Parr, RG, Yang, W. Density‐Functional Theory of Atoms and Molecules. Oxford: Clarendon Press; 1989.

Kohn, W. Nobel lecture: electronic structure of matter—wave functions and density functionals. Rev Mod Phys 1999, 71:1253–1266.

Pople, JA. Nobel lecture: quantum chemical models. Rev Mod Phys 1999, 71:1267–1274.

Hohenberg, P, Kohn, W. Inhomogeneous electron gas. Phys Rev 1964, 136:B864–B871.

Giuliani, GF, Vignale, G. Quantum Theory of the Electron Liquid. Cambridge: Cambridge University Press; 2005.

Sommerfeld, A. Zur elektronentheorie der metalle auf grund der fermischen statistik. Zeits fur Physik 1928, 47:1–32.

Kohn, W, Sham, LJ. Self‐consistent equations including exchange and correlation effects. Phys Rev 1965, 140:A1133–A1138.

Vosko, SH, Wilk, L, Nusair, M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 1980, 58:1200.

Perdew, JP, McMullen, ER, Zunger, A. Density‐functional theory of the correlation energy in atoms and ions: a simple analytic model and a challenge. Phys Rev A 1981, 23:2785–2789.

Perdew, JP, Wang, Y. Accurate and simple analytic representation of the electron‐gas correlation energy. Phys Rev B 1992, 45:13244–13249.

Ceperley, DM. Ground state of the fermion one‐component plasma: a Monte Carlo study in two and three dimensions. Phys Rev B 1978, 18:3126–3138.

Ceperley, DM, Alder, BJ. Ground state of the electron gas by a stochastic method. Phys Rev Lett 1980, 45:566–569.

Huotari, S, Soininen, JA, Pylkkäanen, T, Hämäläinen, K, Issolah, A, Titov, A, McMinis, J, Kim, J, Esler, K, Ceperley, DM, et al. Momentum distribution and renormalization factor in sodium and the electron gas. Phys Rev Lett 2010, 105:086403.

Ando, T, Fowler, AB, Stern, F. Electronic properties of two‐dimensional systems. Rev Mod Phys 1982, 54:437–672.

Abrahams, E, Kravchenko, SV, Sarachik, MP. Metallic behavior and related phenomena in two dimensions. Rev Mod Phys 2001, 73:251–266.

Alhassid, Y. The statistical theory of quantum dots. Rev Mod Phys 2000, 72:895–968.

Reimann, SM, Manninen, M. Electronic structure of quantum dots. Rev Mod Phys 2002, 74:1283–1342.

Saito, R, Dresselhauss, G, Dresselhaus, MS. Properties of Carbon Nanotubes. London: Imperial College Press; 1998.

Egger, R, Gogolin, AO. Correlated transport and non‐Fermi‐liquid behavior in single‐wall carbon nanotubes. Eur Phys J B 1998, 3:281–300.

Bockrath, M, Cobden, DH, Lu, J, Rinzler, AG, Smalley, RE, Balents, L, McEuen, PL. Luttinger‐liquid behaviour in carbon nanotubes. Nature 1999, 397:598–601.

Ishii, H, Kataura, H, Shiozawa, H, Yoshioka, H, Otsubo, H, Takayama, Y, Miyahara, T, Suzuki, S, Achiba, Y, Nakatake, M, et al. Direct observation of Tomonaga–Luttinger‐liquid state in carbon nanotubes at low temperatures. Nature 2003, 426:540–544.

Shiraishi, M, Ata, M. Tomonaga–Luttinger‐liquid behavior in single‐walled carbon nanotube networks. Solid State Commun 2003, 127:215–218.

Schwartz, A, Dressel, M, Grüuner, G, Vescoli, V, Degiorgi, L, Giamarchi, T. On‐chain electrodynamics of metallic (TMTSF)_{2}X salts: observation of Tomonaga–Luttinger liquid response. Phys Rev B 1998, 58:1261–1271.

Vescoli, V, Zwick, F, Henderson, W, Degiorgi, L, Grioni, M, Gruner, G, Montgomery, LK. Optical and photoemission evidence for a Tomonaga–Luttinger liquid in the Bechgaard salts. Eur Phys J B 2000, 13:503–511.

