Coulson, CA. Present state of molecular structure calculations. Rev Mod Phys 1960, 32:170.

Hohenberg, P, Kohn, W. Inhomogeneous electron gas. Phys Rev 1964, 136:B864.

Kohn, W, Sham, LJ. Self‐consistent equations including exchange and correlation effects. Phys Rev A 1965, 140:1133.

Zickermann, V, Wirth, C, Nasiri, H, Siegmund, K, Schwalbe, H, Hunte, C, Brandt, U. Mechanistic insight from the crystal structure of mitochondrial complex I. Science 2015, 5:4.

Perdew, JP, Schmidt, K. Jacob`s ladder of density functional approximations for the exchange‐correlation energy. In: *AIP Conference Proceedings*, 577, 1, 2001.

Kohn, W. Density‐functional theory for systems of very many atoms. Int J Quantum Chem 1995, 56:229.

Severo Pereira Gomes, A, Jacob, CR. Quantum‐chemical embedding methods for treating local electronic excitations in complex chemical systems. Annu Rep Prog Chem C Phys Chem 2012, 108:222.

Galli, G. Linear scaling methods for electronic structure calculations and quantum molecular dynamics simulations. Curr Opin Solid State Mater Sci 1996, 1:864.

Goedecker, S. Linear scaling electronic structure methods. Rev Mod Phys 1999, 71:1085.

Bowler, DR, Miyazaki, T, Gillan, MJ. Recent progress in linear scaling ab initio electronic structure techniques. J Phys Condens Matter 2002, 14:2781.

Bowler, DR, Miyazaki, T. O(N) methods in electronic structure calculations. Reports on progress in physics. Phys Soc (Great Britain) 2012, 75:036305.

Cloizeaux, JD. Energy bands and projection operators in a crystal: analytic and asymptotic properties. Phys Rev 1964, 135:A685.

Cloizeaux, JD. Analytical properties of n‐dimensional energy bands and Wannier functions. Phys Rev 1964, 135:A698.

Kohn, W. Analytic properties of bloch waves and Wannier functions. Phys Rev 1959, 115:809.

Baer, R, Head‐Gordon, M. Sparsity of the density matrix in Kohn‐sham density functional theory and an assessment of linear system‐size scaling methods. Phys Rev Lett 1997, 79:3962.

Ismail‐Beigi, S, Arias, TA. Locality of the density matrix in metals, semiconductors, and insulators. Phys Rev Lett 1999, 82:2127.

Goedecker, S. Decay properties of the finite‐temperature density matrix in metals. Phys Rev B 1998, 58:3501.

He, L, Vanderbilt, D. Exponential decay properties of Wannier functions and related quantities. Phys Rev Lett 2001, 86:5341.

March, N, Young, W, Sampanthar, S. The Many‐Body Problem in Quantum Mechanics. New York: Dover Publications, Incorporated; 1967.

Kohn, W. Density functional and density matrix method scaling linearly with the number of atoms. Phys Rev Lett 1996, 76:3168.

Skylaris, C‐K, Haynes, PD, Mostofi, AA, Payne, MC. Introducing ONETEP: linear‐scaling density functional simulations on parallel computers. J Chem Phys 2005, 122:84119.

Bowler, DR, Miyazaki, T. Calculations for millions of atoms with density functional theory: linear scaling shows its potential. J Phys Condens Matter 2010, 22:074207.

VandeVondele, J, Krack, M, Mohamed, F, Parrinello, M, Chassaing, T, Hutter, J. Quickstep: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput Phys Commun 2005, 167:103.

Mohr, S, Ratcliff, LE, Boulanger, P, Genovese, L, Caliste, D, Deutsch, T, Goedecker, S. Daubechies wavelets for linear scaling density functional theory. J Chem Phys 2014, 140:204110.

Mohr, S, Ratcliff, LE, Genovese, L, Caliste, D, Boulanger, P, Goedecker, S, Deutsch, T. Accurate and efficient linear scaling DFT calculations with universal applicability. Phys Chem Chem Phys 2015, 17:31360.

Yang, W. Direct calculation of electron density in density‐functional theory. Phys Rev Lett 1991, 66:1438.

Baroni, S, Giannozzi, P. Towards very large‐scale electronic‐structure calculations. Europhys Lett 1992, 17:547.

Drabold, D, Sankey, O. Maximum entropy approach for linear scaling in the electronic structure problem. Phys Rev Lett 1993, 70:3631.

Goedecker, S, Colombo, L. Efficient linear scaling algorithm for tight‐binding molecular dynamics. Phys Rev Lett 1994, 73:122.

Goedecker, S, Teter, M. Tight‐binding electronic structure calculations and tight‐binding molecular dynamics with localized orbitals. Phys Rev B 1995, 51:9455.

Li, X‐P, Nunes, RW, Vanderbilt, D. Density‐matrix electronic‐structure method with linear system‐size scaling. Phys Rev B 1993, 47:10891.

Nunes, RW, Vanderbilt, D. Generalization of the density‐matrix method to a nonorthogonal basis. Phys Rev B 1994, 50:17611.

McWeeny, R. Some recent advances in density matrix theory. Rev Mod Phys 1960, 32:335.

Artacho, E, Sánchez‐Portal, D, Ordejón, P, García, A, Soler, JM. Linear‐scaling ab‐initio calculations for large and complex systems. Phys Status Solidi B 1999, 215:809.

Soler, JM, Artacho, E, Gale, JD, García, A, Junquera, J, Ordejón, P, Sánchez‐Portal, D. The SIESTA method for ab initio order‐N materials simulation. J Phys Condens Matter 2002, 14:2745.

ICMAB. Available at: http://departments.icmab.es/leem/siesta/. (Accessed October 17, 2016).

Kim, J, Mauri, F, Galli, G. Total‐energy global optimizations using nonorthogonal localized orbitals. Phys Rev B 1995, 52:1640.

