Gonzalez, L, Escudero, D, Serrano‐Andres, L. Progress and challenges in the calculation of electronic excited states. ChemPhysChem 2012, 13:28–51.

Harbach, PHP, Dreuw, A. Modeling of Molecular Properties. Weinheim: Wiley‐VCH; 2011, 29–47.

Han, K‐L, Zhao, G‐J. Hydrogen Bonding and Transfer in the Excited State. Chichester: John Wiley %26 Sons; 2010.

Dreuw, A. Quantum chemical methods for the investigation of photo‐initiated processes in biological systems: theory and applications. ChemPhysChem 2006, 7:2259–2274.

Serrano‐Andres, L, Merchan, M. Quantum chemistry of the excited state: 2005 overview. J Mol Struct Theochem 2005, 729:99–108.

Grimme, S. Calculation of the electronic spectra of large molecules. Rev Comput Chem 2004, 20:153–218.

Grunenberg, J. Computational Spectroscopy: Methods, Experiments and Applications. Weinheim: Wiley‐VCH; 2010.

Barone, V. Computational Strategies for Spectroscopy: From Small Molecules to Nano Systems. Hoboken, NJ: John Wiley %26 Sons; 2011.

Runge, E, Gross, EKU. Density‐functional theory for time‐dependent systems. Phys Rev Lett 1984, 52:997–1000.

Casida, ME. Recent Advances in Density Functional Methods. Singapore: World Scientifc; 1995, 155–192.

Casida, ME, Huix‐Rotllant, M. Progress in time‐dependent density‐functional theory. Ann Rev Phys Chem 2012, 63:287–323.

Dierksen, M, Grimme, S. Density functional calculations of the vibronic structure of electronic absorption spectra. J Chem Phys 2004, 120:3544–3554.

Dreuw, A, Head‐Gordon, M. Single‐reference ab initio methods for the calculation of excited states of large molecules. Chem Rev 2005, 105:4009–4027.

Laurent, AD, Jacquemin, D. TDDFT benchmarks: a review. Int J Quantum Chem 2013, 113:2019–2039.

Dreuw, A, Weisman, JL, Head‐Gordon, M. Long‐range charge‐transfer excited states in time‐dependent density functional theory require non‐local exchange. J Chem Phys 2003, 119:2943–2946.

Tozer, DJ. Relationship between long‐range charge‐transfer excitation energy error and integer discontinuity in Kohn–Sham theory. J Chem Phys 2003, 119:12697–12699.

Ridley, JE, Zerner, MC. An intermediate neglect of differential overlap technique for spectroscopy: pyrrole and the azines. Theor Chim Acta 1973, 32:111–134.

Zerner, MC, Loew, GH, Kirchner, RK, Mueller‐Westerhoff, UT. An intermediate neglect of differential overlap technique for spectroscopy of transition‐metal complexes. Ferrocene. J Am Chem Soc 1980, 102:589–599.

Weber, W, Thiel, W. Orthogonalization corrections for semiempirical methods. Theor Chem Acc 2000, 103:495–506.

Koslowski, A, Beck, ME, Thiel, W. Implementation of a general multireference configuration interaction procedure with analytic gradients in a semiempirical context using the graphical unitary group approach. J Comput Chem 2003, 24:714–726.

Thiel, W. Semiempirical quantum–chemical methods. WIREs: Comput Mol Sci 2014, 4:145–157.

Grimme, S. Density functional calculations with configuration interaction for the excited states of molecules. Chem Phys Lett 1996, 259:128–137.

Grimme, S, Waletzke, M. A combination of Kohn–Sham density functional theory and multi‐reference configuration interaction methods. J Chem Phys 1999, 111:5645–5655.

Marian, CM, Gilka, N. Performance of the density functional theory/multireference configuration interaction method on electronic excitation of extended *π*‐systems. J Chem Theory Comput 2008, 4:1501–1515.

Szabo, A, Ostlund, NS. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory. New York: Dover; 1989.

