Shavitt, I, Bartlett, RJ. Many‐Body Methods in Chemistry and Physics: MBPT and Coupled‐Cluster Theory. Cambridge: Cambridge University Press; 2009.

Apra, E, Harrison, R, deJong, W, Rendell, A, Tipparaju, V, Xantheas, S, Liquid water: Obtaining the right answer for the right reasons. In: *SC09* (submission for Gordon Bell prize), 2009.

Katouda, M, Nakajima, T. J Chem Theory Comput 2013, 9:5373–5380.

Katouda, M, Naruse, A, Hirano, Y, Nakajima, T. J Comput Chem 2016, 37:2623–2633.

Solomonik, E, Matthews, D, Hammond, JR, Stanton, JF, Demmel, J. J Parallel Distrib Comput 2014, 74:3176–3190.

Solomonik, E, Matthews, D, Hammond, J, Demmel, J. Technical Report No. UCB/EECS‐2012‐210, EECS Department, University of California, Berkeley, 2012.

Nieplocha, J, Harrison, RJ, Littlefield, RJ. J Supercomput 1996, 10:169–189.

Lotrich, V, Flocke, N, Ponton, M, Sanders, BA, Deumens, E, Bartlett, RJ, Perera, A. An infrastructure for scalable and portable parallel programs for computational chemistry. In: *Proceedings of the 23rd International Conference on Supercomputing* (ICS ’09). New York: ACM; 2009, 523–524.

Peng, C, Calvin, JA, Pavoševi, F, Zhang, J, Valeev, EF. J Phys Chem A 2016, 120:10231–10244.

Ziółkowski, M, Jansík, B, Kjærgaard, T, Jørgensen, P. Linear scaling coupled cluster method with correlation energy based error control. J Chem Phys 2010, 133:014107.

Kristensen, K, Ziółkowski, M, Jansík, B, Kjærgaard, T, Jørgensen, P. A locality analysis of the divide–expand–consolidate coupled cluster amplitude equations. J Chem Theory Comput 2011, 7:1677–1694.

Ettenhuber, P, Baudin, P, Kjærgaard, T, Jørgensen, P, Kristensen, K. J Chem Phys 2016, 144:164116.

Høyvik, I‐M, Kristensen, K, Jansík, B, Jørgensen, P. J Chem Phys 2012, 136:014105.

Kristensen, K, Jørgensen, P, Jansík, B, Kjærgaard, T, Reine, S. J Chem Phys 2012, 137:114102.

Kristensen, K, Høyvik, I‐M, Jansík, B, Jørgensen, P, Kjærgaard, T, Reine, S, Jakowski, J. MP2 energy and density for large molecular systems with internal error control using the divide‐expand‐consolidate scheme. Phys Chem Chem Phys 2012, 14:15706–15714.

Kristensen, K, Kjærgaard, T, Høyvik, I‐M, Ettenhuber, P, Jørgensen, P, Jansík, B, Reine, S, Jakowski, J. The divide–expand–consolidate MP2 scheme goes massively parallel. Mol Phys 2013, 111:1196–1210.

Baudin, P, Ettenhuber, P, Reine, S, Kristensen, K, Kjærgaard, T. Efficient linear‐scaling second‐order Møller‐Plesset perturbation theory: the divide–expand–consolidate RI‐MP2 model. J Chem Phys 2016, 144:054102.

Bykov, D, Kristensen, K, Kjærgaard, T. The molecular gradient using the divide‐expand‐consolidate resolution of the identity second‐order Møller‐Plesset perturbation theory: the DEC‐RI‐MP2 gradient. J Chem Phys 2016, 145:024106.

Bykov, D, Kjærgaard, T. The GPU‐enabled divide‐expand‐consolidate RI‐MP2 method (DEC‐RI‐MP2). J Comput Chem 2017, 38:228–237.