Cankurtaran, BO, Gale, JD, Ford, MJ. First principles calculations using density matrix divide and‐ conquer within the SIESTA methodology. J Phys Condens Matter 2008, 20:294208.

De Pablo, PJ, Moreno‐Herrero, F, Colchero, J, Gómez Herrero, J, Herrero, P, Baró, AM, Ordejón, P, Soler, JM, Artacho, E. Absence of dc‐conductivity in λ‐DNA. Phys Rev Lett 2000, 85:4992.

Heady, L, Fernandez‐Serra, M, Mancera, RL, Joyce, S, Venkitaraman, AR, Artacho, E, Skylaris, C‐K, Ciacchi, LC, Payne, MC. Novel structural features of CDK inhibition revealed by an ab initio computational method combined with dynamic simulations. J Med Chem 2006, 49:5141.

Lin, L, García, A, Huhs, G, Yang, C. SIESTA‐PEXSI: massively parallel method for efficient and accurate ab initio materials simulation without matrix diagonalization. J Phys Condens Matter 2014, 26:305503.

Lin, L, Chen, M, Yang, C, He, L. Accelerating atomic orbital‐based electronic structure calculation via pole expansion and selected inversion. J Phys Condens Matter 2013, 25:295501.

Hu, W, Lin, L, Yang, C, Yang, J. Electronic structure and aromaticity of large‐scale hexagonal graphene nanoflakes. J Chem Phys 2014, 141:214704.

Stokbro, K, Taylor, J, Brandbyge, M, Ordejón, P. TranSIESTA: a spice for molecular electronics. Ann N Y Acad Sci 2003, 1006:212.

Sanz‐Navarro, CF, Grima, R, García, A, Bea, EA, Soba, A, JM, Ordejón, P. An efficient implementation of a QM‐MM method in SIESTA. Theor Chem Acc 2011, 128:825.

Skylaris, C‐K, Haynes, PD, Mostofi, AA, Payne, MC. Recent progress in linear‐scaling density functional calculations with plane waves and pseudopotentials: the onetep code. J Phys Condes Matter 2008, 20:64209.

Hine, N, Haynes, P, Mostofi, A, Skylaris, C‐K, Payne, M. Linear‐scaling density‐functional theory with tens of thousands of atoms: expanding the scope and scale of calculations with onetep. Comput Phys Commun 2009, 180:1041.

http://www.onetep.org. (Accessed October 17, 2016).

Haynes, PD, Skylaris, C‐K, Mostofi, AA, Payne, MC. Density kernel optimization in the onetep code. J Phys Condens Matter 2008, 20:294207.

O`Regan, DD, Hine, NDM, Payne, MC, Mostofi, AA. Linear‐scaling DFT+U with full local orbital optimization. Phys Rev B 2012, 85:085107.

Ratcliff, LE, Hine, NDM, Haynes, PD. Calculating optical absorption spectra for large systems using linear‐scaling density functional theory. Phys Rev B 2011, 84:165131.

Zuehlsdorff, TJ, Hine, NDM, Spencer, JS, Harrison, NM, Riley, DJ, Haynes, PD. Linear‐scaling time‐dependent density‐functional theory in the linear response formalism. J Chem Phys 2013, 139:064104.

Zuehlsdorff, TJ, Hine, NDM, Payne, MC, Haynes, PD. Linear‐scaling time‐dependent density‐functional theory beyond the Tamm‐Dancoff approximation: obtaining efficiency and accuracy with in situ optimised local orbitals. J Chem Phys 2015, 143:204107.

Turban, DHP, Teobaldi, G, O`Regan, DD, Hine, NDM. Supercell convergence of charge‐transfer energies in pentacene molecular crystals from constrained DFT, ArXiv e‐prints, 2016, arXiv:1603.02174 [physics.chem‐ph].

Bell, RA, Dubois, SMM, Payne, MC, Mostofi, AA. Electronic transport calculations in the onetep code: implementation and applications. Comput Phys Commun 2015, 193:78.

Lee, LP, Cole, DJ, Payne, MC, Skylaris, C‐K. Natural bond orbital analysis in the onetep code: applications to large protein systems. J Comput Chem 2013, 34:429.

Dziedzic, J, Helal, HH, Skylaris, C‐K, Mostofi, AA, Payne, MC. Minimal parameter implicit solvent model for ab initio electronic‐structure calculations. Europhys Lett 2011, 95:43001.

Ruiz‐Serrano, A, Skylaris, C‐K. A variational method for density functional theory calculations on metallic systems with thousands of atoms. J Chem Phys 2013, 139:054107.

Hine, NDM, Haynes, PD, Mostofi, AA, Payne, MC. Linear‐scaling density‐functional simulations of charged point defects in Al_{2}O_{3} using hierarchical sparse matrix algebra. J Chem Phys 2010, 133:1.

Hine, N, Robinson, M, Haynes, P, Skylaris, C‐K, Payne, M, Mostofi, A. Accurate ionic forces and geometry optimization in linear‐scaling density‐functional theory with local orbitals. Phys Rev B 2011, 83:195102.

Weber, C, Cole, DJ, O`Regan, DD, Payne, MC. Renormalization of myoglobin‐ligand binding energetics by quantum many‐body effects. Proc Natl Acad Sci U S A 2014, 111:5790.

Lever, G, Cole, DJ, Lonsdale, R, Ranaghan, KE, Wales, DJ, Mulholland, AJ, Skylaris, C‐K, Payne, MC. Large‐scale density functional theory transition state searching in enzymes. J Phys Chem Lett 2014, 5:3614.

Lever, G, Cole, DJ, Hine, NDM, Haynes, PD, Payne, MC. Electrostatic considerations affecting the calculated HOMO–LUMO gap in protein molecules. J Phys Condens Matter 2013, 25:152101.

