Joachim, C, Gimzewski, JK, Aviram, A. Electronics using hybrid‐molecular and mono‐molecular devices. Nature 2000, 408:541–548.

Lu, W, Lieber, CM. Nanoelectronics from the bottom up. Nat Mater 2007, 6:841–850.

Mannini, M, Pineider, F, Danieli, C, Totti, F, Sorace, L, Sainctavit, P, Arrio, MA, Otero, E, Joly, L, Cezar, JC, et al. Quantum tunnelling of the magnetization in a monolayer of oriented single‐molecule magnets. Nature 2010, 468:417–421.

Sanvito, S. Molecular spintronics. Chem Soc Rev 2011, 40:3336–3355.

Monroe, C. Quantum information processing with atoms and photons. Nature 2002, 416:238–246.

Biolatti, E, Iotti, RC, Zanardi, P, Rossi, F. Quantum information processing with semiconductor macroatoms. Phys Rev Lett 2000, 85:5647.

Aspuru‐Guzik, A, Dutoi, AD, Love, PJ, Head‐Gordon, M. Simulated quantum computation of molecular energies. Science 2005, 309:1704–1707.

DeMille, D. Quantum computation with trapped polar molecules. Phys Rev Lett 2002, 88:067901.

Napoli, SD, Weichselbaum, A, Roura‐Bas, P, Aligia, AA, Mokrousov, Y, Blügel, S. Non‐fermi‐liquid behavior in transport through co‐doped Au chains. Phys Rev Lett 2013, 110:196402.

Li, J, Schneider, WD, Berndt, R, Delley, B. Kondo scattering observed at a single magnetic impurity. Phys Rev Lett 1998, 80:2893.

Rau, IG, Baumann, S, Rusponi, S, Donati, F, Stepanow, S, Gragnaniello, L, Dreiser, J, Piamonteze, C, Nolting, F, Gangopadhyay, S, et al. Reaching the magnetic anisotropy limit of a 3D metal atom. Science 2014, 344:988–992.

Jacob, D, Haule, K, Kotliar, G. Kondo effect and conductance of nanocontacts with magnetic impurities. Phys Rev Lett 2009, 103:016803.

Park, J, Pasupathy, AN, Goldsmith, JI, Chang, C, Yaish, Y, Petta, JR, Rinkoski, M, Sethna, JP, Abruña, HD, McEuen, PL, et al. Coulomb blockade and the Kondo effect in single‐atom transistors. Nature 2002, 417:722–725.

Hewson, AC. The Kondo Problem to Heavy Fermions. Cambridge: Cambridge University Press; 1993.

Zhao, A, Li, Q, Chen, L, Xiang, H, Wang, W, Pan, S, Wang, B, Xiao, X, Yang, J, Hou, JG, et al. Controlling the Kondo effect of an adsorbed magnetic ion through its chemical bonding. Science 2005, 309:1542–1544.

Pershin, YV, Di Ventra, M. Memory effects in complex materials and nanoscale systems. Adv Phys 2011, 60:145–227.

Parks, JJ, Champagne, AR, Costi, TA, Shum, WW, Pasupathy, AN, Neuscamman, E, Flores‐Torres, S, Cornaglia, PS, Aligia, AA, Balseiro, CA, et al. Mechanical control of spin states in spin‐1 molecules and the underscreened Kondo effect. Science 2010, 328:1370–1373.

Fu, YS, Ji, SH, Chen, X, Ma, XC, Wu, R, Wang, CC, Duan, WH, Qiu, XH, Sun, B, Zhang, P, et al. Manipulating the Kondo resonance through quantum size effects. Phys Rev Lett 2007, 99:256601.

Gao, L, Ji, W, Hu, YB, Cheng, ZH, Deng, ZT, Liu, Q, Jiang, N, Lin, X, Guo, W, Du, SX, et al. Site‐specific Kondo effect at ambient temperatures in iron‐based molecules. Phys Rev Lett 2007, 99:106402.

Tsukahara, N, Noto, K, Ohara, M, Shiraki, S, Takagi, N, Takata, Y, Miyawaki, J, Taguchi, M, Chainani, A, Shin, S, et al. Adsorption‐induced switching of magnetic anisotropy in a single iron(II) phthalocyanine molecule on an oxidized Cu(110) surface. Phys Rev Lett 2009, 102:167203.