McWeeny, R, Sutcliffe, BT. Methods of Molecular Quantum Mechanics. London: Academic Press; 1969.

Helgaker, T, Jørgensen, P, Olsen, J. Molecular Electronic Structure Theory. New York: John Wiley %26 Sons; 2000.

Bruna, PJ, Peyerimhoff, SD. Excited‐State Potentials. Advances in Chemical Physics. New York: John Wiley %26 Sons; 2007, 1–97.

Andersson, K, Malmqvist, P‐Å, Roos, BO. Second‐order perturbation theory with a complete active space self‐consistent field reference function. J Chem Phys 1992, 96:1218–1226.

Roca‐Sanjuan, D, Aquilante, F, Lindh, R. Multiconfiguration second‐order perturbation theory approach to strong electron correlation in chemistry and photochemistry. WIREs: Comput Mol Sci 2012, 2:585–603.

Sneskov, K, Christiansen, O. Excited state coupled cluster methods. WIREs: Comput Mol Sci 2012, 2:566–584.

Christiansen, O, Koch, H, Jørgensen, P. The second‐order approximate coupled cluster singles and doubles model CC2. Chem Phys Lett 1995, 243:409–418.

Hättig, C, Weigend, F. CC2 excitation energy calculations on large molecules using the resolution of the identity approximation. J Chem Phys 2000, 113:5154–5161.

Hättig, C, Hald, K. Implementation of RI‐CC2 triplet excitation energies with an application to trans‐azobenzene. Phys Chem Chem Phys 2002, 4:2111–2118.

Hättig, C. Structure optimizations for excited states with correlated second‐order methods: CC2, CIS(D∞), and ADC(2). Adv Quantum Chem 2005, 50:37–60.

Helmich, B, Hättig, C. A pair natural orbital implementation of the coupled cluster model CC2 for excitation energies. J Chem Phys 2013, 139:084114.

Koch, H, Christiansen, O, Jørgensen, P. Excitation‐energies of BH, CH_{2} and Ne in full configuration‐interaction and the hierarchy CCS, CC2, CCSD and CC3 of coupled‐cluster models. Chem Phys Lett 1995, 244:75–82.

Koch, H, Christiansen, O, Jørgensen, P, Helgaker, T, de Meras, TS. The CC3 model: an iterative coupled cluster approach including connected triples. J Chem Phys 1997, 106:1808–1818.

Christiansen, O, Koch, H, Jørgensen, P, Olsen, J. Excitation energies of H_{2}O, N_{2} and C_{2} in full configuration interaction and coupled cluster theory. Chem Phys Lett 1996, 256:185–194.

Sekino, H, Bartlett, RJ. A linear response, coupled‐cluster theory for excitation energy. Int J Quantum Chem Symp 1984, 18:255–265.

Stanton, JF, Bartlett, RJ. The equation of motion coupled‐cluster method. A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties. J Chem Phys 1993, 98:7029–7039.

Bartlett, RJ. The coupled‐cluster revolution. Mol Phys 2010, 108:2905.

Krylov, AI. Equation‐of‐motion coupled‐cluster methods for open‐shell and electronically excited species: the hitchhiker`s guide to Fock space. Annu Rev Phys Chem 2008, 59:433.

Sneskov, K, Christiansen, O. Excited state coupled cluster methods. WIREs: Comput Mol Sci 2011, 2:566.

Bartlett, RJ. Coupled‐cluster theory and its equation‐of‐motion extensions. WIREs: Comput Mol Sci 2012, 2:126.

Dalgaard, E, Monkhorst, HJ. Some aspects of the time‐dependent coupled‐cluster approach to dynamic response functions. Phys Rev A 1983, 28:1217–1222.

Koch, H, Jørgensen, P. Coupled cluster response functions. J Chem Phys 1990, 93:3333–3344.

Koch, H, Jensen, HJA, Jørgensen, P, Helgaker, T. Excitation energies from the coupled cluster singles and doubles linear response function (CCSDLR). Applications to Be, CH^{+}, CO, and H_{2}O. J Chem Phys 1990, 93:3345–3350.