Ozaki, T. O(N) Krylov‐subspace method for large‐scale ab initio electronic structure calculations. Phys Rev B 2006, 74:245101.

http://www.openmx‐square.org. (Accessed October 17, 2016).

Han, MJ, Ozaki, T, Yu, J. O(N) LDA+U electronic structure calculation method based on the nonorthogonal pseudoatomic orbital basis. Phys Rev B 2006, 73:045110.

Ozaki, T, Nishio, K, Kino, H. Efficient implementation of the nonequilibrium Green function method for electronic transport calculations. Phys Rev B 2010, 81:035116.

Ohwaki, T, Otani, M, Ozaki, T. A method of orbital analysis for large‐scale first‐principles simulations. J Chem Phys 2014, 140:244105.

Blum, V, Gehrke, R, Hanke, F, Havu, P, Havu, V, Ren, X, Reuter, K, Scheffler, M. Ab initio molecular simulations with numeric atom‐centered orbitals. Comput Phys Commun 2009, 180:2175.

https://aimsclub.fhi‐berlin.mpg.de. (Accessed October 17, 2016).

Havu, V, Blum, V, Havu, P, Scheffler, M. Efficient O(N) integration for all‐electron electronic structure calculation using numeric basis functions. J Comput Phys 2009, 228:8367.

Marek, A, Blum, V, Johanni, R, Havu, V, Lang, B, Auckenthaler, T, Heinecke, A, Bungartz, H‐J, Lederer, H. The ELPA library: scalable parallel eigenvalue solutions for electronic structure theory and computational science. J Phys Condens Matter 2014, 26:213201.

Berger, D, Logsdail, AJ, Oberhofer, H, Farrow, MR, Catlow, CRA, Sherwood, P, Sokol, AA, Blum, V, Reuter, K. Embedded‐cluster calculations in a numeric atomic orbital density‐functional theory framework. J Chem Phys 2014, 141:024105. doi:10.1063/1.4885816, arXiv:arXiv:1404.2130v1.

Schubert, F, Rossi, M, Baldauf, C, Pagel, K, Warnke, S, von Helden, G, Filsinger, F, Kupser, P, Meijer, G, Salwiczek, M, et al. Exploring the conformational preferences of 20‐residue peptides in isolation: Ac‐Ala_{19}‐Lys + H^{+} vs. Ac‐Lys‐Ala_{19} + H^{+} and the current reach of DFT. Phys Chem Chem Phys 2015, 17:7373.

Ren, X, Rinke, P, Blum, V, Wieferink, J, Tkatchenko, A, Sanfilippo, A, Reuter, K, Scheffler, M. Resolution of‐ identity approach to Hartree‐Fock, hybrid density functionals, RPA, MP2 and GW with numeric atom‐centered orbital basis functions, New Journal of Physics 14 (2012), 10.1088/1367‐2630/14/5/053020, arXiv:1201.0655.

Bowler, DR, Bush, IJ, Gillan, MJ. Practical methods for ab initio calculations on thousands of atoms. Int J Quantum Chem 2000, 77:831.

http://www.order‐n.org (Accessed October 17, 2016).

Sena, AMP, Miyazaki, T, Bowler, DR. Linear scaling constrained density functional theory in Conquest. J Chem Theory Comput 2011, 7:884.

Nakata, A, Bowler, DR, Miyazaki, T. Efficient Calculations with Multisite Local Orbitals in a Large‐Scale DFT Code Conquest. J Chem Theory Comput 2014, 10:4813.

Miyazaki, T, Bowler, DR, Gillan, MJ, Ohno, T. The energetics of hut‐cluster self‐assembly in Ge/Si(001) from linear‐scaling DFT calculations. J Physical Soc Japan 2008, 77:123706.

Otsuka, T, Miyazaki, T, Ohno, T, Bowler, DR, Gillan, M. Accuracy of order‐N density‐functional theory calculations on DNA systems using Conquest. J Phys Condens Matter 2008, 20:294201.

Arita, M, Bowler, DR, Miyazaki, T. Stable and efficient linear scaling first‐principles molecular dynamics for 1000+ atoms. J Chem Theory Comput 2014, 10:5419.

Niklasson, AMN. Extended Born‐Oppenheimer molecular dynamics. Phys Rev Lett 2008, 100:123004.

http://www.bigdft.org. (Accessed October 17, 2016).

Daubechies, I. Ten lectures on wavelets. In: *CBMS‐NSF Regional Conference Series in Applied Mathematics*, 61, SIAM, 1992.

Genovese, L, Neelov, A, Goedecker, S, Deutsch, T, Ghasemi, SA, Willand, A, Caliste, D, Zilberberg, O, Rayson, M, Bergman, A, et al. Daubechies wavelets as a basis set for density functional pseudopotential calculations. J Chem Phys 2008, 129:014109.

Willand, A, Kvashnin, YO, Genovese, L, Vázquez‐Mayagoitia, Á, Deb, AK, Sadeghi, A, Deutsch, T, S. Norm‐conserving pseudopotentials with chemical accuracy compared to all‐electron calculations. J Chem Phys 2013, 138:104109.

Natarajan, B, Genovese, L, Casida, ME, Deutsch, T, Burchak, ON, Philouze, C, Balakirev, MY. Wavelet‐based linear‐response time‐dependent densityfunctional theory. Chem Phys 2012, 402:29.

Ratcliff, LE, Genovese, L, Mohr, S, Deutsch, T. Fragment approach to constrained density functional theory calculations using Daubechies wavelets. J Chem Phys 2015, 142:234105.

Genovese, L, Deutsch, T, Neelov, A, Goedecker, S, Beylkin, G. Efficient solution of Poisson`s equation with free boundary conditions. J Chem Phys 2006, 125:074105.

Genovese, L, Deutsch, T, Goedecker, S. Efficient and accurate three‐dimensional Poisson solver for surface problems. J Chem Phys 2007, 127:054704.

