Löwdin, P‐O. Quantum theory of many‐particle systems. I. Physical interpretations by means of density matrices, natural spin‐orbitals, and convergence problems in the method of configurational interaction. Phys Rev 1955, 97:1474–1489.

Löwdin, P‐O. Quantum theory of many‐particle systems. III. Extension of the Hartree‐Fock scheme to include degenerate systems and correlation effects. Phys Rev 1955, 97:1509–1520.

Sinanoglŭ, O. Many‐electron theory of atoms, molecules and their interactions. Adv Chem Phys 1964, 6:315–412.

Andersson, K, Roos, BO. In: Yarkony, DR, ed. Modern Electronic Structure Theory, Advanced Series in Physical Chemsitry, vol. 2 Part I. Singapore: World Scientific; 1995, 55.

Andersson, K, Malmqvist, P‐Å, Roos, BO. Second‐order perturbation theory with a complete active space self‐consistent field reference function. J Chem Phys 1992, 96:1218–1226.

Evangelista, FA, Allen, WD, Schaefer, HF. High‐order excitations in state‐universal and state‐specific multireference coupled cluster theories: Model systems. J Chem Phys 2006, 125:154113.

Evangelista, FA, Allen, WD, Schaefer, HF. Coupling term derivation and general implementation of state‐specific multireference coupled cluster theories. J Chem Phys 2007, 127:024102.

Kohn, W, Sham, LJ. Self‐consistent equations including exchange and correlation effects. Phys Rev 1965, 140:A1133–A1138.

Hohenberg, P, Kohn, W. Inhomogeneous electron gas. Phys Rev 1964, 136:B864–B871.

Cohen, AJ, Handy, NC. Dynamic correlation. Mol Phys 2001, 99:607–615.

Cremer, D. Density functional theory: coverage of dynamic and non‐dynamic electron correlation effects. Mol Phys 2001, 99:1899–1940.

Wang, SG, Schwarz, WHE. Simulation of nondynamical correlation in density functional calculations by the optimized fractional orbital occupation approach: application to the potential energy surfaces of O_{3} and SO_{2}. J Chem Phys 1996, 105:4641–4648.

Noodleman, L. Valence bond description of antiferromagnetic coupling in transition metal dimers. J Chem Phys 1981, 74:5737–5743.

Noodleman, L, Davidson, ER. Ligand spin polarization and antiferromagnetic coupling in transition metal dimers. Chem Phys 1986, 109:131–143.

Ciofini, I, Illas, F, Adamo, C. Performance of the *τ*‐dependent functionals in predicting the magnetic coupling of ionic antiferromagnetic insulators. J Chem Phys 2004, 120:3811–3816.

Adamo, C, Barone, V, Bencini, A, Broer, R, Filatov, M, Harrison, NM, Illas, F, Malrieu, JP, Moreira I de, PR. Comment on "About the calculation of exchange coupling constants using density‐functional theory: The role of the self‐interaction error" [J. Chem. Phys. 123, 164110, 2005]. J Chem Phys 2006, 124:107101.

Caballol, R, Castell, O, Illas, F, Malrieu, JP, Moreira I de, PR. Remarks on the proper use of the broken symmetry approach to magnetic coupling. J Phys Chem A 1997, 101:7860–7866.

Moreira I de, PR, Illas, F. A unified view of the theoretical description of magnetic coupling in molecular chemistry and solid state physics. Phys Chem Chem Phys 2006, 8:1645–1659.

Pollet, R, Savin, A, Leininger, T, Stoll, H. Combining multideterminantal wave functions with density functionals to handle near‐degeneracy in atoms and molecules. J Chem Phys 2002, 116:1250–1258.

McDouall, JJW. Combining two‐body density functionals with multiconfigurational wavefunctions: diatomic molecules. Mol Phys 2003, 101:361–371.

Gräfenstein, J, Cremer, D. Development of a CAS‐DFT method covering non‐dynamical and dynamical electron correlation in a balanced way. Mol Phys 2005, 103:279–308.

