.73.041105.

Moix, JM, Hernandez, R, Pollak, E. The momentum and velocity autocorrelation functions of a diatomic molecule are not necessarily proportional to each other. J Phys Chem B 2008, 112:213–218. doi: 10.1021/jp0730951.

van Kampen, NG. Stochastic Processes in Physics and Chemistry. New York: North‐Holland; 1981.

Kneller, GR, Sutmann, G. Scaling of the memory function and Brownian motion. J Chem Phys 2004, 120:1667–1669.

Ermak, DL. A computer simulation of charged particles in solution. I. Technique and equilibrium properties. J Chem Phys 1975, 62:4189–4196. doi: 10.1063/1.430300.

Gaylor, KJ, Snook, IK, Van Megen, WJ, Watts, RO. Brownian dynamics of many‐body systems. J Chem Soc Faraday Trans II 1980, 76:1067–1078. doi: 10.1039/F29807601067.

Heyes, DM. Shear thinning of dense suspensions modelled by Brownian dynamics. Phys Lett A 1988, 132:399–402. doi: 10.1016/0375‐9601(88)90501‐4.

Xue, W, Grest, GS. Brownian dynamics simulations for interacting colloids in the presence of a shear flow. Phys Rev A 1989, 40:1709–1712. doi: 10.1103/PhysRevA.40.1709.

Wilemski, G. Nonequilibrium Brownian dynamics simulations of shear thinning in concentrated colloidal suspensions. J Stat Phys 1991, 62:1239–1253. doi: 10.1007/BF01128185.

Rastogi, SR, Wagner, NJ, Lustig, SR. Microstructure and rheology of polydisperse, charged suspensions. J Chem Phys 1996, 104:9249–9258. doi: 10.1063/1.471614.

Zwanzig, R. Nonequilibrium Statistical Mechanics. London: Oxford University Press; 2001.

Hernandez, R. The projection of a mechanical system onto the irreversible generalized Langevin equation (iGLE). J Chem Phys 1999, 111:7701–7704. doi: 10.1063/1.480160.

Popov, AV, Melvin, J, Hernandez, R. Dynamics of swelling hard spheres surmised by an irreversible Langevin equation. J Phys Chem A 2006, 110:1635–1644. doi: 10.1021/jp054241a.

Jones, CD, Lyon, LA. Synthesis and characterization of multiresponsive core‐shell microgels. Macromolecules 2000, 33:8301–8306.

Garcia‐Salinas, MJ, Romero‐Cano, MS, de las Nieves, FJ. Electrophoretic mobility and swelling behaviour of 2‐acrylamido‐2‐methylpropane sulphonic acid/poly(n‐isopropylacrylamide) microgel particles. Prog Colloid Polym Sci 2001, 118:180–183.

Fernández‐Nieves, A, Fernández‐Barbero, A, Vincent, B, de las Nieves, FJ. Osmotic de‐swelling of ionic microgel particles. J Chem Phys 2003, 119:10383–10388.

Hershkovits, E, Hernandez, R. Chemical reaction dynamics within anisotropic solvents in time‐dependent fields. J Chem Phys 2005, 122:014509. doi: 10.1063/1.1829252.

van`t Hoff, JH. Etudes de Dynamiques Chimiques. Amsterdam: F. Muller and Co.; 1884, 214. Translated by T. Ewan as Studies in Chemical Dynamics (London, 1896).

Arrhenius, S. Uber die Reaktionsgeschwindigkeit bei der inversion von Rohzucker durch Säuren. Z Phys Chem (Leipzig) 1889 Translated and published in Back MH, Laidler KJ, eds. *Selected Readings in Chemical Kinetics*. Oxford: Pergamon; 1967., 4:226–248.

Miller, WH, Handy, NC, Adams, JE. Reaction path Hamiltonian for polyatomic molecules. J Chem Phys 1980, 72:99–112.

Truhlar, DG, Garrett, BC. Variational transition state theory. Annu Rev Phys Chem 1984, 35:159–189. doi: 10.1146/annurev.pc.35.100184.001111.

Truong, TN, Duncan, W. A new direct ab initio dynamics method for calculating thermal rate constants from density functional theory. J Chem Phys 1994, 101:7408–7414.

Truhlar, DG, Garrett, BC, Klippenstein, SJ. Current status of transition‐state theory. J Phys Chem 1996, 100:12771–12800.

Hratchian, HP, Schlegel, HB. Finding minima, transition states, and following reaction pathways on ab initio potential energy surfaces. In: Dykstra, CE, Frenking, G, Kim, KS, Scuseria, GE, eds. Theory and Applications of Computational Chemistry: the First Forty Years. New York: Elsevier; 2005, 195–249.