Kjærgaard, T, Baudin, P, Bykov, D, Eriksen, JJ, Ettenhuber, P, Kristensen, K, Larkin, J, Liakh, D, Pawłowski, F, Vose, A, et al. Massively parallel and linear‐scaling algorithm for second‐order Møller–Plesset perturbation theory applied to the study of supramolecular wires. Comput Phys Commun 2017, 212:152–160.

Wang, YM, Hättig, C, Reine, S, Valeev, E, Kjærgaard, T, Kristensen, K. Explicitly correlated second‐order Møller‐Plesset perturbation theory in a divide‐expand‐consolidate (DEC) context. J Chem Phys 2016, 144:204112.

Kjærgaard, T. The Laplace transformed divide‐expand‐consolidate resolution of the identity second‐order Møller‐Plesset perturbation (DEC‐LT‐RIMP2) theory method. J Chem Phys 2017, 146:044103.

Eriksen, JJ, Baudin, P, Ettenhuber, P, Kristensen, K, Kjærgaard, T, Jørgensen, P. Linear‐scaling coupled cluster with perturbative triple excitations: the divide–expand–consolidate CCSD(T) model. J Chem Theory Comput 2015, 11:2984–2993.

Pulay, P. Localizability of dynamic electron correlation. Chem Phys Lett 1983, 100:151.

Kapuy, E, Csépes, Z, Kozmutza, C. Application of the many‐body perturbation theory by using localized orbitals. Int J Quant Chem 1983, 23:981–990.

Saebø, S, Pulay, P. Local treatment of electron correlation. Annu Rev Phys Chem 1993, 44:213–236.

Pulay, P, Saebø, S. Orbital‐invariant formulation and second‐order gradient evaluation in Møller‐Plesset perturbation theory. Theor Chim Acta 1986, 69:357–368.

Hetzer, G, Pulay, P, Werner, H‐J. Multipole approximation of distant pair energies in local MP2 calculations. Chem Phys Lett 1998, 290:143–149.

Schütz, M, Hetzer, G, Werner, H‐J. Low‐order scaling local electron correlation methods. I. Linear scaling local MP2. J Chem Phys 1999, 111:5691–5705.

Murphy, RB, Beachy, MD, Friesner, RA, Ringnalda, MN. Pseudospectral localized Møller–Plesset methods: theory and calculation of conformational energies. J Chem Phys 1995, 103:1481–1490.

Hampel, C, Werner, H‐J. Local treatment of electron correlation in coupled cluster theory. J Chem Phys 1996, 104:6286.

Werner, H‐J, Manby, FR, Knowles, PJ. Fast linear scaling second‐order Møller‐Plesset perturbation theory (MP2) using local and density fitting approximations. J Chem Phys 2003, 118:8149–8160.

Schütz, M. Low‐order scaling local electron correlation methods. III. Linear scaling local perturbative triples corrections (t). J Chem Phys 2000, 113:9986.

Schütz, M, Werner, H‐J. Low‐order scaling local electron correlation methods. IV. Linear scaling local coupled‐cluster (LCCSD). J Chem Phys 2001, 114:661–681.

Werner, H‐J, Manby, F. Explicitly correlated second‐order perturbation theory using density fitting and local approximations. J Chem Phys 2006, 124:054114.

Kats, D, Usvyat, D, Schutz, M. On the use of the Laplace transform in local correlation methods. Phys Chem Chem Phys 2008, 10:3430–3439.

Neese, F, Hansen, A, Liakos, DG. J Chem Phys 2009, 131:064103.

Werner, H‐J, Schütz, M. An efficient local coupled cluster method for accurate thermochemistry of large systems. J Chem Phys 2011, 135:144116.

Maslen, P, Head‐Gordon, M. Non‐iterative local second order Møller–Plesset theory. Chem Phys Lett 1998, 283:102–108.

Subotnik, JE, Sodt, A, Head‐Gordon, M. A near linear‐scaling smooth local coupled cluster algorithm for electronic structure. J Chem Phys 2006, 125:074116.