Cremer, D, Filatov, M, Polo, V, Kraka, E, Shaik, S. Implicit and explicit coverage of multi‐reference effects by density functional theory. Int J Mol Sci 2002, 3:604–638.

Burke, K, Perdew, JP, Ernzerhof, M. Why semilocal functionals work: accuracy of the on‐top pair density and importance of system averaging. J Chem Phys 1998, 109:3760–3771.

Schipper, PRT, Gritsenko, OV, Baerends, EJ. Benchmark calculations of chemical reactions in density functional theory: Comparison of the accurate Kohn–Sham solution with generalized gradient approximations for the H_{2}+H and H_{2}+H_{2} reactions J. Chem Phys 1999, 111:4056–4067.

Lieb, EH. Density Functionals for Coulomb Systems. Int J Quantum Chem 1983, 24:243–277.

Englisch, H, Englisch, R. Exact density functionals for ground‐state energies. I. General results. Phys Stat Sol b 1984, 123:711–721.

Englisch, H, Englisch, R. Exact density functionals for ground‐state energies II. Details and remarks. Phys Stat Sol b 1984, 124:373–379.

Ullrich, CA, Kohn, W. Kohn‐Sham theory for ground‐state ensembles. Phys Rev Lett 2001, 87:093001.

Schipper, PRT, Gritsenko, OV, Baerends, EJ. One‐determinantal pure state versus ensemble Kohn‐Sham solutions in the case of strong electron correlation: CH_{2} and C_{2}. Theor Chem Acc 1998, 99:329–343.

Morrison, RC. Electron correlation and noninteracting v‐representability in density functional theory: the Be isoelectronic series. J Chem Phys 2002, 117:10506–10511.

Slater, J, Mann, JB, Wilson, TM, Wood, JH. Nonintegral occupation numbers in transition atoms in crystals. Phys Rev 1969, 184:672–694.

Dunlap, BI. Symmetry and degeneracy in Xα and density functional theory. Adv Chem Phys 1987, 69:287–318.

Filatov, M, Shaik, S. A spin‐restricted ensemble‐referenced Kohn‐Sham method and its application to diradicaloid situations. Chem Phys Lett 1999, 304:429–437.

Filatov, M, Shaik, S. Diradicaloids: description by the spin‐restricted, ensemble‐referenced Kohn‐Sham density functional method. J Phys Chem A 2000, 104:6628–6636.

Filatov, M, Shaik, S. Tetramethyleneethane (TME) diradical: experiment and density functional theory reach an agreement. J Phys Chem A 1999, 103:8885–8889.

Illas, F, Moreira I de, PR, Bofill, JM, Filatov, M. Extent and limitations of density‐functional theory in describing magnetic systems. Phys Rev B 2004, 70:132414.

Illas, F, Moreira I de, PR, Bofill, JM, Filatov, M. Spin symmetry requirements in density functional theory: the proper way to predict magnetic coupling constants in molecules and solids. Theory Chem Acc 2006, 116:587–597.

Moreira I de, PR, Costa, R, Filatov, M, Illas, F. Restricted ensemble‐referenced Kohn‐Sham versus broken symmetry approaches in density functional theory: magnetic coupling in Cu binuclear complexes. J Chem Theory Comput 2007, 3:764–774.

Filatov, M. On multiferroicity of TTF‐CA molecular crystal. Phys Chem Chem Phys 2011, 13:144–148.

Filatov, M. Antiferromagnetic interactions in the quarter‐filled organic conductor (EDO‐TTF)_{2}PF_{6}. Phys Chem Chem Phys 2011, 13:12328–12334.

Kazaryan, A, Heuver, J, Filatov, M. Excitation energies from spin‐restricted ensemble‐referenced Kohn‐Sham method: a state‐averaged approach. J Phys Chem A 2008, 112:12980–12988.

Huix‐Rotllant, M, Filatov, M, Gozem, S, Schapiro, I, Olivucci, M, Ferré, N. Assessment of density functional theory for describing the correlation effects on the ground and excited state potential energy surfaces of a retinal chromophore model. J Chem Theory Comput 2013, 9:3917–3932.