Schlegel, HB. Geometry optimization. Wiley Interdiscip Rev Comput Mol Sci 2011, 1:790–809. doi: 10.1002/wcms.34.

Weinan, E, Vanden‐Eijnden, E. Transition‐path theory and path‐finding algorithms for the study of rare events. Annu Rev Phys Chem 2010, 61:391–420. doi: 10.1146/annurev.physchem.040808.090412.

Saltiel, J, Ganapathy, S, Werking, C. The ΔH for thermal trans‐stilbene/cisstilbene isomerization: do S0 and T1 potential energy curves cross? J Phys Chem 1987, 91:2755–2758. doi: 10.1021/j100295a022.

Troe, J, Weitzel, KM. Mndo calculations of stilbene potential energy properties relevant for the photoisomerization dynamics. J Chem Phys 1988, 88:7030–7039. doi: 10.1063/1.454402.

Todd, DC, Jean, JM, Rosenthal, SJ, Ruggiero, AJ, Yang, D, Fleming, GR. Fluorescence upconversion study of cisstilbene isomerization. J Chem Phys 1990, 93:8658–8668. doi: 10.1063/1.459252.

Sension, RJ, Repinec, ST, Szarka, AZ, Hochstrasser, RM. Femtosecond laser studies of the cis‐stilbene photoisomerization reactions. J Chem Phys 1993, 98:6291–6315. doi: 10.1063/1.464824.

Shepherd, TD, Hernandez, R. Chemical reaction dynamics with stochastic potentials beyond the high‐friction limit. J Chem Phys 2001, 115:2430–2438. doi: 10.1063/1.1386422.

Doering, CR, Gadoua, JC. Resonant activation over a fluctuating barrier. Phys Rev Lett 1992, 69:2318.

Kramers, HA. Brownian motion in a field of force and the diffusional model of chemical reactions. Physica (Utrecht) 1940, 7:284–304. doi: 10.1016/S0031‐8914(40)90098‐2.

Mel`nikov, VI, Meshkov, SV. Theory of activated rate processes: exact solution of the Kramers problem. J Chem Phys 1986, 85:1018–1027. doi: 10.1063/1.451844.

Pollak, E, Grabert, H, Hänggi, P. Theory of activated rate processes for arbitrary frequency dependent friction: solution of the turnover problem. J Chem Phys 1989, 91:4073–4087. doi: 10.1063/1.456837.

Hänggi, P, Talkner, P, Borkovec, M. Reaction‐rate theory: fifty years after Kramers. Rev Mod Phys 1990, 62:251–341. doi: 10.1103/RevModPhys.62.251 and references therein.

Pollak, E. Theory of activated rate processes: a new derivation of Kramers` expression. J Chem Phys 1986, 85:865–867. doi: 10.1063/1.451294.

Graham, R. Macroscopic theory of activated decay of metastable states. J Stat Phys 1990, 60:675–694.

Fenichel, N. Asymptotic stability with rate conditions, II. Indiana Univ Math J 1977, 26:81–93.

Hernandez, R, Miller, WH. Semiclassical transition state theory. A new perspective. Chem Phys Lett 1993, 214:129–136. doi: 10.1016/0009‐2614(93)90071‐8.

Hernandez, R. A combined use of perturbation theory and diagonalization: application to bound energy levels and semiclassical rate theory. J Chem Phys 1994, 101:9534–9547. doi: 10.1063/1.467985.

Wiggins, S, Wiesenfeld, L, Jaffé, C, Uzer, T. Impenetrable barriers in phase‐space. Phys Rev Lett 2001, 86:5478.

Uzer, T, Jaffé, C, Palacían, J, Yanguas, P, Wiggins, S. The geometry of reaction dynamics. Nonlinearity 2002, 15:957.

Hernandez, R, Bartsch, T, Uzer, T. Transition state theory in liquids beyond planar dividing surfaces. Chem Phys 2010, 370:270–276. doi: 10.1016/j.chemphys.2010.01.016.

Bartsch, T, Hernandez, R, Uzer, T. Transition state in a noisy environment. Phys Rev Lett 2005, 95:058301–058304. doi: 10.1103/PhysRevLett.95.058301.

Bartsch, T, Uzer, T, Hernandez, R. Stochastic transition states: reaction geometry amidst noise. J Chem Phys 2005, 123:204102. doi: 10.1063/1.2109827.

Bartsch, T, Uzer, T, Moix, JM, Hernandez, R. Identifying reactive trajectories using a moving transition state. J Chem Phys 2006, 124:244310(01)–244310(13). doi: 10.1063/1.2206587.