Oddershede, J. Polarization propagator calculations. Adv Quantum Chem 1978, 11:275–325.

Oddershede, J. Propagator methods. Adv Chem Phys 1987, 69:201–240.

Bak, KL, Koch, H, Oddershede, J, Christiansen, O, Sauer, SPA. Atomic integral driven second order polarization propagator calculations of the excitation spectra of naphthalene and anthracene. J Chem Phys 2000, 112:4173–4185.

Falden, HH, Falster‐Hansen, KR, Bak, KL, Rettrup, S, Sauer, SPA. Benchmarking second order methods for the calculation of vertical electronic excitation energies: valence and Rydberg states in polycyclic aromatic hydrocarbons. J Phys Chem A 2009, 113:1195–12012.

Schirmer, J. Beyond the random‐phase approximation: a new approximation scheme for the polarization propagator. Phys Rev A 1982, 26:2395–2416.

Trofimov, AB, Schirmer, J. An efficient polarization propagator approach to valence electron excitation spectra. J Phys B At Mol Opt Phys 1995, 28:2299–2324.

Mertins, F, Schirmer, J. Algebraic propagator approaches and intermediate‐state representations. 1. The biorthogonal and unitary coupled‐cluster methods. Phys Rev A 1996, 53:2140–2152.

Trofimov, AB, Stelter, G, Schirmer, J. A consistent third‐order propagator method for electronic excitation. J Chem Phys 1999, 111:9982–9999.

Trofimov, AB, Stelter, G, Schirmer, J. Electron excitation energies using a consistent third‐order propagator approach: comparison with full configuration interaction and coupled cluster results. J Chem Phys 2002, 117:6402–6409.

Furche, F, Ahlrichs, R, Hättig, C, Klopper, W, Sierka, M, Weigend, F. Turbomole. WIREs: Comput Mol Sci 2014, 4:91–100.

Shao, Y, Molnar, LF, Jung, Y, Kussmann, J, Ochsenfeld, C, Brown, ST, Gilbert, ATB, Slipchenko, LV, Levchenko, SV, O`Neill, DP, et al. Advances in methods and algorithms in a modern quantum chemistry program package. Phys Chem Chem Phys 2006, 8:3172–3191.

Krylov, AI, Gill, PMW. Q‐Chem: an engine for innovation. WIREs: Comput Mol Sci 2013, 3:317–326.

Turney, JM, Simmonett, AC, Parrish, RM, Hohenstein, EG, Evangelista, FA, Fermann, JT, Mintz, BJ, Burns, LA, Wilke, JJ, Abrams, ML, et al. Psi4: an open‐source ab initio electronic structure program. WIREs: Comput Mol Sci 2012, 2:556–565.

Harbach, PHP, Wormit, M, Dreuw, A. The third‐order algebraic diagrammatic construction scheme ADC(3) for the polarization propagator for closed‐shell molecules: efficient implementation and benchmarking. J Chem Phys 2014, 141:064113.

Knippenberg, S, Rehn, DR, Wormit, M, Starcke, J‐H, Rusakova, IL, Trofimov, AB, Dreuw, A. Calculations of nonlinear response properties using the intermediate state representation and the algebraic‐diagrammatic construction polarization propagator approach: two‐photon absorption spectra. J Chem Phys 2012, 136:064107.

Trofimov, AB, Krivdina, IL, Weller, J, Schirmer, J. Algebraic‐diagrammatic construction propagator approach to molecular response properties. Chem Phys 2006, 328:1–10.

Rusakova, IL, Krivdin, LB, Rusakov, YY, Trofimov, AB. Algebraic‐diagrammatic construction polarization propagator approach to indirect nuclear spin‐spin coupling constants. J Chem Phys 2012, 137:044119.

Lunkenheimer, B, Köhn, A. Solvent effects on electronically excited states using the conductor‐like screening model and the second‐order correlated method. J Chem Theory Comput 2013, 9:977–994.