Filatov, M. Assessment of density functional methods for obtaining geometries at conical intersections in organic molecules. J Chem Theory Comput 2013, 9:4526–4541.

Kazaryan, A, Filatov, M. Density functional study of the ground and excited state potential energy surfaces of a light‐driven rotary molecular motor (3R,3`R)‐(P,P)‐trans‐1,1`,2,2`,3,3`,4,4`‐octahydro‐3,3`‐dimethyl‐4,4`‐biphenanthrylidene. J Phys Chem A 2009, 113:11630–11634.

Kazaryan, A, Lan, Z, Schäfer, LV, Thiel, W, Filatov, M. Surface hopping excited‐state dynamics study of the photoisomerization of a light‐driven fluorene molecular rotary motor. J Chem Theory Comput 2011, 7:2189–2199.

Filatov, M. Theoretical study of the photochemistry of a reversible three‐state Bis‐thiaxanthylidene molecular switch. ChemPhysChem 2011, 12:3348–3353.

Kazaryan, A, Kistemaker, JCM, Schäfer, LV, Browne, WR, Feringa, BL, Filatov, M. Understanding the dynamics behind the photoisomerization of a light‐driven fluorene molecular rotary motor. J Phys Chem A 2010, 114:5058–5067.

Filatov, M, Huix‐Rotllant, M. Assessment of density functional theory based ΔSCF (self‐consistent field) and linear response methods for longest wavelength excited states of extended π‐conjugated molecular systems. J Chem Phys 2014, 141:024112.

Filatov, M. Description of electron transfer in the ground and excited states of organic donor‐acceptor systems by single‐reference and multi‐reference density functional methods. J Chem Phys 2014, 141:124123.

Noziéres, P, Pines, D. The Theory of Quantum Liquids. Cambridge, MA: Perseus Books Publishing LLC; 1966, 296–298.

Becke, AD. Correlation energy of an inhomogeneous electron gas: a coordinate‐space model. J Chem Phys 1988, 88:1053–1062.

Zhao, Q, Morrison, RC, Parr, RG. From electron densities to Kohn‐Sham kinetic energies, orbital energies, exchange‐correlation potentials, and exchange‐correlation energies. Phys Rev A 1994, 50:2138–2142.

Franck, O, Fromager, E. Generalised adiabatic connection in ensemble density‐functional theory for excited states: example of the H_{2} molecule. Mol Phys 2014, 112:1684–1701.

Giesbertz, KJH, Baerends, EJ. Aufbau derived from a unified treatment of occupation numbers in Hartree–Fock, Kohn–Sham, and natural orbital theories with the Karush–Kuhn–Tucker conditions for the inequality constraints n_{i}≤1 and n_{i}≥0. J Chem Phys 2010, 132:194108.

Fernandez, JJ, Kollmar, C, Filatov, M. Obtaining stable solutions of the optimized‐effective‐potential method in the basis set representation. Phys Rev A 2010, 82:022508.

Hirao, K, Nakatsuji, H. General SCF operator satisfying correct variational condition. J Chem Phys 1973, 59:1457–1462.

Roothaan, CCJ. Self‐consistent field theory for open shells of electronic systems. Rev Mod Phys 1960, 32:179–185.

Goddard, WA, Dunning, TH, Hunt, WJ, Hay, PJ. Generalized valence bond description of bonding in low‐lying states of molecules. Acc Chem Res 1973, 6:368–376.

Kołos, W, Wolniewicz, L. Potential‐energy curves for the X$1\Sigma g+$, b$3\Sigma u+$, and C ^{1}*Π*_{u} states of the hydrogen molecule. J Chem Phys 1965, 43:2429–2441.

Coulson, CA, Fischer, I. Notes on the molecular orbital treatment of the hydrogen molecule. Philos Mag 1949, 40:386–393.

Yanai, T, Tew, D, Handy, NC. A new hybrid exchange‐correlation functional using the Coulomb‐attenuating method (CAM‐B3LYP). Chem Phys Lett 2004, 393:51–57.