Lorenz, T, Hofmann, M, Grüninger, M, Freimuth, A, Uhrig, GS, Dumm, M, Dressel, M. Evidence for spin–charge separation in quasi‐one‐dimensional organic conductors. Nature 2002, 418:614–617.

Dressel, M, Petukhov, K, Salameh, B, Zornoza, P, Giamarchi, T. Scaling behavior of the longitudinal and transverse transport in quasi‐one‐dimensional organic conductors. Phys Rev B 2005, 71:075104.

Ito, T, Chainani, A, Haruna, T, Kanai, K, Yokoya, T, Shin, S, Kato, R. Temperature‐dependent Luttinger surfaces. Phys Rev Lett 2005, 95:246402.

Hu, Z, Knupfer, M, Kielwein, M, RoÏer, UK, Golden, MS, Fink, J, de Groot, FMF, Ito, T, Oka, K, Kaindl, G. The electronic structure of the doped one‐dimensional transition metal oxide Y2‐xCaxBaNiO5 studied using X‐ray absorption. Eur Phys J B 2002, 26:449–453.

Milliken, FP, Umbach, CP, Webb, RA. Indications of a Luttinger liquid in the fractional quantum Hall regime. Solid State Commun 1996, 97:309–313.

Mandal, SS, Jain, JK. How universal is the fractional‐quantum‐Hall edge Luttinger liquid? Solid State Commun 2001, 118:503–507.

Chang, AM. Chiral Luttinger liquids at the fractional quantum Hall edge. Rev Mod Phys 2003, 75:1449–1505.

Gonï, AR, Pinczuk, A, Weiner, JS, Calleja, JM, Dennis, BS, Pfeiffer, LN, West, KW. One‐dimensional plasmon dispersion and dispersionless intersubband excitations in gaas quantum wires. Phys Rev Lett 1991, 67:3298–3301.

Auslaender, OM, Yacoby, A, dePicciotto, R, Baldwin, KW, Pfeiffer, LN, West, KW. Experimental evidence for resonant tunneling in a Luttinger liquid. Phys Rev Lett 2000, 84:1764–1767.

Zaitsev‐Zotov, SV, Kumzerov, YA, Firsov, YA, Monceau, P. Luttinger‐liquid‐like transport in long InSb nanowires. J Phys Condens Matter 2000, 12:L303–L309.

Liu, F, Bao, M, Wang, KL, Li, C, Lei, B, Zhou, C. One‐dimensional transport of In_{2}O_{3} nanowires. Appl Phys Lett 2005, 86:213101.

Steinberg, H, Auslaender, OM, Yacoby, A, Qian, J, Fiete, GA, Tserkovnyak, Y, Halperin, BI, Baldwin, KW, Pfeiffer, LN, West, KW. Localization transition in a ballistic quantum wire. Phys Rev B 2006, 73:113307.

Monien, H, Linn, M, Elstner, N. Trapped one‐dimensional Bose gas as a Luttinger liquid. Phys Rev A 1998, 58:R3395–R3398.

Recati, A, Fedichev, PO, Zwerger, W, Zoller, P. Fermi one‐dimensional quantum gas: Luttinger liquid approach and spin–charge separation. J Opt B Quantum Semiclassical Opt 2003, 5:S55–S64.

Moritz, H, Stoferle, T, Guenter, K, Kohl, M, Esslinger, T. Confinement induced molecules in a 1D Fermi gas. Phys Rev Lett 2005, 94:210401.

Schäafer, J, Blumenstein, C, Meyer, S, Wisniewski, M, Claessen, R. New model system for a one‐dimensional electron liquid: self‐organized atomic gold chains on Ge(001). Phys Rev Lett 2008, 101:236802.

Huang, Y, Duan, X, Cui, Y, Lauhon, LJ, Kim, K‐H, Lieber, CM. Logic gates and computation from assembled nanowire building blocks. Science 2001, 294:1313–1317.

Olver, FWJ, Lozier, DW, Boisvert, RF, Clark, CW, eds. NIST Handbook of Mathematical Functions. New York: Cambridge University Press; 2010.

Thomas, LH. The calculation of atomic fields. Proc Camb Philos Soc 1927, 23:542–548.

Fermi, E. Un metodo statistico per la determinazione di alcune priopriet a dell`atomo. Rend Accad Naz Lincei 1927, 6:602–607.

Glasser, ML, Boersma, J. Exchange energy of an electron gas of arbitrary dimensionality. SIAM J Appl Math 1983, 43:535–545.