Cerioni, A, Genovese, L, Mirone, A, Sole, VA. Efficient and accurate solver of the three‐dimensional screened and unscreened Poissons equation with generic boundary conditions. J Chem Phys 2012, 137:134108.

Fisicaro, G, Genovese, L, Andreussi, O, Marzari, N, Goedecker, S. A generalized Poisson and Poisson‐ Boltzmann solver for electrostatic environments. J Chem Phys 2016, 143:014103.

Genovese, L, Ospici, M, Deutsch, T, Méhaut, J‐F, Neelov, A, Goedecker, S. Density functional theory calculation on many‐cores hybrid central processing unit‐graphic processing unit architectures. J Chem Phys 2009, 131:034103.

Rudberg, E, Rubensson, EH, Sałek, P. Kohn–Sham density functional theory electronic structure calculations with linearly scaling computational time and memory usage. J Chem Theory Comput 2011, 7:340.

http://ergoscf.org/. (Accessed October 17, 2016).

Rudberg, E. Difficulties in applying pure Kohn‐Sham density functional theory electronic structure methods to protein molecules. J Phys Condens Matter 2012, 24:072202.

Bock, N, Challacombe, M, Gan, CK, Henkelman, G, Nemeth, K, Niklasson, AMN, Odell, A, Schwegler, E, Tymczak, CJ, Weber, V. FreeON, Los Alamos National Laboratory, 2012, http://www.freeon.org.

Jordan, DK, Mazziotti, DA. Comparison of two genres for linear scaling in density functional theory: purification and density matrix minimization methods. J Chem Phys 2005, 122:084114.

https://www.cp2k.org/quickstep. (Accessed October 17, 2016).

Del Ben, M, Hutter, J, Vandevondele, J. Forces and stress in second order Møller‐Plesset perturbation theory for condensed phase systems within the resolution of identity Gaussian and plane waves approach. J Chem Phys 2015, 143:102803.

Tsuchida, E, Tsukada, M. Large‐scale electronic structure calculations based on the adaptive finite element method. J Physical Soc Japan 1998, 67:3844.

Tsuchida, E. Augmented orbital minimization method for linear scaling electronic structure calculations. J Physical Soc Japan 2007, 76:034708.

Tsuchida, E. Ab initio molecular dynamics simulations with linear scaling: application to liquid ethanol. J Phys Condens Matter 2008, 20:294212.

Ikeshoji, T, Tsuchida, E, Morishita, T, Ikeda, K, Matsuo, M, Kawazoe, Y, Orimo, S‐i. Fast‐ionic conductivity of Li+ in LiBH4. Phys Rev B 2011, 83:144301.

http://rmgdft.sourceforge.net/. (Accessed October 17, 2016).

Fattebert, J‐L, Bernholc, J. Towards grid‐based O(N) density‐functional theory methods: optimized nonorthogonal orbitals and multigrid acceleration. Phys Rev B 2000, 62:1713.

Fattebert, J, Hornung, R, Wissink, A. Finite element approach for density functional theory calculations on locally‐refined meshes. J Comput Phys 2007, 223:759.

Fattebert, J‐L, Gygi, F. Linear scaling first‐principles molecular dynamics with controlled accuracy. Comput Phys Commun 2004, 162:24.

Osei‐Kuffuor, D, Fattebert, J‐L. Accurate and scalable N algorithm for first‐principles molecular‐dynamics computations on large parallel compute. Phys Rev Lett 2014, 112:046401.

Wang, L‐W, Teter, MP. Kinetic‐energy functional of the electron density. Phys Rev B 1992, 45:13196.

García‐Aldea, D, Alvarellos, JE. Kinetic energy density study of some representative semilocal kinetic energy functionals. J Chem Phys 2007, 127:144109.

Huang, C, Carter, EA. Nonlocal orbital‐free kinetic energy density functional for semiconductors. Phys Rev B 2010, 81:45206.

Ho, GS, Lignères, VL, Carter, EA. Introducing PROFESS: a new program for orbital‐free density functional theory calculations. Comput Phys Commun 2008, 179:839.

Hung, L, Huang, C, Shin, I, Ho, GS, Lignères, VL, Carter, EA. Introducing PROFESS 2.0: a parallelized, fully linear scaling program for orbital‐free density functional theory calculations. Comput Phys Commun 2010, 181:2208.

Chen, M, Xia, J, Huang, C, Dieterich, JM, Hung, L, Shin, I, Carter, EA. Introducing PROFESS 3.0: an advanced program for orbital‐free density functional theory molecular dynamics simulations. Comput Phys Commun 2015, 190:228.

https://carter.princeton.edu/research/software/. (Accessed October 17, 2016).

Shin, I, Carter, EA. Enhanced von Weizsäcker wang‐govind‐carter kinetic energy density functional for semiconductors. J Chem Phys 2014, 140:18A531.

Huang, C, Carter, EA. Toward an orbital‐free density functional theory of transition metals based on an electron density decomposition. Phys Rev B 2012, 85:045126.

Hung, L, Carter, EA. Accurate simulations of metals at the mesoscale: explicit treatment of 1 million atoms with quantum mechanics. Chem Phys Lett 2009, 475:163.

Chen, M, Hung, L, Huang, C, Xia, J, Carter, EA. The melting point of lithium: an orbital‐free firstprinciples molecular dynamics study. Mol Phys 2013, 111:3448.

Riplinger, C, Pinski, P, Becker, U, Valeev, EF, Neese, F. Sparse maps—a systematic infrastructure for reduced‐scaling electronic structure methods. II. Linear scaling domain based pair natural orbital coupled cluster theory. J Chem Phys 2016, 144:024109.

Scemama, A, Caffarel, M, Oseret, E, Jalby, W. Quantum Monte Carlo for large chemical systems: implementing efficient strategies for petascale platforms and beyond. J Comput Chem 2013, 34:938.