Takeda, R, Yamanaka, S, Yamaguchi, K. Resonating broken‐symmetry approach to biradicals and polyradicals. Int J Quant Chem 2006, 106:3303–3311.

Goel, S, Masunov, AE. %22Pairwise spin‐contamination correction method and DFT study of MnH and H_{2} dissociation curves%22. In: Allen, G, Nabrzyski, J, Seidel, E, van Albada, G, Dongarra, J, Sloot, PMA, eds. Computational Science – ICCS 2009. Lecture Notes in Computer Science, vol. 5545. Berlin, Heidelberg: Springer; 2009, 141–150.

Furche, F. Molecular tests of the random phase approximation to the exchange‐correlation energy functional. Phys Rev B 2001, 64:195120.

Olsen, T, Thygesen, KS. Static correlation beyond the random phase approximation: dissociating H_{2} with the Bethe‐Salpeter equation and time‐dependent GW. J Chem Phys 2014, 140:164116.

Stwalley, WC, Zemke, WT. Spectroscopy and structure of the lithium hydride molecules and ions. J Phys Chem Ref Data 1993, 22:87–112.

Huber, KP, Herzberg, G. Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules. New York: Van Nostrand Reinhold Co.; 1979.

Woodward, RB, Hoffmann, R. The conservation of orbital symmetry. Angew Chem Int Ed Engl 1969, 8:781–853.

Hoffmann, R, Woodward, RB. Selection rules for concerted cycloaddition reactions. J Am Chem Soc 1965, 87:2046–2048.

Hoffmann, R, Woodward, RB. Stereochemistry of electrocyclic reactions. J Am Chem Soc 1965, 87:395–397.

Filatov, M, Shaik, S, Woeller, M, Grimme, S, Peyerimhoff, SD. Locked alkenes with a short triplet state lifetime. Chem Phys Lett 2000, 316:135–140.

Salem, L, Rowland, C. The electronic properties of diradicals. Angew Chem Int Ed 1972, 11:92–111.

Li, X, Paldus, J. Electronic structure of organic diradicals: evaluation of the performance of coupled‐cluster methods. J Chem Phys 2008, 129:174101.

Kraka, E, Cremer, D. Ortho‐, meta‐, and para‐benzyne. A comparative CCSD (T) investigation. Chem Phys Lett 1993, 216:333–340.

Wenthold, PG, Squires, RR, Lineberger, WC. Ultraviolet photoelectron spectroscopy of the o‐, m‐, and p‐benzyne negative ions. Electron affinities and singlet‐triplet splittings for o‐, m‐, and p‐benzyne. J Am Chem Soc 1998, 120:5279–5290.

Dowd, P. Tetramethyleneethane. J Am Chem Soc 1970, 92:1066–1068.

Borden, WT, Lineberger, WC. The synergy between qualitative theory, quantitative calculations, and direct experiments in understanding, calculating, and measuring the energy differences between the lowest singlet and triplet states of organic diradicals. Phys Chem Chem Phys 2011, 13:11792–11813.

Clifford, EP, Wenthold, PG, Lineberger, WC, Ellison, GB, Wang, CX, Grabowski, JJ, Vila, F, Jordan, KD. Properties of tetramethyleneethane (TME) as revealed by ion chemistry and ion photoelectron spectroscopy. J Chem Soc Perkin Trans 1998, 2:1015–1022.

Grimme, S. Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction. J Comput Chem 2006, 27:1787–1799.

Vydrov, OA, Van Voorhis, T. Nonlocal van der Waals density functional: the simpler the better. J Chem Phys 2010, 133:244103.

Marques, MAL, Gross, EKU. %22Time‐dependent density functional theory%22. In: Fiolhais, C, Nogueira, F, Marques, MAL, eds. A Primer in Density‐Functional Theory. Lecture Notes in Physics, vol. 620. Berlin: Springer; 2003, 144–184.

Casida, ME, Huix‐Rotllant, M. Progress in time‐dependent density‐functional theory. Annu Rev Phys Chem 2012, 63:287–323.