Iwamoto, N. Sum rules and static local‐field corrections of electron liquids in two and three dimensions. Phys Rev A 1984, 30:3289–3304.

Dirac, PAM. Note on exchange phenomena in the Thomas–Fermi atom. Proc Camb Philos Soc 1930, 26:376–385.

Friesecke, G. Pair correlations and exchange phenomena in the free electron gas. Commun Math Phys 1997, 184:143–171.

Overhauser, AW. New mechanism of antiferromagnetism. Phys Rev Lett 1959, 3:414–416.

Overhauser, AW. Spin density waves in an electron gas. Phys Rev 1962, 128:1437–1452.

Fogler, MM. Ground‐state energy of the electron liquid in ultrathin wires. Phys Rev Lett 2005, 94:056405.

Astrakharchik, GE, Girardeau, MD. Exact ground‐state properties of a one‐dimensional Coulomb gas. Phys Rev B 2011, 83:153303.

Lee, RM, Drummond, ND. Ground‐state properties of the one‐dimensional electron liquid. Phys Rev B 2011, 83:245114.

Loos, PF, Gill, PMW. Exact wave functions of two‐electron quantum rings. Phys Rev Lett 2012, 108:083002.

Loos, PF, Gill, PMW. Uniform electron gases. I. Electrons on a ring. J Chem Phys 2013, 138:164124.

Loos, PF, Ball, CJ, Gill, PMW. Uniform electron gases. II. The generalized local density approximation in one dimension. J Chem Phys 2014, 140:18A524.

Loos, PF, Ball, CJ, Gill, PMW. Chemistry in one dimension. Phys Chem Chem Phys 2015, 17:3196–3206.

Hoffman, GG. Correlation energy of a spin‐polarized electron gas at high density. Phys Rev B 1992, 45:8730–8733.

Zia, RKP. Electron correlation in a high density gas confined to very thin films. J Phys C 1973, 6:3121–3129.

Isihara, A, Toyoda, T. Correlation energy of 2‐D electrons. Ann Phys 1977, 106:394–406.

Rajagopal, AK, Kimball, JC. Correlations in a two‐dimensional electron system. Phys Rev B 1977, 15:2819–2825.

Glasser, ML. Pair correlation function for a two‐dimensional electron gas. J Phys C: Solid State Phys 1977, 10:L121–L123.

Isihara, A, Ioriatti, L. Exact evaluation of the second‐order exchange energy of a two‐dimensional electron fluid. Phys Rev B 1980, 22:214–219.

Glasser, ML. On some integrals arising in mathematical physics. J Comp App Math 1984, 10:293–299.

Seidl, M. Spin‐resolved second‐order correlation energy of the two‐dimensional uniform electron gas. Phys Rev B 2004, 70:073101.

Chesi, S, Giuliani, GF. Correlation energy in a spin‐polarized two‐dimensional electron liquid in the high‐density limit. Phys Rev B 2007, 75:153306.

Loos, PF, Gill, PMW. Exact energy of the spin‐polarized two‐dimensional electron gas at high density. Phys Rev B 2011, 83:233102.

Macke, W. Uber die wechselwirkungen im Fermi‐gas. Z Naturforsch A 1950, 5a:192–208.

Bohm, D, Pines, D. A collective description of electron interactions: III. Coulomb interactions in a degenerate electron gas. Phys Rev 1953, 92:609–625.

Pines, D. A collective description of electron interactions: IV. Electron interaction in metals. Phys Rev 1953, 92:626–636.

Gell‐Mann, M, Brueckner, KA. Correlation energy of an electron gas at high density. Phys Rev 1957, 106:364–368.

DuBois, DF. Electron interactions. Part I. Field theory of a degenerate electron gas. Ann Phys 1959, 7:174–237.

Carr, WJ, Maradudin, AA. Ground‐state energy of a high‐density electron gas. Phys Rev 1964, 133:A371–A374.

Misawa, S. Ferromagnetism of an electron gas. Phys Rev 1965, 140:A1645–A1648.

Onsager, L, Mittag, L, Stephen, MJ. Integrals in the theory of electron correlations. Ann Phys 1966, 18:71–77.

Wang, Y, Perdew, JP. Spin scaling of the electron‐gas correlation energy in the high‐density limit. Phys Rev B 1991, 43:8911–8916.