Tsukahara, N, Shiraki, S, Itou, S, Ohta, N, Takagi, N, Kawai, M. Evolution of Kondo resonance from a single impurity molecule to the two‐dimensional lattice. Phys Rev Lett 2011, 106:187201.

Minamitani, E, Tsukahara, N, Matsunaka, D, Kim, Y, Takagi, N, Kawai, M. Symmetry‐driven novel Kondo effect in a molecule. Phys Rev Lett 2012, 109:086602.

Heinrich, BW, Braun, L, Pascual, JI, Franke, KJ. Tuning the magnetic anisotropy of single molecules. Nano Lett 2015, 15:4024–4028.

Wilson, KG. The renormalization group: critical phenomena and Kondo problem. Rev Mod Phys 1975, 47:773.

Bulla, R, Costi, TA, Pruschke, T. Numerical renormalization group method for quantum impurity systems. Rev Mod Phys 2008, 80:395.

White, SR. Density matrix formulation for quantum renormalization groups. Phys Rev Lett 1992, 69:2863.

Caffarel, M, Krauth, W. Exact diagonalization approach to correlated fermions in infinite dimensions: Mott transition and superconductivity. Phys Rev Lett 1994, 72:1545.

Hirsch, JE, Fye, RM. Monte Carlo method for magnetic impurities in metals. Phys Rev Lett 1986, 56:2521.

Gull, E, Millis, AJ, Lichtenstein, AI, Rubtsov, AN, Troyer, M, Werner, P. Continuous‐time Monte Carlo methods for quantum impurity models. Rev Mod Phys 2011, 83:349.

Weiss, S, Eckel, J, Thorwart, M, Egger, R. Iterative real‐ime path integral approach to nonequilibrium quantum transport. Phys Rev B 2008, 77:195316.

Mühlbacher, L, Rabani, E. Real‐time path integral approach to nonequilibrium many‐body quantum systems. Phys Rev Lett 2008, 100:176403.

Meyer, H‐D, Manthe, U, Cederbaum, LS. The multi‐configurational time‐dependent Hartree approach. Chem Phys Lett 1990, 165:73–78.

Wang, H, Thoss, M. Multilayer formulation of the multiconfiguration time‐dependent Hartree theory. J Chem Phys 2003, 119:1289–1299.

Tanimura, Y, Kubo, R. Time evolution of a quantum system in contact with a nearly Gaussian‐Markovian noise bath. J Physical Soc Japan 1989, 58:101–114.

Tanimura, Y. Nonperturbative expansion method for a quantum system coupled to a harmonic‐oscillator bath. Phys Rev A 1990, 41:6676–6687.

Tanimura, Y, Wolynes, PG. Quantum and classical Fokker‐Planck equations for a Gaussian‐Markovian noise bath. Phys Rev A 1991, 43:4131–4142.

Ishizaki, A, Tanimura, Y. Quantum dynamics of system strongly coupled to low‐temperature colored noise bath: reduced hierarchy equations approach. J Physical Soc Japan 2005, 74:3131–3134.

Yan, YA, Yang, F, Liu, Y, Shao, JS. Hierarchical approach based on stochastic decoupling to dissipative systems. Chem Phys Lett 2004, 395:216–221.

Xu, RX, Cui, P, Li, XQ, Mo, Y, Yan, YJ. Exact quantum master equation via the calculus on path integrals. J Chem Phys 2005, 122:041103.

Xu, RX, Yan, YJ. Dynamics of quantum dissipation systems interacting with bosonic canonical bath: hierarchical equations of motion approach. Phys Rev E 2007, 75:031107.

Tanimura, Y, Mukamel, S. Optical stark spectroscopy of a Brownian oscillator in intense fields. J Physical Soc Japan 1994, 63:66–77.

Tanaka, M, Tanimura, Y. Quantum dissipative dynamics of electron transfer reaction system: nonperturbative hierarchy equations approach. J Physical Soc Japan 2009, 78:073802.

Kreisbeck, C, Kramer, T. Long‐lived electronic coherence in dissipative exciton dynamics of light‐harvesting complexes. J Phys Chem Lett 2012, 3:2828–2833.