Scemama, A, Caffarel, M, Oseret, E, Jalby, A. QMC=Chem: a quantum Monte Carlo Program for large‐scale simulations in chemistry at the petascale level and beyond, high performance computing for computational science. Vecpar 2013, 2012:118.

Behler, J, Parrinello, M. Generalized neural‐network representation of high‐dimensional potential‐energy surfaces. Phys Rev Lett 2007, 98:146401.

Behler, J, Martoňák, R, Donadio, D, Parrinello, M. Pressure‐induced phase transitions in silicon studied by neural network‐based metadynamics simulations. Phys Status Solidi B 2008, 245:2618.

Behler, J, Martoňák, R, Donadio, D, Parrinello, M. Metadynamics simulations of the high‐pressure phases of silicon employing a high‐dimensional neural network potential. Phys Rev Lett 2008, 100:185501.

Ghasemi, SA, Hofstetter, A, Saha, S, Goedecker, S. Interatomic potentials for ionic systems with density functional accuracy based on charge densities obtained by a neural network. Phys Rev B 2015, 92:045131.

Rupp, M, Ramakrishnan, R, von Lilienfeld, OA. Machine learning for quantum mechanical properties of atoms in molecules. J Phys Chem Lett 2015, 6:3309.

Kitaura, K, Ikeo, E, Asada, T, Nakano, T, Uebayasi, M. Fragment molecular orbital method: an approximate computational method for large molecules. Chem Phys Lett 1999, 313:701.

Fedorov, DG, Kitaura, K. Extending the power of quantum chemistry to large systems with the fragment molecular orbital method. J Phys Chem A 2007, 111:6904.

Fedorov, DG, Kitaura, K. The importance of three‐body terms in the fragment molecular orbital method. J Chem Phys 2004, 120:6832.

Nakano, T, Mochizuki, Y, Yamashita, K, Watanabe, C, Fukuzawa, K, Segawa, K, Okiyama, Y, Tsukamoto, T, Tanaka, S. Development of the four‐body corrected fragment molecular orbital (fmo4) method. Chem Phys Lett 2012, 523:128.

Pruitt, SR, Nakata, H, Nagata, T, Mayes, M, Alexeev, Y, Fletcher, G, Fedorov, DG, Kitaura, K, Gordon, MS. Importance of three‐body interactions in molecular dynamics simulations of water demonstrated with the fragment molecular orbital method. J Chem Theory Comput 2016, 12:1423–1435.

Pruitt, SR, Fedorov, DG, Gordon, MS. Geometry optimizations of open‐shell systems with the fragment molecular orbital method. J Phys Chem A 2012, 116:4965.

Schmidt, MW, Baldridge, KK, Boatz, JA, Elbert, ST, Gordon, MS, Jensen, JH, Koseki, S, Matsunaga, N, Nguyen, KA, Su, S, et al. General atomic and molecular electronic structure system. J Comput Chem 1993, 14:1347.

Gordon, MS, Schmidt, MW. %22Chapter 41 – Advances in electronic structure theory: GAMESS a decade later%22. In: Scuseria, CEDFSKE, ed. Theory and Applications of Computational Chemistry. Amsterdam: Elsevier; 2005, 1167–1189.

http://www.msg.ameslab.gov/gamess/. (Accessed October 17, 2016).

Nakano, T, Mochizuki, Y, Fukuzawa, K, Amari, S, Tanaka, S. %22Chapter 2—developments and applications of abinit‐mp software based on the fragment molecularorbital method%22. In: Starikov, E, Lewis, J, Tanaka, S, eds. Modern Methods for Theoretical Physical Chemistry of Biopolymers. Amsterdam: Elsevier Science; 2006, 39–52.

http://moldb.nihs.go.jp/abinitmp/. (Accessed October 17, 2016).

Mochizuki, Y, Yamashita, K, Murase, T, Nakano, T, Fukuzawa, K, Takematsu, K, Watanabe, H, Tanaka, S. Large scale FMO‐MP2 calculations on a massively parallel‐vector computer. Chem Phys Lett 2008, 457:396.

Sekino, H, Sengoku, Y, Sugiki, S, Kurita, N. Molecular orbital analysis based on fragment molecular orbital scheme. Chem Phys Lett 2003, 378:589.

Ganesh, V, Dongare, RK, Balanarayan, P, Gadre, SR. Molecular tailoring approach for geometry optimization of large molecules: energy evaluation and parallelization strategies. J Chem Phys 2006, 125:104109.

Gordon, MS, Mullin, JM, Pruitt, SR, Roskop, LB, Slipchenko, LV, Boatz, JA. Accurate methods for large molecular systems. J Phys Chem B 2009, 113:9646.

Gordon, MS, Fedorov, DG, Pruitt, SR, Slipchenko, LV. Fragmentation methods: a route to accurate calculations on large systems. Chem Rev 2012, 112:632.

Pruitt, SR, Bertoni, C, Brorsen, KR, Gordon, MS. Efficient and accurate fragmentation methods. Acc Chem Res 2014, 47:2786.

Fletcher, GD, Fedorov, DG, Pruitt, SR, Windus, TL, Gordon, MS. Large‐scale MP2 calculations on the Blue Gene architecture using the fragment molecular orbital method. J Chem Theory Comput 2012, 8:75.

Fedorov, DG, Alexeev, Y, Kitaura, K. Geometry optimization of the active site of a large system with the fragment molecular orbital method. J Phys Chem Lett 2011, 2:282.

Sawada, T, Fedorov, DG, Kitaura, K. Role of the key mutation in the selective binding of avian and human influenza hemagglutinin to sialosides revealed by quantum‐mechanical calculations. J Am Chem Soc 2010, 132:16862.