Bartsch, T, Uzer, T, Moix, JM, Hernandez, R. Transition‐state theory rate calculations with a recrossing‐free moving dividing surface. J Phys Chem B 2008, 112:206–212. doi: 10.1021/jp0755600.

Bartsch, T, Moix, JM, Hernandez, R, Kawai, S, Uzer, T. Timedependent transition state theory. Adv Chem Phys 2008, 140:191–238.

Evans, DJ, Cohen, EGD, Morriss, GP. Probability of second law violations in shearing steady flows. Phys Rev Lett 1993, 71:2401–2404.

Gallavotti, G, Cohen, EGD. Dynamical ensembles in nonequilibrium statistical mechanics. Phys Rev Lett 1995, 74:2694.

Gallavotti, G, Cohen, EGD. Dynamical ensembles in stationary states. J Stat Phys 1995, 80:931.

Searles, DJ, Evans, DJ. Ensemble dependence of the transient fluctuation theorem. J Chem Phys 2000, 113:3503–3509.

Jarzynski, C. Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J Stat Mech 2004, 04:P09005.

Kob, W, Barrat, J‐L. Aging effects in a Lennard‐Jones glass. Phys Rev Lett 1997, 78:4581–4584.

Sciortino, F. Potential energy landscape description of supercooled liquids and glasses. J Stat Mech 2005, 2005:P05015.

Biroli, G. A crash course on ageing. J Stat Mech 2005, 05:P05014.

Pitts, SJ, Young, T, Andersen, HC. Facilitated spin models, mode coupling theory, and ergodic transitions. J Chem Phys 2000, 113:8671.

Andersen, HC. Molecular dynamics studies of heterogeneous dynamics and dynamic crossover in supercooled atomic liquids. Proc Natl Acad Sci USA 2005, 102:6686–6691.

Liu, AJ, Nagel, SR. Nonlinear dynamics—jamming is not just cool anymore. Nature (London) 1998, 396:21.

Berthier, L, Barrat, J‐L. Nonequilibrium dynamics and fluctuation‐dissipation relation in a sheared fluid. J Chem Phys 2002, 116:6228–6242.

Miyazaki, K, Reichman, DR. Molecular hydrodynamic theory of supercooled liquids and colloidal suspensions under shear. Phys Rev E 2002, 66:050501.

Fuchs, M, Cates, ME. Theory of nonlinear rheology and yielding of dense colloidal suspensions. Phys Rev Lett 2002, 89:248304. doi: 10.1103/PhysRevLett.89.248304.

Fuchs, M, Ballauff, M. Flow curves of dense colloidal dispersions: schematic model analysis of the shear‐dependent viscosity near the colloidal glass transition. J Chem Phys 2005, 122:094707. doi: 10.1063/1.1859285.

Holmes, CB, Cates, ME, Fuchs, M, Sollich, P. Glass transitions and shear thickening suspension rheology. J Rheol 2005, 49:237–269. doi: 10.1122/1.1814114.

Pine, DJ, Gollub, JP, Brady, JF, Leshansky, AM. Chaos and threshold for irreversibility in sheared suspensions. Nature 2005, 438:997–1000. doi: 10.1038/nature04380.

Reichman, DR, Charbonneau, P. Mode‐coupling theory. J Stat Mech 2005, 05:P05013.

Tucker, AK, Hernandez, R. Observation of a trapping transition in the diffusion of a thick needle through fixed point scatterers. J Phys Chem B 2010, 114:9628–9634. doi: 10.1021/jp100111y.

Popov, AV, Viehman, DC, Hernandez, R. Nonequilibrium heat flows through a nanorod sliding across a surface. J Chem Phys 2011, 134:104703. doi: 10.1021/ct100320g.

Götze, W, Sjögren, L. Relaxation processes in supercooled liquids. Rep Prog Phys 1992, 55:241–376.

Austin Angell, C. Formation of glasses from liquids and biopolymers. Science 1995, 267:1924–1935.

Stillinger, FH. A topographic view of supercooled liquids and glass formation. Science 1995, 267:1935–1939.

Debenedetti, PG. Metastable Liquids. Concepts and Principles. Princeton, NJ: Princeton University Press; 1996.

Merolle, M, Garrahan, JP, Chandler, D. Spacetime thermodynamics of the glass transition. Proc Natl Acad Sci USA 2005, 102:10837–10840. doi: 10.1073/pnas.0504820102.

Stevenson, JD, Wolynes, PG. Thermodynamic‐kinetic correlations in supercooled liquids: a critical survey of experimental data and predictions of the random first‐order transition theory of glasses. J Phys Chem B 2005, 109:15093–15097. doi: 10.1021/jp052279h.