Tanimura, Y. Reduced hierarchy equations of motion approach with Drude plus Brownian spectral distribution: probing electron transfer processes by means of two‐dimensional correlation spectroscopy. J Chem Phys 2012, 137:22A550.

Liu, H, Zhu, L, Bai, S, Shi, Q. Reduced quantum dynamics with arbitrary bath spectral densities: hierarchical equations of motion based on several different bath decomposition schemes. J Chem Phys 2014, 140:134106.

Kreisbeck, C, Kramer, T, Rodríguez, M, Hein, B. High‐performance solution of hierarchical equations of motion for studying energy transfer in light‐harvesting complexes. J Chem Theory Comput 2011, 7:2166–2179.

Kreisbeck, C, Kramer, T, Aspuru‐Guzik, A. Scalable high‐performance algorithm for the simulation of exciton dynamics. Application to the light‐harvesting complex II in the presence of resonant vibrational modes. J Chem Theory Comput 2014, 10:4045–4054.

Tsuchimoto, M, Tanimura, Y. Spins dynamics in a dissipative environment: hierarchal equations of motion approach using a Graphics Processing Unit (GPU). J Chem Theory Comput 2015, 11:3859–3865.

Strümpfer, J, Schulten, K. Open quantum dynamics calculations with the hierarchy equations of motion on parallel computers. J Chem Theory Comput 2012, 8:2808–2816.

Tanimura, Y. Stochastic Liouville, Langevin, Fokker‐Planck, and master equation approaches to quantum dissipative systems. J Physical Soc Japan 2006, 75:082001.

Tanimura, Y. Reduced hierarchical equations of motion in real and imaginary time: correlated initial states and thermodynamic quantities. J Chem Phys 2014, 141:044114.

Tanimura, Y. Real‐time and imaginary‐time quantum hierarchal Fokker‐Planck equations. J Chem Phys 2015, 142:144110.

Tanimura, Y, Maruyama, Y. Gaussian‐Markovian quantum Fokker‐Planck approach to nonlinear spectroscopy of a displaced Morse potentials system: dissociation, predissociation and optical Stark effects. J Chem Phys 1997, 107:1779–1793.

Shi, Q, Chen, LP, Nan, GJ, Xu, RX, Yan, YJ. Electron transfer dynamics: Zusman equation versus exact theory. J Chem Phys 2009, 130:164518.

Ishizaki, A, Fleming, GR. Theoretical examination of quantum coherence in a photosynthetic system at physiological temperature. Proc Natl Acad Sci USA 2009, 106:17255–17260.

Tanaka, M, Tanimura, Y. Multistate electron transfer dynamics in the condensed phase: exact calculations from the reduced hierarchy equations of motion approach. J Chem Phys 2010, 132:214502.

Xu, J, Xu, RX, Abramavicius, D, Zhang, HD, Yan, YJ. Advancing hierarchical equations of motion for efficient evaluation of coherent two‐dimensional spectroscopy. Chin J Chem Phys 2011, 24:497–506.

Chen, LP, Zheng, RH, Jing, YY, Shi, Q. Simulation of the two‐dimensional electronic spectra of the Fenna‐Matthews‐Olson complex using the hierarchical equations of motion method. J Chem Phys 2011, 134:194508.

Hein, B, Kreisbeck, C, Kramer, T, Rodŕguez, M. Modelling of oscillations in two‐dimensional echo‐spectra of the Fenna‐Matthews‐Olson complex. New J Phys 2012, 14:023018.

Tanimura, Y, Steffen, T. Two‐dimensional spectroscopy for harmonic vibrational modes with nonlinear system‐bath interactions. II. Gaussian‐Markovian case. J Physical Soc Japan 2000, 69:4095–4106.

Kato, T, Tanimura, Y. Two‐dimensional Raman and infrared vibrational spectroscopy for a harmonic oscillator system nonlinearly coupled with a colored noise bath. J Chem Phys 2004, 120:260–271.

Ishizaki, A, Tanimura, Y. Modeling vibrational dephasing and energy relaxation of intramolecular anharmonic modes for multidimensional infrared spectroscopies. J Chem Phys 2006, 125:084501.