Endo, T, Horiuchi, M, Takada, Y, Yasuhara, H. High‐density expansion of correlation energy and its extrapolation to the metallic density region. Phys Rev B 1999, 59:7367–7372.

Ziesche, P, Cioslowski, J. The three‐dimensional electron gas at the weak‐correlation limit: how peculiarities of the momentum distribution and the static structure factor give rise to logarithmic non‐analyticities in the kinetic and potential correlation energies. Physica A 2005, 356:598–608.

Sun, J, Perdew, JP, Seidl, M. Correlation energy of the uniform electron gas from an interpolation between high‐ and low‐density limits. Phys Rev B 2010, 81:085123.

Loos, PF, Gill, PMW. Correlation energy of the spin‐polarized uniform electron gas at high density. Phys Rev B 2011, 84:033103.

Loos, PF, Gill, PMW. Leading‐order behavior of the correlation energy in the uniform electron gas. Int J Quantum Chem 2012, 112:1712–1716.

Loos, P‐F, Gill, PMW. Thinking outside the box: the uniform electron gas on a hypersphere. J Chem Phys 2011, 135:214111.

Loos, PF. High‐density correlation energy expansion of the one‐dimensional uniform electron gas. J Chem Phys 2013, 138:064108.

Wolfram Research, Inc.. Mathematica 7. 2008.

Loos, PF. unpublished.

Gill, PMW, Loos, PF, Agboola, D. Basis functions for electronic structure calculations on spheres. J Chem Phys 2014, 141:244102.

Agboola, D, Knol, AL, Gill, PMW, Loos, PF. Uniform electron gases. III. Low‐density gases on three‐dimensional spheres. J Chem Phys 2015, 143:084114.

Wigner, E. On the interaction of electrons in metals. Phys Rev 1934, 46:1002–1011.

Loos, PF, Gill, PMW. Ground state of two electrons on a sphere. Phys Rev A 2009, 79:062517.

Aguilera‐Navarro, VC, Baker, GA Jr, de Llano, M. Ground‐state energy of jellium. Phys Rev B 1985, 32:4502–4506.

Fuchs, K. A quantum mechanical investigation of the cohesive forces of metallic copper. Proc R Soc 1935, 151:585–602.

Carr, WJ Jr. Energy, specific heat, and magnetic properties of the low‐density electron gas. Phys Rev 1961, 122:1437–1446.

Kohn, W, Schechter, D. unpublished. 1961.

Carr, WJ Jr, Coldwell‐Horsfall, RA, Fein, AE. Anharmonic contribution to the energy of a dilute electron gas: interpolation for the correlation energy. Phys Rev 1961, 124:747–752.

Bonsall, L, Maradudin, AA. Some static and dynamical properties of a two‐dimensional Wigner crystal. Phys Rev B 1977, 15:1959–1973.

Loos, PF. Generalized local‐density approximation and one‐dimensional finite uniform 34 electron gases. Phys Rev A 2014, 89:052523.

Foulkes, WMC, Mitas, L, Needs, RJ, Rajagopal, G. Quantum Monte Carlo simulations of solids. Rev Mod Phys 2001, 73:33–83.

Kolorenc, J, Mitas, L. Applications of quantum Monte Carlo methods in condensed systems. Rep Prog Phys 2011, 74:026502.

Fraser, LM, Foulkes, WMC, Rajagopal, G, Needs, RJ, Kenny, SD, Williamson, AJ. Finite‐size effects and coulomb interactions in quantum Monte Carlo calculations for homogeneous systems with periodic boundary conditions. Phys Rev B 1996, 53:1814–1832.

Lin, C, Zong, FH, Ceperley, DM. Twist‐averaged boundary conditions in continuum quantum Monte Carlo algorithms. Phys Rev E 2001, 64:016702.

Kwee, H, Zhang, S, Krakauer, H. Finite‐size correction in many‐body electronic structure calculations. Phys Rev Lett 2008, 100:126404.

Drummond, ND, Needs, RJ, Sorouri, A, Foulkes, WMC. Finite‐size errors in continuum quantum Monte Carlo calculations. Phys Rev B 2008, 78:125106.

Ma, F, Zhang, S, Krakauer, H. Finite‐size correction in many‐body electronic structure calculations of magnetic systems. Phys Rev B 2011, 84:155130.