Sawada, T, Fedorov, DG, Kitaura, K. Binding of influenza a virus hemagglutinin to the sialoside receptor is not controlled by the homotropic allosteric effect. J Phys Chem B 2010, 114:15700.

Fedorov, DG, Kitaura, K, Li, H, Jensen, JH, Gordon, MS. The polarizable continuum model (PCM) interfaced with the fragment molecular orbital method (fmo). J Comput Chem 2006, 27:976.

Barone, V, Cossi, M, Tomasi, J. A new definition of cavities for the computation of solvation free energies by the polarizable continuum model. J Chem Phys 1997, 107:3210.

Ikegami, T, Ishida, T, Fedorov, DG, Kitaura, K, Inadomi, Y, Umeda, H, Yokokawa, M, Sekiguchi, S. Full electron calculation beyond 20,000 atoms: ground electronic state of photosynthetic proteins, supercomputing, 2005. In: *Proceedings of the ACM/IEEE SC 2005 Conference*, 10, 2005.

Fedorov, DG, Jensen, JH, Deka, RC, Kitaura, K. Covalent bond fragmentation suitable to describe solids in the fragment molecular orbital method. J Phys Chem A 2008, 112:11808.

Fedorov, DG, Avramov, PV, Jensen, JH, Kitaura, K. Analytic gradient for the adaptive frozen orbital bond detachment in the fragment molecular orbital method. Chem Phys Lett 2009, 477:169.

Fukunaga, H, Fedorov, DG, Chiba, M, Nii, K, Kitaura, K. Theoretical analysis of the intermolecular interaction effects on the excitation energy of organic pigments: solid state quinacridone. J Phys Chem A 2008, 112:10887.

Elstner, M, Porezag, D, Jungnickel, G, Elsner, J, Haugk, M, Frauenheim, T, Suhai, S, Seifert, G. Self‐consistent‐charge density‐functional tight‐binding method for simulations of complex materials properties. Phys Rev B 1998, 58:7260.

Nishimoto, Y, Fedorov, DG, Irle, S. Third‐order density‐functional tight‐binding combined with the fragment molecular orbital method. Chem Phys Lett 2015, 636:90.

Wahiduzzaman, M, Oliveira, AF, Philipsen, P, Zhechkov, L, Van Lenthe, E, Witek, HA, Heine, T. DFTB parameters for the periodic table: part 1, electronic structure. J Chem Theory Comput 2013, 9:4006.

Islam, SM, Roy, P‐N. Performance of the SCCDFTB model for description of five‐membered ring carbohydrate conformations: comparison to force fields, high‐level electronic structure methods, and experiment. J Chem Theory Comput 2012, 8:2412.

Hornak, V, Abel, R, Okur, A, Strockbine, B, Roitberg, A, Simmerling, C. Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins: Struct Funct Bioinf 2006, 65:712, arXiv:0605018 [q‐bio].

Woods, RJ, Dwek, RA, Edge, CJ, Fraser‐Reid, B. Molecular mechanical and molecular dynamic simulations of glycoproteins and oligosaccharides. 1. GLYCAM 93 parameter development. J Phys Chem 1995, 99:3832.

Case, DA, Cheatham, TE, Darden, T, Gohlke, H, Luo, R, Merz, KM, Onufriev, A, Simmerling, C, Wang, B, Woods, RJ. The Amber biomolecular simulation programs. J Comput Chem 2005, 26:1668, arXiv:NIHMS150003.

Choi, TH, Liang, R, Maupin, CM, Voth, GA. Application of the SCC‐DFTB method to hydroxide water clusters and aqueous hydroxide solutions. J Phys Chem B 2013, 117:5165.

Nishimoto, Y, Fedorov, DG, Irle, S. Density‐ functional tight‐binding combined with the fragment molecular orbital method. J Chem Theory Comput 2014, 10:4801.

Nishimoto, Y, Nakata, H, Fedorov, DG, Irle, S. Large‐scale quantum‐mechanical molecular dynamics simulations using density‐functional tight‐binding combined with the fragment molecular orbital method. J Phys Chem Lett 2015, 6:5034.

Zen, A, Luo, Y, Mazzola, G, Guidoni, L, Sorella, S. Ab initio molecular dynamics simulation of liquid water by quantum Monte Carlo. J Chem Phys 2015, 142:144111.

Vega, C, Abascal, JLF. Simulating water with rigid non‐polarizable models: a general perspective. Phys Chem Chem Phys 2011, 13:19663.

Kiss, PT, Baranyai, A. Density maximum and polarizable models of water. J Chem Phys 2012, 137:084506.

Livshits, GI, Stern, A, Rotem, D, Borovok, N, Eidelshtein, G, Migliore, A, Penzo, E, Wind, SJ, Di Felice, R, Skourtis, SS, et al. Long‐range charge transport in single G‐quadruplex DNA molecules. Nat Nanotechnol 2014, 9:1040.

Lech, CJ, Phan, AT, Michel‐Beyerle, ME, Voityuk, AA. Electron–hole transfer in G‐quadruplexes with different tetrad stacking geometries: a combined QM and MD study. J Phys Chem B 2013, 117:9851.

Sponer, J, Leszczynski, J, Hobza, P. Electronic properties, hydrogen bonding, stacking, and cation binding of DNA and RNA bases. Biopolym (Nucl Acid Sci) 2002, 61:3.

Gkionis, K, Kruse, H, Platts, JA, Mládek, A, Koča, J, Šponer, J. Ion binding to quadruplex DNA stems. Comparison of MM and QM descriptions reveals sizable polarization effects not included in contemporary simulations. J Chem Theory Comput 2014, 10:1326.

Dans, PD, Walther, J, Gómez, H, Orozco, M. Multiscale simulation of DNA. Curr Opin Struct Biol 2016, 37:29.

Gaines, JC, Smith, WW, Regan, L, O`Hern, CS. Random close packing in protein cores. Phys Rev E 2016, 93:032415.