Bayin, SS. Mathematical Methods in Science and Engineering. Hoboken, NJ: John Wiley %26 Sons; 2006.

Fetter, AL, Walecka, JD. Quantum Theory of Many‐Particle Systems. New York: McGraw‐Hill; 1971.

Dickoff, WH, Van Neck, D. Many‐Body Theory Exposed!: Propagator Description of Quantum Mechanics in Many‐Body Systems. Singapore: World Scientific; 2005.

Lindenberg, J, Öhrn, Y. Propagators in Quantum Chemistry. New York: Academic Press; 1973.

Danovich, D. Green`s function methods for calculating ionization potentials, electron affinities, and excitation energies. WIREs: Comput Mol Sci 2011, 1:377–387.

von Niessen, W, Schirmer, J, Cederbaum, LS. Computational methods for the one‐particle Green`s function. Comput Phys Rep 1984, 1:57–125.

Cederbaum, LS. Green`s functions and propagators for chemistry. In: The Encyclopedia of Computational Chemistry. Chichester: John Wiley %26 Sons; 1998.

Schirmer, J, Cederbaum, LS, Walter, O. New approach to the one‐particle Green`s function for finite Fermi systems. Phys Rev A 1983, 28:1237–1259.

Mertins, F, Schirmer, J, Tarantelli, A. Algebraic propagator approaches and intermediate‐state representations. II. The equation‐of‐motion methods for N, N+/‐1, and N+/‐2 electrons. Phys Rev A 1996, 53:2153–2168.

Tarantelli, A, Cederbaum, LS. Particle‐particle propagator in the algebraic diagrammatic construction scheme at third order. Phys Rev A 1989, 39:1656–1664.

Schirmer, J. Closed‐form intermediate representations of many‐body propagators and resolvent matrices. Phys Rev A 1991, 43:4647–4659.

Schirmer, J, Trofimov, AB. Intermediate state representation approach to physical properties of electronically excited molecules. J Chem Phys 2004, 120:11449–11464.

Plasser, F, Wormit, M, Dreuw, A. New tools for the systematic analysis and visualization of electronic excitations. Part I: Formalism. J Chem Phys 2014, 141:024106.

Plasser, F, Bäppler, SA, Wormit, M, Dreuw, A. New tools for the systematic analysis and visualization of electronic excitations. Part II: Applications. J Chem Phys 2014, 141:024107.

Starcke, JH, Wormit, M, Dreuw, A. Unrestricted algebraic diagrammatic construction scheme of second order for the calculation of excited states of medium‐sized and large molecules. J Chem Phys 2009, 130:024104.

Starcke, JH, Wormit, M, Dreuw, A. Nature of the lowest excited states of neutral polyenyl radicals and polyene radical cations. J Chem Phys 2009, 131:144311.

Knippenberg, S, Eisenbrandt, P, Šištík, L, Slavíček, P, Dreuw, A. Simulation of photo‐electron spectra using the reflection principle in combination with unrestricted excitation ADC(2) to assess the accuracy of excited state calculations. ChemPhysChem 2011, 12:3180–3191.

Jung, YS, Lochan, RC, Dutoi, AD, Head‐Gordon, M. Scaled opposite‐spin second order Moller‐Plesset correlation energy: an economical electronic structure method. J Chem Phys 2004, 121:9793–9802.

Casanova, D, Rhee, YM, Head‐Gordon, M. Quasidegenerate scaled opposite spin second order perturbation corrections to single excitation configuration interaction. J Chem Phys 2008, 128:164106.

Winter, NOC, Hättig, C. Scaled opposite‐spin CC2 for ground and excited states with fourth order scaling computational costs. J Chem Phys 2011, 134:184101.

Krauter, CM, Pernpointner, M, Dreuw, A. Application of the scaled‐opposite‐spin approximation to algebraic diagrammatic construction schemes of second order. J Chem Phys 2013, 138:044107.

Davidson, ER. The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real‐symmetric matrices. J Comput Phys 1975, 17:87–94.