Azhary, AE, Rauhut, G, Pulay, P, Werner, H‐J. J Chem Phys 1998, 108:5185.

Schütz, M, Werner, H‐J, Lindh, R, Manby, F. Analytical energy gradients for local second‐order Møller‐Plesset perturbation theory using density fitting approximations. J Chem Phys 2004, 121:737–750.

Kossmann, S, Neese, F. Efficient structure optimization with second‐order many‐body perturbation theory: the RIJCOSX‐MP2 method. J Chem Theory Comput 2010, 6:2325–2338.

Edmiston, C, Krauss, M. Configuration? Interaction calculation of H3 and H2. J Chem Phys 1965, 42:1119–1120.

Neese, F, Wennmohs, F, Hansen, A. Efficient and accurate local approximations to coupled‐electron pair approaches: an attempt to revive the pair natural orbital method. J Chem Phys 2009, 130:114108.

Riplinger, C, Neese, F. An efficient and near linear scaling pair natural orbital based local coupled cluster method. J Chem Phys 2013, 138:034106.

Pinski, P, Riplinger, C, Valeev, EF, Neese, F. Sparse maps—a systematic infrastructure for reduced‐scaling electronic structure methods. I. An efficient and simple linear scaling local MP2 method that uses an intermediate basis of pair natural orbitals. J Chem Phys 2015, 143:034108.

Riplinger, C, Pinski, P, Becker, U, Valeev, EF, Neese, F. Sparse maps—a systematic infrastructure for reduced‐scaling electronic structure methods. II. Linear scaling domain based pair natural orbital coupled cluster theory. J Chem Phys 2016, 144:024109.

Schmitz, G, Helmich, B, Hättig, C. A scaling PNO–MP2 method using a hybrid OSV–PNO approach with an iterative direct generation of osvs. Mol Phys 2013, 111:2463–2476.

Frank, MS, Schmitz, G, Hättig, C. The PNO–MP2 gradient and its application to molecular geometry optimisations. Mol Phys 2017, 115:343–356.

Schmitz, G, Hättig, C. Perturbative triples correction for local pair natural orbital based explicitly correlated CCSD(F12*) using Laplace transformation techniques. J Chem Phys 2016, 145:234107.

Werner, H‐J, Knizia, G, Krause, C, Schwilk, M, Dornbach, M. Scalable electron correlation methods. I. PNO‐LMP2 with linear scaling in the molecular size and near‐inverse‐linear scaling in the number of processors. J Chem Theory Comput 2015, 11:484–507.

Ma, Q, Werner, H‐J. Scalable electron correlation methods. 2. Parallel PNO‐LMP2‐F12 with near linear scaling in the molecular size. J Chem Theory Comput 2015, 11:5291–5304.

Minenkov, Y, Chermak, E, Cavallo, L. Accuracy of DLPNO–CCSD(T) method for noncovalent bond dissociation enthalpies from coinage metal cation complexes. J Chem Theory Comput 2015, 11:4664–4676.

Liakos, DG, Neese, F. Is it possible to obtain coupled cluster quality energies at near density functional theory cost? Domain‐based local pair natural orbital coupled cluster vs modern density functional theory. J Chem Theory Comput 2015, 11:4054–4063.

Sparta, M, Bykov, D, Neese, F. Calculating Moessbauer parameters using the local pair natural orbital coupled‐cluster method. Moess Eff Ref Data J 2014, 37:69–77.

Sparta, M, Riplinger, C, Neese, F. Mechanism of olefin asymmetric hydrogenation catalyzed by iridium phosphino‐oxazoline: a pair natural orbital coupled cluster study. J Chem Theory Comput 2014, 10:1099–1108.

Sparta, M, Neese, F. Chemical applications carried out by local pair natural orbital based coupled‐cluster methods. Chem Soc Rev 2014, 43:5032–5041.