Kiss, G, Röthlisberger, D, Baker, D, Houk, KN. Evaluation and ranking of enzyme designs. Protein Sci 2010, 19:1760.

Kiss, G, Çelebi‐Ölçüm, N, Moretti, R, Baker, D, Houk, KN. Computational enzyme design. Angew Chem Int Ed 2013, 52:5700.

Jacob, CR, Neugebauer, J. Subsystem density functional theory. WIREs Comput Mol Sci 2014, 4:325.

Bakowies, D, Thiel, W. Hybrid models for combined quantum mechanical and molecular mechanical approaches. J Phys Chem 1996, 100:10580.

Lin, H, Truhlar, DG. QM/MM: what have we learned, where are we, and where do we go from here? Theor Chem Acc 2007, 117:185.

Senn, HM, Thiel, W. QM/MM methods for biomolecular systems. Angew Chem Int Ed 2009, 48:1198.

Ferré, N, Ángyán, JG. Approximate electrostatic interaction operator for QM/MM calculations. Chem Phys Lett 2002, 356:331.

Neugebauer, J. Subsystem‐based theoretical spectroscopy of biomolecules and biomolecular assemblies. ChemPhysChem 2009, 10:3148.

Eichinger, M, Tavan, P, Hutter, J, Parrinello, M. A hybrid method for solutes in complex solvents: density functional theory combined with empirical force fields. J Chem Phys 1999, 110:10452.

Das, D, Eurenius, KP, Billings, EM, Sherwood, P, Chatfield, DC, Hodošček, M, Brooks, BR. Optimization of quantum mechanical molecular mechanical partitioning schemes: Gaussian delocalization of molecular mechanical charges and the double link atom method. J Chem Phys 2002, 117:10534.

Biswas, PK, Gogonea, V. A regularized and renormalized electrostatic coupling Hamiltonian for hybrid quantum‐mechanical‐molecular‐mechanical calculations. J Chem Phys 2005, 123:1.

Senthilkumar, K, Mujika, JI, Ranaghan, KE, Manby, FR, Mulholland, AJ, Harvey, JN. Analysis of polarization in QM/MM modelling of biologically relevant hydrogen bonds. J R Soc Interface 2008, 5(Suppl 3):S207.

Zuehlsdorff, TJ, Haynes, PD, Hanke, F, Payne, MC, Hine, NDM. Solvent effects on electronic excitations of an organic chromophore. J Chem Theory Comput 2016, 12:1853.

Claeyssens, F, Harvey, JN, Manby, FR, Mata, RA, Mulholland, AJ, Ranaghan, KE, Schütz, M, Thiel, S, Thiel, W, Werner, H‐J. High‐accuracy computation of reaction barriers in enzymes. Angew Chem Int Ed 2006, 45:6856.

Schütz, M, Hetzer, G, Werner, H‐J. Low‐order scaling local electron correlation methods. I. Linear scaling local MP2. J. Chem. Phys. 1999, 111:5691.

Hetzer, G, Schütz, M, Stoll, H, Werner, H‐J. Loworder scaling local correlation methods II: splitting the Coulomb operator in linear scaling local second‐order Møller‐Plesset perturbation theory. J Chem Phys 2000, 113:9443.

Schütz, M. Low‐order scaling local electron correlation methods. III. Linear scaling local perturbative triples correction (T). J Chem Phys 2000, 113:9986.

Schütz, M, Werner, H‐J. Low‐order scaling local electron correlation methods. IV. Linear scaling local coupled‐cluster (LCCSD). J Chem Phys 2001, 114:661.

Schütz, M. Low‐order scaling local electron correlation methods. V. Connected triples beyond (T): linear scaling local CCSDT‐1b. J Chem Phys 2002, 116:8772.

Schütz, M, Werner, H‐J. Local perturbative triples correction (T) with linear cost scaling. Chem Phys Lett 2000, 318:370.

Werner, HJ, Manby, FR, Knowles, PJ. Fast linear scaling second‐order Moller‐Plesset perturbation theory (MP2) using local and density fitting approximations. J Chem Phys 2003, 118:8149.

Mlýnský, V, Banáŝ, P, Ŝponer, J, van der Kamp, MW, Mulholland, AJ, Otyepka, M. Comparison of ab initio, DFT, and semiempirical QM/MM approaches for description of catalytic mechanism of hairpin ribozyme. J Chem Theory Comput 2014, 10:1608.

Manby, FR, Stella, M, Goodpaster, JD, Miller, TF. A simple, exact density‐functional‐theory embedding scheme. J Chem Theory Comput 2012, 8:2564.

Bennie, SJ, van der Kamp, MW, Pennifold, RCR, Stella, M, Manby, FR, Mulholland, AJ. A projector‐embedding approach for multiscale coupled‐cluster calculations applied to citrate synthase. J Chem Theory Comput 2016, 12:2689.

Lonsdale, R, Harvey, JN, Mulholland, AJ. Effects of dispersion in density functional based quantum mechanical/molecular mechanical calculations on cytochrome P450 catalyzed reactions. J Chem Theory Comput 2012, 8:4637.

Spata, VA, Matsika, S. Role of excitonic coupling and charge‐transfer States in the absorption and CD spectra of adenine‐based oligonucleotides investigated through QM/MM simulations. J Phys Chem A 2014, 118:12021.

Gattuso, H, Assfeld, X, Monari, A. Modeling DNA electronic circular dichroism by QM/MM methods and Frenkel Hamiltonian. Theor Chem Acc 2015, 134:1.

Monari, A, Rivail, J‐L, Assfeld, X. Theoretical modeling of large molecular systems. Advances in the local self consistent field method for mixed quantum mechanics/molecular mechanics calculations. Acc Chem Res 2013, 46:596.