Ceperley, DM. Fermion nodes. J Stat Phys 1991, 63:1237–1267.

Bressanini, D, Ceperley, DM, Reynolds, P. What do we know about wave function nodes? In: Lester, WA Jr, Rothstein, SM, Tanaka, S, eds. Recent Advances in Quantum Monte Carlo Methods, vol. 2. Singapore: World Scientfic; 2001, 3–11.

Bajdich, M, Mitas, L, Drobny, G, Wagner, LK. Approximate and exact nodes of fermionic wavefunctions: coordinate transformations and topologies. Phys Rev B 2005, 72:075131.

Bressanini, D, Reynolds, PJ. Unexpected symmetry in the nodal structure of the He atom. Phys Rev Lett 2005, 95:110201.

Bressanini, D, Morosi, G, Tarasco, S. An investigation of nodal structures and the construction of trial wave functions. J Chem Phys 2005, 123:204109.

Mitas, L. Structure of fermion nodes and nodal cells. Phys Rev Lett 2006, 96:240402.

Scott, TC, Luchow, A, Bressanini, D, Morgan, JD III. Nodal surfaces of helium atom eigenfunctions. Phys Rev A 2007, 75:060101.

Bressanini, D, Morosi, G. On the nodal structure of single‐particle approximation based atomic wave functions. J Chem Phys 2008, 129:054103.

Mitas, L. Fermion nodes and nodal cells of noninteracting and interacting fermions. arXiv:cond‐mat:/0605550. 2008.

Bressanini, D. Implications of the two nodal domains conjecture for ground state fermionic wave functions. Phys Rev B 2012, 86:115120.

Rasch, KM, Mitas, L. Impact of electron density on the fixed‐node errors in quantum Monte Carlo of atomic systems. Chem Phys Lett 2012, 528:59–62.

Kulahlioglu, AH, Rasch, KM, Hu, S, Mitas, L. Density dependence of fixed‐node errors in diffusion quantum Monte Carlo: triplet pair correlations. Chem Phys Lett 2014, 591:170–174.

Rasch, KM, Hu, S, Mitas, L. Fixed‐node errors in quantum Monte Carlo: interplay of electron density and node nonlinearities. J Chem Phys 2014, 140:041102.

Loos, PF, Bressanini, D. Nodal surfaces and interdimensional degeneracies. J Chem Phys 2015, 142:214112.

Ortiz, G, Ballone, P. Correlation energy, structure factor, radial distribution function, and momentum distribution of the spin‐polarized uniform electron gas. Phys Rev B 1994, 50:1391–1405.

Ortiz, G, Ballone, P. Erratum: Correlation energy, structure factor, radial distribution function, and momentum distribution of the spin‐polarized uniform electron gas [Phys. Rev. B 50, 1391 (1994)]. Phys Rev B 1997, 56:9970.

Ortiz, G, Harris, M, Ballone, P. Zero temperature phases of the electron gas. Phys Rev Lett 1999, 82:5317–5320.

Kwon, Y, Ceperley, DM, Martin, RM. Effects of backflow correlation in the three‐dimensional electron gas: quantum Monte Carlo study. Phys Rev B 1998, 58:6800–6806.

Zong, FH, Lin, C, Ceperley, DM. Spin polarization of the low‐density three‐dimensional electron gas. Phys Rev E 2002, 66:036703.

Drummond, ND, Towler, MD, Needs, RJ. Jastrow correlation factor for atoms, molecules, and solids. Phys Rev B 2004, 70:235119.

Spink, GG, Needs, RJ, Drummond, ND. Quantum Monte Carlo study of the three‐dimensional spin‐polarized homogeneous electron gas. Phys Rev B 2013, 88:085121.

Tanatar, B, Ceperley, DM. Ground state of the two‐dimensional electron gas. Phys Rev B 1989, 39:5005–5016.

Kwon, Y, Ceperley, DM, Martin, RM. Effects of three‐body and backflow correlations in the two‐dimensional electron gas. Phys Rev B 1993, 48:12037–12046.

Rapisarda, F, Senatore, G. Diffusion Monte Carlo study of electrons in two‐dimensional layers. Aust J Phys 1996, 49:161–182.

Attaccalite, C, Moroni, S, Gori‐Giorgi, P, Bachelet, GB. Correlation energy and spin polarization in the 2D electron gas. Phys Rev Lett 2002, 88:256601.