Cederbaum, LS, Domcke, W, Schirmer, J. Many‐body theory of core holes. Phys Rev A 1980, 22:206–222.

Barth, A, Cederbaum, LS. Many‐body theory of core‐valence excitation. Phys Rev A 1981, 23:1038–1061.

Barth, A, Schirmer, J. Theoretical core‐level excitation spectra of N_{2} and CO by a new polarisation propagator method. J Phys B At Mol Opt Phys 1985, 18:867–885.

Wenzel, J, Wormit, M, Dreuw, A. Calculating core‐level excitations and X‐ray absorption spectra of large and medium sized closed‐shell molecules with the algebraic‐diagrammatic construction scheme for the polarization propagator. J Comput Chem 2014. doi: 10.1002/jcc.23703.

Nakatsuji, H, Hirao, K. Cluster expansion of the wavefunction. Pseduo‐orbital theory applied to spin correlation. Chem Phys Lett 1977, 47:569–571.

Nakatsuji, H. Cluster expansion of the wavefunction. Electron correlations in ground and excited states by SAC (symmetry‐adapted‐cluster) and SAC CI theories. Chem Phys Lett 1979, 67:329–333.

Nakatsuji, H. Cluster expansion of the wavefunction. Calculation of electron correlations in ground and excited states by SAC and SAC CI theories. Chem Phys Lett 1979, 67:334–342.

Schirmer, J, Mertins, F. Review of biorthogonal coupled cluster representations for electronic excitation. Theor Chem Acc 2010, 125:145–172.

Koch, H, Kobayashi, R, De Meras, AS, Jørgensen, P. Calculation of size‐intensive transition moments from the coupled cluster singles and doubles linear‐response function. J Chem Phys 1994, 100:4393–4400.

Christiansen, O, Halkier, A, Koch, H, Jørgensen, P, Helgaker, T. Integral‐direct coupled cluster calculations of frequency‐dependent polarizabilities, transition probabilities and excited‐state properties. J Chem Phys 1998, 108:2801–2816.

Christiansen, O, Jørgensen, P, Hättig, C. Response functions from Fourier component variational perturbation theory applied to a time‐averaged quasienergy. Int J Quantum Chem 1998, 68:1–52.

Schirmer, J, Mertins, F. Size consistency of an algebraic propagator approach. Int J Quantum Chem 1996, 58:329–339.

Head‐Gordon, M, Oumi, M, Maurice, D. Quasidegenerate second‐order perturbation corrections to single‐excitation configuration interaction. Mol Phys 1999, 96:593–602.

Schreiber, M, Silva‐Junior, MR, Sauer, SPA, Thiel, W. Benchmarks for electronically excited states: CASPT2, CC2, CCSD, and CC3. J Chem Phys 2008, 128:134110.

Silva‐Junior, MR, Schreiber, M, Sauer, SPA, Thiel, W. Benchmarks for electronically excited states: time‐dependent density functional theory and density functional theory based multireference configuration interaction. J Chem Phys 2008, 129:104103.

Starcke, JH, Wormit, M, Schirmer, J, Dreuw, A. How much double excitation character do the lowest excited states of linear polyenes have? Chem Phys 2006, 329:39–49.

Wormit, M, Rehn, DR, Harbach, PHP, Wenzel, J, Krauter, CM, Epifanovsky, E, Dreuw, A. Investigating excited electronic states using the algebraic diagrammatic construction (ADC) approach of the polarisation propagator. Mol Phys 2014, 112:774–784.

Epifanovsky, E, Wormit, M, Kus, T, Landau, A, Zuev, D, Khistyaev, K, Manohar, P, Kaliman, I, Dreuw, A, Krylov, AI. New implementation of high‐level correlated methods using a general block tensor library for high‐performance electronic structure calculations. J Comput Chem 2013, 34:2293–2309.

Krauter, CM. Development, benchmarking, and applications of efficient theoretical approaches for the calculation of excited states in organic systems. Dissertation, *Ruprecht‐Karls University Heidelberg*, 2014.