Gomes, ASP, Jacob, CR, Real, F, Visscher, L, Vallet, V. Towards systematically improvable models for actinides in condensed phase: the electronic spectrum of uranyl in Cs2UO2Cl4 as a test case. Phys Chem Chem Phys 2013, 15:15153.

Houriez, C, Ferré, N, Masella, M, Siri, D. Prediction of nitroxide hyperfine coupling constants in solution from combined nanosecond scale simulations and quantum computations. J Chem Phys 2008, 128:244504. doi:10.1063/1.2939121.

Pentikäinen, U, Shaw, KE, Senthilkumar, K, Woods, CJ, Mulholland, AJ. Lennard–Jones parameters for B3LYP/CHARMM27 QM/MM modeling of nucleic acid bases. J Chem Theory Comput 2009, 5:396.

Shaw, KE, Woods, CJ, Mulholland, AJ. Compatibility of quantum chemical methods and empirical (MM) water models in quantum mechanics/molecular mechanics liquid water simulations. J Phys Chem Lett 2010, 1:219.

Lonsdale, R, Rouse, SL, Sansom, MSP, Mulholland, AJ. A multiscale approach to modelling drug metabolism by membrane‐bound cytochrome P450 enzymes. PLoS Comput Biol 2014, 10:1.

Momma, K, Izumi, F. VESTA 3 for three‐dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 2011, 44:1272.

Mackerell, AD. Empirical force fields for biological macromolecules: overview and issues. J Comput Chem 2004, 25:1584.

Weiner, SJ, Kollman, PA, Case, DA, Singh, UC, Ghio, C, Alagona, G, Profeta, S, Weinerl, P. A new force field for molecular mechanical simulation of nucleic acids and proteins. J Am Chem Soc 1984, 106:765.

Cornell, WD, Cieplak, P, Bayly, CI, Gould, IR, Merz, KM, Ferguson, DM, Spellmeyer, DC, Fox, T, Caldwell, JW, Kollman, PA. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 1995, 117:5179, arXiv:z0024.

Wang, J, Cieplak, P, Kollman, PA. How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules. J Comput Chem 2000, 21:1049.

Bayly, CI, Cieplak, P, Cornell, W, Kollman, PA. A well‐behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J Phys Chem 1993, 97:10269.

MacKerell, AD, Bashford, D, Bellott, M, Dunbrack, RL, Evanseck, JD, Field, MJ, Fischer, S, Gao, J, Guo, H, Ha, S, et al. All‐atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 1998, 102:3586.

Huang, L, Roux, B. Automated force field parameterization for nonpolarizable and polarizable atomic models based on ab initio target data. J Chem Theory Comput 2013, 9:3543.

The H2020 Center of Excellence project NOMAD (http://www.nomad‐coe.eu) takes its data from the online database (http://www.nomad‐repository.eu).

Réal, F, Vallet, V, Flament, JP, Masella, M. Revisiting a many‐body model for water based on a single polarizable site: from gas phase clusters to liquid and air/liquid water systems. J Chem Phys 2013, 139:114502.

Gubskaya, AV, Kusalik, PG. The total molecular dipole moment for liquid water. J Chem Phys 2002, 117:5290.

Baker, CM. Polarizable force fields for molecular dynamics simulations of biomolecules. WIREs Comput Mol Sci 2015, 5:241.

Hedin, L. New method for calculating the one‐particle Green`s function with application to the electron‐gas problem. Phys Rev 1965, 139:A796.

Onida, G, Reining, L, Rubio, A. Electronic excitations: density‐functional versus many‐body Green`s function approaches. Rev Mod Phys 2002, 74:601.

Blase, X, Attaccalite, C, Olevano, V. First-principles GW calculations for fullerenes, porphyrins, phthalocyanine, and other molecules of interest for organic photovoltaic applications. Phys Rev B 2011, 83:1.

Duchemin, I, Deutsch, T, Blase, X. Short‐range to long‐range charge‐transfer excitations in the zincbacteriochlorin‐bacteriochlorin complex: a Bethe‐Salpeter study. Phys Rev Lett 2012, 109:167801.

D`Avino, G, Muccioli, L, Zannoni, C, Beljonne, D, Soos, ZGZ, D`Avino, G, Muccioli, L, Zannoni, C, Beljonne, D, Soos, ZGZ. Electronic polarization in organic crystals: a comparative study of induced dipoles and intramolecular charge redistribution schemes. J Chem Theory Comput 2014, 10:4959.

Wu, Q, Van Voorhis, T. Extracting electron transfer coupling elements from constrained density functional theory. J Chem Phys 2006, 125:164105.

Schober, C, Reuter, K, Oberhofer, H. Critical analysis of fragment‐orbital DFT schemes for the calculation of electronic coupling values. J Chem Phys 2016, 144:054103.

Ratcliff, LE, Grisanti, L, Genovese, L, Deutsch, T, Neumann, T, Danilov, D, Wenzel, W, Beljonne, D, Cornil, J. Toward fast and accurate evaluation of charge on‐site energies and transfer integrals in supramolecular architectures using linear constrained density functional theory (CDFT)‐based methods. J Chem Theory Comput 2015, 11:2077.

Cornil, J, Verlaak, S, Martinelli, N, Mityashin, A, Olivier, Y, Van Regemorter, T, D`Avino, G, Muccioli, L, Zannoni, C, Castet, F, et al. Exploring the energy landscape of the charge transport levels in organic semiconductors at the molecular scale. Acc Chem Res 2013, 46:434.

Lejaeghere, K, Bihlmayer, G, Björkman, T, Blaha, P, Blügel, S, Blum, V, Caliste, D, Castelli, IE, Clark, SJ, Dal Corso, A, et al. Reproducibility in density functional theory calculations of solids. Science 2016, 351:1415.

Wojdel, JC, Junquera, J. Second‐principles method including electron and lattice degrees of freedom, Arxiv preprint, 1, 2015, arXiv:arXiv:1511.07675v1.