Ishizaki, A, Tanimura, T. Dynamics of a multimode system coupled to multiple heat baths probed by two‐dimensional infrared spectroscopy. J Phys Chem A 2007, 111:9269–9276.

Sakurai, A, Tanimura, Y. Does ℏ play a role in multidimensional spectroscopy? Reduced hierarchy equations of motion approach to molecular vibrations. J Phys Chem A 2011, 115:4009–4022.

Dijkstra, AG, Tanimura, Y. Non‐Markovian entanglement dynamics in the presence of system‐bath coherence. Phys Rev Lett 2010, 104:250401.

Ma, J, Sun, Z, Wang, X, Nori, F. Entanglement dynamics of two qubits in a common bath. Phys Rev A 2012, 85:062323.

Tanimura, Y, Wolynes, P. The interplay of tunneling, resonance, and dissipation in quantum barrier crossing: a numerical study. J Chem Phys 1992, 96:8485–8496.

Kato, A, Tanimura, Y. Quantum suppression of ratchet rectification in a Brownian system driven by a biharmonic force. J Phys Chem B 2013, 117:13132–13144.

Sakurai, A, Tanimura, Y. Self‐excited current oscillations in a resonant tunneling diode described by a model based on the Caldeira‐Leggett Hamiltonian. New J Phys 2014, 16:015002.

Kato, A, Tanimura, Y. Quantum heat transport of a two‐qubit sytem: interplay between system‐bath coherence and qubit‐qubit coherence. J Chem Phys 2015, 143:064107.

Jin, JS, Zheng, X, Yan, YJ. Exact dynamics of dissipative electronic systems and quantum transport: hierarchical equations of motion approach. J Chem Phys 2008, 128:234703.

Härtle, R, Cohen, G, Reichman, DR, Millis, AJ. Decoherence and lead‐induced interdot coupling in nonequilibrium electron transport through interacting quantum dots: a hierarchical quantum master equation approach. Phys Rev B 2013, 88:235426.

Härtle, R, Millis, AJ. Formation of nonequilibrium steady states in interacting double quantum dots: When coherences dominate the charge distribution. Phys Rev B 2014, 90:245426.

Yan, YJ. Theory of open quantum systems with bath of electrons and phonons and spins: many‐dissipaton density matrixes approach. J Chem Phys 2014, 140:054105.

Xu, RX, Zhang, HD, Zheng, X, Yan, YJ. Dissipaton equation of motion for system‐and‐bath interference dynamics. Sci China Chem 2015, 58:1816–1824.

Jin, JS, Wang, SK, Zheng, X, Yan, YJ. Current noise spectra and mechanisms with dissipaton equation of motion theory. J Chem Phys 2015, 142:234108.

Zhang, HD, Yan, YJ. Onsets of hierarchy truncation and self–consistent born approximation with quantum mechanics prescriptions invariance. J Chem Phys 2015, 143:214112.

Hu, J, Xu, RX, Yan, YJ. Communication: Padé spectrum decomposition of Fermi function and Bose function. J Chem Phys 2010, 133:101106.

Hu, J, Luo, M, Jiang, F, Xu, RX, Yan, YJ. Padé spectrum decompositions of quantum distribution functions and optimal hierarchial equations of motion construction for quantum open systems. J Chem Phys 2011, 134:244106.

Zheng, X, Jin, JS, Welack, S, Luo, M, Yan, YJ. Numerical approach to time‐dependent quantum transport and dynamical Kondo transition. J Chem Phys 2009, 130:164708.

Wang, Y, Zheng, X, Li, B, Yang, J. Understanding the Kondo resonance in the d‐CoPc/Au(111) adsorption system. J Chem Phys 2014, 141:084713.

Wang, Y, Zheng, X, Yang, J. Environment‐modulated Kondo phenomena in FePc/Au(111) adsorption systems. Phys Rev B 2016, 93:125114.

Hou, D, Wang, R, Zheng, X, Tong, NH, Wei, JH, Yan, YJ. Hierarchical equations of motion for impurity solver in dynamical mean‐field theory. Phys Rev B 2014, 90:045141.

Ye, L, Hou, D, Wang, R, Cao, D, Zheng, X, Yan, YJ. Thermopower of few‐electron quantum dots with Kondo correlations. Phys Rev B 2014, 90:165116.