Yang, J, Kurashige, Y, Manby, FR, Chan, GKL. Tensor factorizations of local second‐order Møller‐Plesset theory. J Chem Phys 2011, 134:044123.

Yang, J, Chan, GKL, Manby, FR, Schütz, M, Werner, H‐J. The orbital‐specific‐virtual local coupled cluster singles and doubles method. J Chem Phys 2012, 136:114105.

Krause, C, Werner, H‐J. Comparison of explicitly correlated local coupled‐cluster methods with various choices of virtual orbitals. Phys Chem Chem Phys 2012, 14:7591.

Schmitz, G, Hättig, C, Tew, DP. Explicitly correlated PNO‐MP2 and PNO‐CCSD and their application to the S66 set and large molecular systems. Phys Chem Chem Phys 2014, 16:22167–22178.

Adler, TB, Werner, H‐J. An explicitly correlated local coupled cluster method for calculations of large molecules close to the basis set limit. J Chem Phys 2011, 135:144117.

Pavoševic′, F, Neese, F, Valeev, EF. Geminal‐spanning orbitals make explicitly correlated reduced‐scaling coupled‐cluster methods robust, yet simple. J Chem Phys 2014, 141:054106.

Tew, DP, Helmich, B, Hättig, C. Local explicitly correlated second‐order Møller‐Plesset perturbation theory with pair natural orbitals. J Chem Phys 2011, 135:074107.

Adler, TB, Werner, H‐J, Manby, FR. Local explicitly correlated second‐order perturbation theory for the accurate treatment of large molecules. J Chem Phys 2009, 130:054106.

Werner, H‐J. Eliminating the domain error in local explicitly correlated second‐order Møller–Plesset perturbation theory. J Chem Phys 2008, 129:101103.

Adler, TB, Werner, H‐J. Local explicitly correlated coupled‐cluster methods: efficient removal of the basis set incompleteness and domain errors. J Chem Phys 2009, 130:241101.

Yang, W. Direct calculation of electron density in density‐functional theory. Phys Rev Lett 1991, 66:1438–1441.

Yang, W. Direct calculation of electron density in density‐functional theory: implementation for benzene and a tetrapeptide. Phys Rev A 1991, 44:7823–7826.

Yang, W, Lee, T. A density matrix divide and conquer approach for electronic structure calculations of large molecules. J Chem Phys 1995, 103:5674–5678.

Kobayashi, M, Imamura, Y, Nakai, H. Alternative linear‐scaling methodology for the second‐order Møller‐Plesset perturbation calculation based on the divide‐and‐conquer method. J Chem Phys 2007, 127:074103.

Kobayashi, M, Nakai, H. Extension of linear‐scaling divide‐and‐conquer‐based correlation method to coupled cluster theory with singles and doubles excitations. J Chem Phys 2008, 129:044103.

Kobayashi, M, Nakai, H. Divide‐and‐conquer‐based linear‐scaling approach for traditional and renormalized coupled cluster methods with single, double, and noniterative triple excitations. J Chem Phys 2009, 131:114108.

Kitaura, K, Ikeo, E, Asada, T, Nakano, T, Uebayasi, M. Fragment molecular orbital method: an approximate computational method for large molecules. Chem Phys Lett 1999, 313:701–706.

Mochizuki, Y, Yamashita, K, Murase, T, Nakano, T, Fukuzawa, K, Takematsu, K, Watanabe, H, Tanaka, S. Large scale FMO‐MP2 calculations on a massively parallel‐vector computer. Chem Phys Lett 2008, 457:396–403.

Tanaka, S, Mochizuki, Y, Komeiji, Y, Okiyama, Y, Fukuzawa, K. Electron‐correlated fragment‐molecular‐orbital calculations for biomolecular and nano systems. Phys Chem Chem Phys 2014, 16:10310–10344.

Cremer, D. Møller–Plesset perturbation theory: from small molecule methods to methods for thousands of atoms. Wiley Interdiscip Rev Comput Mol Sci 2011, 1:509–530.