Attaccalite, C, Moroni, S, Gori‐Giorgi, P, Bachelet, GB. Erratum: Correlation energy and spin polarization in the 2D electron gas [Phys. Rev. Lett. 88, 256601 (2002)]. Phys Rev Lett 2003, 91:109902.

Gori‐Giorgi, P, Attaccalite, C, Moroni, S, Bachelet, GB. Two‐dimensional electron gas: correlation energy versus density and spin polarization. Int J Quantum Chem 2003, 91:126–130.

Drummond, ND, Needs, RJ. Phase diagram of the low‐density two‐dimensional homogeneous electron gas. Phys Rev Lett 2009, 102:126402.

Spivak, B, Kivelson, SA. Phases intermediate between a two‐dimensional electron liquid and Wigner crystal. Phys Rev B 2004, 70:155114.

Falakshahi, H, Waintal, X. Hybrid phase at the quantum melting of the Wigner crystal. Phys Rev Lett 2005, 94:046801.

Waintal, X. On the quantum melting of the two‐dimensional Wigner crystal. Phys Rev B 2006, 73:075417.

Clark, BK, Casula, M, Ceperley, DM. Hexatic and mesoscopic phases in a 2D quantum Coulomb system. Phys Rev Lett 2009, 103:055701.

Cioslowski, J, Strasburger, K, Matito, E. The three‐electron harmonium atom: the lowest‐energy doublet and quadruplet states. J Chem Phys 2012, 136:194112.

Zhang, S, Ceperley, DM. Hartree‐Fock ground state of the three‐dimensional electron gas. Phys Rev Lett 2008, 100:236404.

Bernu, B, Delyon, F, Duneau, M, Holzmann, M. Metal‐insulator transition in the 37 Hartree‐Fock phase diagram of the fully polarized homogeneous electron gas in two dimensions. Phys Rev B 2008, 78:245110.

Trail, JR, Towler, MD, Needs, RJ. Unrestricted Hartree‐Fock theory of Wigner crystals. Phys Rev B 2003, 68:045107.

Bloch, Z. Bemerkung zur elektronentheorie des ferromagnetismus und der elektrischen leitfähigkeit. Z Physik 1929, 57:545–555.

Baguet, L, Delyon, F, Bernu, B, Holzmann, M. Hartree‐Fock ground state phase diagram of jellium. Phys Rev Lett 2013, 111:166402.

Baguet, L, Delyon, F, Bernu, B, Holzmann, M. Properties of Hartree‐Fock solutions of the three‐dimensional electron gas. Phys Rev B 2014, 90:165131.

Delyon, F, Duneau, M, Bernu, B, Holzmann, M. Existence of a metallic phase and upper bounds of the Hartree‐Fock energy in the homogeneous electron gas. arXiv:0807.0770v1. 2008.

Delyon, F, Bernu, B, Baguet, L, Holzmann, M. Upper bounds of spin‐density wave energies in the homogeneous electron gas. Phys Rev B 2015, 92:235124.

Bernu, B, Delyon, F, Holzmann, M, Baguet, L. Hartree‐Fock phase diagram of the two‐dimensional electron gas. Phys Rev B 2011, 84:115115.

Brown, EW, Clark, BK, DuBois, JL, Ceperley, DM. Path‐integral Monte Carlo simulation of the warm dense homogeneous electron gas. Phys Rev Lett 2013, 110:146405.

Filinov, VS, Fortov, VE, Bonitz, M, Moldabekov, Z. Fermionic path‐integral Monte Carlo results for the uniform electron gas at finite temperature. Phys Rev E 2015, 91:033108.

Schoof, T, Groth, S, Vorberger, J, Bonitz, M. Ab initio thermodynamic results for the degenerate electron gas at finite temperature. Phys Rev Lett 2015, 115:130402.

Brown, EW, DuBois, JL, Holzmann, M, Ceperley, DM. Exchange‐correlation energy for the three‐dimensional homogeneous electron gas at arbitrary temperature. Phys Rev B 2013, 88:081102(R).

Brown, EW, DuBois, JL, Holzmann, M, Ceperley, DM. Erratum: Exchange correlation energy for the three‐dimensional homogeneous electron gas at arbitrary temperature [Phys. Rev. B 88, 081102(R) (2013)]. Phys Rev B 2013, 88:199901.