Ye, L, Hou, D, Zheng, X, Yan, YJ, Di Ventra, M. Local temperatures of strongly‐correlated quantum dots out of equilibrium. Phys Rev B 2015, 91:205106.

Zheng, X, Jin, JS, Yan, YJ. Dynamic Coulomb blockade in single–lead quantum dots. New J Phys 2008, 10:093016.

Zheng, X, Yan, YJ, Di Ventra, M. Kondo memory in driven strongly‐correlated quantum dots. Phys Rev Lett 2013, 111:086601.

Wang, X, Hou, D, Zheng, X, Yan, YJ. Anisotropy induced Kondo splitting in a mechanically stretched molecular junction: a first‐principles based study. J Chem Phys 2016, 144:034101.

Zheng, X, Jin, JS, Yan, YJ. Dynamic electronic response of a quantum dot driven by time–dependent voltage. J Chem Phys 2008, 129:184112.

Zheng, X, Xu, RX, Xu, J, Jin, JS, Hu, J, Yan, YJ. Hierarchical equations of motion for quantum dissipation and quantum transport. Prog Chem 2012, 24:1129–1152.

Wang, S, Zheng, X, Jin, J, Yan, Y. Hierarchical Liouville‐space approach to nonequilibrium dynamical properties of quantum impurity systems. Phys Rev B 2013, 88:035129.

Feynman, RP, Vernon, FL Jr. The theory of a general quantum system interacting with a linear dissipative system. Ann Phys 1963, 24:118–173.

Kleinert, H. Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets. 5th ed. Singapore: World Scientific; 2009.

Weiss, U. Quantum Dissipative Systems. 2nd ed. Singapore: World Scientific; 1999.

Xu, RX, Yan, YJ. Theory of open quantum systems. J Chem Phys 2002, 116:9196–9206.

Yan, YJ, Xu, RX. Quantum mechanics of dissipative systems. Annu Rev Phys Chem 2005, 56:187–219.

Li, ZH, Tong, NH, Zheng, X, Hou, D, Wei, JH, Hu, J, Yan, YJ. Hierarchical Liouville‐space approach for accurate and universal characterization of quantum impurity systems. Phys Rev Lett 2012, 109:266403.

Ozaki, T. Continued fraction representation of the Fermi‐Dirac function for large‐scale electronic structure calculations. Phys Rev B 2007, 75:035123.

Croy, A, Saalmann, U. Partial fraction decomposition of the Fermi function. Phys Rev B 2009, 80:073102.

Wang, R, Hou, D, Zheng, X. Time‐dependent density‐functional theory for real‐time electronic dynamics on material surfaces. Phys Rev B 2013, 88:205126.

Pedersen, JN, Wacker, A. Tunneling through nanosystems: combining broadening with many‐particle states. Phys Rev B 2005, 72:195330.

Stefanucci, G, Almbladh, CO. Time‐dependent partition‐free approach in resonant tunneling systems. Phys Rev B 2004, 69:195318.

Weichselbaum, A, von Delft, J. Sum‐rule conserving spectral functions from the numerical renormalization group. Phys Rev Lett 2007, 99:076402.

Merker, L, Weichselbaum, A, Costi, TA. Full density‐matrix numerical renormalization group calculation of impurity susceptibility and specific heat of the Anderson impurity model. Phys Rev B 2012, 86:075153.

Jakobs, SG, Meden, V, Schoeller, H. Nonequilibrium functional renormalization group for interacting quantum systems. Phys Rev Lett 2007, 99:150603.

Daley, AJ, Kollath, C, Schollwöck, U, Vidal, G. Time‐dependent density‐matrix renormalization‐group using adaptive effective Hilbert spaces. J Stat Mech: Theor Exp 2004, 2004:P04005.

White, SR, Feiguin, AE. Real‐time evolution using the density matrix renormalization group. Phys Rev Lett 2004, 93:076401.

Heidrich‐Meisner, F, Feiguin, AE, Dagotto, E. Real‐time simulations of nonequilibrium transport in the single‐impurity Anderson model. Phys Rev B 2009, 79:235336.