Huix‐Rotllant, M, Ipatov, A, Rubio, A, Casida, ME. Assessment of dressed time‐dependent density‐functional theory for the low‐lying valence states of 28 organic chromophores. Chem Phys 2011, 391:120–129.

Krykunov, M, Seth, M, Ziegler, T. Introducing constricted variational density functional theory in its relaxed self‐consistent formulation (RSCF‐CV‐DFT) as an alternative to adiabatic time dependent density functional theory for studies of charge transfer transitions. J Chem Phys 2014, 140:18A502.

Zhekova, H, Krykunov, M, Autschbach, J, Ziegler, T. Applications of time dependent and time independent density functional theory to the first π to π* transition in cyanine dyes. J Chem Theory Comput 2014, 10:3299–3307. doi: 10.1021/ct500292c.

Gross, EKU, Oliveira, LN, Kohn, W. Density‐functional theory for ensembles of fractionally occupied states. I. Basic formalism. Phys Rev A 1988, 37:2809–2820.

Ziegler, T, Rauk, A, Baerends, EJ. On the calculation of multiplet energies by the hartree‐fock‐slater method. Theor Chim Acta 1977, 43:261–271.

Filatov, M, Shaik, S. Spin‐restricted density functional approach to the open‐shell problem. Chem Phys Lett 1998, 288:689–697.

Aryasetiawan, F, Gunnarsson, O, Rubio, A. Excitation energies from time‐dependent density‐functional formalism for small systems. Europhys Lett 2002, 57:683–689.

Van Meer, R, Gritsenko, OV, Baerends, EJ. Excitation energies with linear response density matrix functional theory along the dissociation coordinate of an electron‐pair bond in N‐electron systems. J Chem Phys 2014, 140:024101.

Schirmer, J. Beyond the random‐phase approximation: a new approximation scheme for the polarization propagator. Phys Rev A 1982, 26:2395–2416.

Schirmer, J, Trofimov, AB. An efficient polarization propagator approach to valence electron excitation spectra. J Phys B At Mol Opt Phys 1995, 28:2299–2325.

Trofimov, AB, Stelter, G, Schirmer, J. A consistent third‐order propagator method for electronic excitation. J Chem Phys 1999, 111:9982–9999.

Schirmer, J, Trofimov, AB. Intermediate state representation approach to physical properties of electronically excited molecules. J Chem Phys 2004, 120:11449–11464.

Silva‐Junior, MR, Schreiber, M, Sauer, SPA, Thiel, W. Benchmarks for electronically excited states: time‐dependent density functional theory and density functional theory based multireference configuration interaction. J Chem Phys 2008, 129:104103.

Gozem, S, Melaccio, F, Valentini, A, Filatov, M, Huix‐Rotllant, M, Ferré, N, Frutos, LM, Angeli, C, Krylov, AI, Granovsky, AA, et al. On the shape of multireference, EOM‐CC, and DFT potential energy surfaces at a conical intersection. J Chem Theory Comput 2014, 10:3074–3084. doi: 10.1021/ct500154k.

Filatov, M, Olivucci, M. Designing conical intersections for light‐driven single molecule rotary motors: from precessional to axial motion. J Org Chem 2014, 79:3587–3600.

Atchity, GJ, Xantheas, SS, Ruedenberg, K. Potential energy surfaces near intersections. J Chem Phys 1991, 95:1862–1876.

Nikiforov, A, Gamez, JA, Thiel, W, Huix‐Rotllant, M, Filatov, M. Assessment of approximate computational methods for conical intersections and branching plane vectors in organic molecules. J Chem Phys 2014, 141:124122.

Stein, T, Kronik, L, Baer, R. Reliable prediction of charge transfer excitations in molecular complexes using time‐dependent density functional theory. J Am Chem Soc 2009, 131:2818–2820.

Hanazaki, I. Vapor‐phase electron donor‐acceptor complexes of tetracyanoethylene and of sulfur dioxide. J Phys Chem 1972, 76:1982–1989.