Zhang, DW, Zhang, JZH. Molecular fractionation with conjugate caps for full quantum mechanical calculation of protein–molecule interaction energy. J Chem Phys 2003, 119:3599–3605.

Flocke, N, Bartlett, RJ. A natural linear scaling coupled‐cluster method. J Chem Phys 2004, 121:10935.

Deev, V, Collins, MA. Approximate ab initio energies by systematic molecular fragmentation. J Chem Phys 2005, 122:154102.

Li, W, Fang, T, Li, S. A fragment energy assembler method for Hartree‐Fock calculations of large molecules. J Chem Phys 2006, 124:154102.

Bettens, RPA, Lee, AM. A new algorithm for molecular fragmentation in quantum chemical calculations. J Phys Chem A 2006, 110:8777–8785.

He, X, Zhang, JZH. The generalized molecular fractionation with conjugate caps/molecular mechanics method for direct calculation of protein energy. J Chem Phys 2006, 124:184703.

Li, W, Li, S, Jiang, Y. Generalized energy‐based fragmentation approach for computing the ground‐state energies and properties of large molecules. J Phys Chem A 2007, 111:2193–2199.

Rahalkar, AP, Katouda, M, Gadre, SR, Nagase, S. Molecular tailoring approach in conjunction with MP2 and RI‐MP2 codes: a comparison with fragment molecular orbital method. J Comput Chem 2010, 31:2405–2418.

Le, H‐A, Tan, H‐J, Ouyang, JF, Bettens, RPA. Combined fragmentation method: a simple method for fragmentation of large molecules. J Chem Theory Comput 2012, 8:469–478.

Stoll, H. Correlation energy of diamond. Phys Rev B 1992, 46:6700–6704.

Friedrich, J, Hanrath, M, Dolg, M. Fully automated implementation of the incremental scheme: application to CCSD energies for hydrocarbons and transition metal compounds. J Chem Phys 2007, 126:154110.

Friedrich, J, Dolg, M. Fully automated incremental evaluation of MP2 and CCSD(T) energies: application to water clusters. J Chem Theory Comput 2009, 5:287–294.

Anacker, T, Tew, DP, Friedrich, J. First uhf implementation of the incremental scheme for open‐shell systems. J Chem Theory Comput 2016, 12:65–78.

Friedrich, J, Tew, DP, Klopper, W, Dolg, M. Automated incremental scheme for explicitly correlated methods. J Chem Phys 2010, 132:164114.

Friedrich, J, Hänchen, J. Incremental CCSD(T)(F12*)|MP2: a black box method to obtain highly accurate reaction energies. J Chem Theory Comput 2013, 9:5381–5394.

Li, S, Ma, J, Jiang, Y. Linear scaling local correlation approach for solving the coupled cluster equations of large systems. J Comput Chem 2002, 23:237–244.

Li, S, Shen, J, Li, W, Jiang, Y. An efficient implementation of the “cluster‐in‐molecule” approach for local electron correlation calculations. J Chem Phys 2006, 125:074109.

Li, W, Piecuch, P, Gour, JR, Li, S. Local correlation calculations using standard and renormalized coupled‐cluster approaches. J Chem Phys 2009, 131:114109.

Li, W, Piecuch, P. Multilevel extension of the cluster‐in‐molecule local correlation methodology: merging coupled‐cluster and Møller–Plesset perturbation theories. J Phys Chem A 2010, 114:6721–6727.

Li, W, Piecuch, P. Improved design of orbital domains within the cluster‐in‐molecule local correlation framework: single‐environment cluster‐in‐molecule Ansatz and its application to local coupled‐cluster approach with singles and doubles. J Phys Chem A 2010, 114:8644–8657.

Rolik, Z, Kállay, M. A general‐order local coupled‐cluster method based on the cluster‐in‐molecule approach. J Chem Phys 2011, 135:104111.