Mak, CH, Egger, R. A multilevel blocking approach to the sign problem in real‐time quantum Monte Carlo simulations. J Chem Phys 1999, 110:12–14.

Egger, R, Mühlbacher, L, Mak, CH. Path‐integral Monte Carlo simulations without the sign problem: multilevel blocking approach for effective actions. Phys Rev E 2000, 61:5961.

Werner, P, Oka, T, Millis, AJ. Diagrammatic Monte Carlo simulation of nonequilibrium systems. Phys Rev B 2009, 79:035320.

Schiró, M, Fabrizio, M. Real‐time diagrammatic Monte Carlo for nonequilibrium quantum transport. Phys Rev B 2009, 79:153302.

Werner, P, Oka, T, Eckstein, M, Millis, AJ. Weak‐coupling quantum Monte Carlo calculations on the Keldysh contour: theory and application to the current–voltage characteristics of the Anderson model. Phys Rev B 2010, 81:035108.

Cohen, G, Gull, E, Reichman, DR, Millis, AJ, Rabani, E. Numerically exact long‐time magnetization dynamics at the nonequilibrium Kondo crossover of the Anderson impurity model. Phys Rev B 2013, 87:195108.

Eckel, J, Heidrich‐Meisner, F, Jakobs, SG, Thorwart, M, Pletyukhov, M, Egger, R. Comparative study of theoretical methods for non‐equilibrium quantum transport. New J Phys 2010, 12:043042.

Press, WH, Teukolsky, SA, Vetterling, WT, Flannery, BP. Numerical Recipes in Fortran. New York: Cambridge University Press; 1992.

Freund, RW, Nachtigal, NM. QMR: a quasi‐minimal residual method for non‐Hermitian linear systems. SIAM J Numer Math 1991, 60:315–339.

Freund, RW. A transpose‐free quasi‐minimal residual algorithm for non‐Hermitian linear systems. SIAM J Sci Comput 1993, 14:470–482.

Kosloff, R. Time‐dependent quantum‐mechanical methods for molecular dynamics. J Phys Chem 1988, 92:2087.

Zhu, L, Liu, H, Xie, W, Shi, Q. Explicit system‐bath correlation calculated using the hierarchical equations of motion method. J Chem Phys 2012, 137:194106.

Hou, D, Wang, S, Wang, R, Ye, LZ, Xu, RX, Zheng, X, Yan, YJ. Improving the efficiency of hierarchical equations of motion approach and application to coherent dynamics in Aharonov‐Bohm interferometers. J Chem Phys 2015, 142:104112.

Kresse, G, Hafner, J. Ab initio molecular dynamics for liquid metals. Phys Rev B 1993, 47:558(R).

Kresse, G, Furthmüller, J. Efficient iterative schemes for *ab initio* total‐energy calculations using a plane‐wave basis set. Phys Rev B 1996, 54:11169.

Metzner, W, Vollhardt, D. Correlated lattice fermions in *d* = ∞ dimensions. Phys Rev Lett 1989, 62:324.

Jarrell, M. Hubbard model in infinite dimensions: a quantum Monte Carlo study. Phys Rev Lett 1992, 69:168.

Georges, A, Kotliar, G. Hubbard model in infinite dimensions. Phys Rev B 1992, 45:6479.

Georges, A, Kotliar, G, Krauth, W, Rozenberg, MJ. Dynamical mean‐field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev Mod Phys 1996, 68:13.

Bryant, B, Spinelli, A, Wagenaar, JJT, Gerrits, M, Otte, AF. Local control of single atom magnetocrystalline anisotropy. Phys Rev Lett 2013, 111:127203.

Costi, TA, Hewson, AC, Zlatić, V. Transport coefficients of the Anderson model via the numerical renormalization group. J Phys Condens Matter 1994, 6:2519.

Grobis, M, Rau, IG, Potok, RM, Shtrikman, H, Goldhaber‐Gordon, D. Universal scaling in nonequilibrium transport through a single channel Kondo dot. Phys Rev Lett 2008, 100:246601.

Muñoz, E, Bolech, CJ, Kirchner, S. Universal out‐of‐equilibrium transport in Kondo‐correlated quantum dots: renormalized dual fermions on the Keldysh contour. Phys Rev Lett 2013, 110:016601.