Li, W, Guo, Y, Li, S. A refined cluster‐in‐molecule local correlation approach for predicting the relative energies of large systems. Phys Chem Chem Phys 2012, 14:7854–7862.

Rolik, Z, Szegedy, L, Ladjánszki, I, Ladóczki, B, Kállay, M. An efficient linear‐scaling CCSD(T) method based on local natural orbitals. J Chem Phys 2013, 139:094105.

Guo, Y, Li, W, Li, S. Improved cluster‐in‐molecule local correlation approach for electron correlation calculation of large systems. J Phys Chem A 2014, 118:8996–9004.

Findlater, AD, Zahariev, F, Gordon, MS. Combined fragment molecular orbital cluster in molecule approach to massively parallel electron correlation calculations for large systems. J Phys Chem A 2015, 119:3587–3593.

Li, W, Ni, Z, Li, S. Cluster‐in‐molecule local correlation method for post‐Hartree–Fock calculations of large systems. Mol Phys 2016, 114:1447–1460.

Nagy, PR, Samu, G, Kállay, M. An integral‐direct linear‐scaling second‐order Møller–Plesset approach. J Chem Theory Comput 2016, 12:4897–4914.

Boys, SF. Construction of some molecular orbitals to be approximately invariant for changes from one molecule to another. Rev Mod Phys 1960, 32:296.

Pipek, J, Mezey, PG. A fast intrinsic localization procedure applicable for ab initio and semiempirical linear combination of atomic orbital wave functions. J Chem Phys 1989, 90:4916.

Jansík, B, Høst, S, Kristensen, K, Jørgensen, P. Local orbitals by minimizing powers of the orbital variance. J Chem Phys 2011, 134:194104.

Høyvik, I‐M, Jansik, B, Jørgensen, P. Orbital localization using fourth central moment minimization. J Chem Phys 2012, 137:224114.

Høyvik, I‐M, Jansik, B, Jørgensen, P. Trust region minimization of orbital localization functions. J Chem Theory Comput 2012, 8:3137–3146.

Høyvik, I‐M, Kristensen, K, Kjærgaard, T, Jørgensen, P. A perspective on the localizability of Hartree–Fock orbitals. Theor Chem Acc 2013, 133:1417.

Høyvik, I‐M, Jørgensen, P. Characterization and generation of local occupied and virtual Hartree–Fock orbitals. Chem Rev 2016, 116:3306–3327.

LSDalton. A linear scaling molecular electronic structure program: Release Dalton2016; 2016. Available at: http://daltonprogram.org. (Accessed November 20, 2016).

Aidas, K, Angeli, C, Bak, KL, Bakken, V, Bast, R, Boman, L, Christiansen, O, Cimiraglia, R, Coriani, S, Dahle, P, et al. WIREs Comput Mol Sci 2013, 4:269.

Ziółkowski, M, Jansík, B, Jørgensen, P, Olsen, J. Maximum locality in occupied and virtual orbital spaces using a least‐change strategy. J Chem Phys 2009, 131:124112.

Raghavachari, K, Trucks, GW, Pople, JA, Head‐Gordon, M. A fifth‐order perturbation comparison of electron correlation theories. Chem Phys Lett 1989, 157:479–483.

Helgaker, T, Jørgensen, P, Olsen, J. Molecular Electronic Structure Theory. 1st ed. Chichester: Wiley; 2000.

Jakobsen, S, Kristensen, K, Jensen, F. Electrostatic potential of insulin: exploring the limitations of density functional theory and force field methods. J Chem Theory Comput 2013, 9:3978–3985.

Olsen, JMH, List, NH, Kristensen, K, Kongsted, J. Accuracy of protein embedding potentials: an analysis in terms of electrostatic potentials. J Chem Theory Comput 2015, 11:1832–1842.

Reine, S, Krapp, A, Iozzi, MF, Bakken, V, Helgaker, T, Pawłowski, F, Sałek, P. J Chem Phys 2010, 133:044102.