Stefanucci, G, van Leeuwen, R. Many‐Body Theory of Quantum Systems. Cambridge: Cambridge University Press; 2013.

Born, M, Oppenheimer, JR. Zur Quantentheorie der Molekeln. Ann Phys 1927, 84:457.

Kohn, W. Nobel lecture: electronic structure of matter—wave functions and density functionals. Rev Mod Phys 1999, 71:1253–1266.

Fetter, AL, Walecka, JD. Quantum Theory of Many‐Particle Systems. New York, NY: McGraw‐Hill; 1971.

Kohn, W, Sham, LJ. Self‐consistent equations including exchange and correlation effects. Phys Rev 1965, 140:A1133–A1138.

Holleboom, LJ, Snijders, JG, Baerends, EJ. Natural energy orbitals and the one‐particle Green`s function. Int J Quant Chem 1988, 34:289–300.

Baerends, EJ, Gritsenko, OV, van Meer, R. The Kohn–Sham gap, the fundamental gap and the optical gap: the physical meaning of occupied and virtual Kohn–Sham orbital energies. Phys Chem Chem Phys 2013, 15:16408–16425.

Ohkoshi, I. An ab initio Hartree‐Fock pseudopotential approach to the ground‐state properties of Si. J Phys C‐Solid State Phys Ther 1985, 18:5415.

Godby, RW, Schlüter, M, Sham, LJ. Self‐energy operators and exchange‐correlation potentials in semiconductors. Phys Rev B 1988, 37:10159–10175.

Galitskii, VM, Migdal, AB. Application of quantum field theory methods to the many body problem. Soviet Phys JETP 1958, 7:96.

Linderberg, J, Öhrn, Y. Propagators in Quantum Chemistry. Hoboken, NJ: John Wiley and Sons; 2004.

Ortiz, JV. Computational Chemistry: Reviews of Current Trends, vol. 2. Singapore: World Scientific; 1997, 1–61.

Cederbaum, LS. %22Green`s Functions and Propagators for Chemistry%22. In: Encyclopedia of Computational Chemistry. Chichester: John Wiley and Sons Ltd; 2002.

Cederbaum, LS. On green`s functions and their applications. Int J Quant Chem 1990, 38:393–404.

Cederbaum, LS. Green`s functions for molecules, in few‐body problems in physics. In: Proceedings of the XIIIth European Conference on Few‐Body Physics, Marciana Marina, Isola d’Elba, Italy*,* September 9–14, 1991. Vienna: Springer; 1992, 595–604.

Schirmer, J, Cederbaum, LS, Walter, O. New approach to the one‐particle Green`s function for finite Fermi systems. Phys Rev A 1983, 28:1237–1259.

Holleboom, L, Snijders, J, Baerends, E, Buijse, M. A correlation potential for molecular systems from the single particle Green`s function. J Chem Phys 1988, 89:3638–3653.

Ortiz, JV. Electron propagator theory: an approach to prediction and interpretation in quantum chemistry. WIREs Comput Mol Sci 2013, 3:123.

Perdew, JP, Zunger, A. Self‐interaction correction to density‐functional approximations for many‐electron systems. Phys Rev B 1981, 23:5048–5079.

Mattuck, RD. A Guide to Feynman Diagrams in the Many‐Body Problem. Dover Books on Physics. Mineola, NY: Dover Publications; 1992.

Strinati, G. Application of the Green`s functions method to the study of the optical properties of semiconductors. Riv Nuovo Cimento 1988, 11:1.

Martin, RM, Reining, L, Ceperley, DM. Interacting Electrons: Theory and Computational Approaches. Cambridge: Cambridge University Press; 2016.

Berger, JA, Romaniello, P, Tandetzky, F, Mendoza, BS, Brouder, C, Reining, L. Solution to the many‐body problem in one point. New J Phys 2014, 16:113025.

Casida, ME, Chong, DP. Physical interpretation and assessment of the Coulomb‐hole and screened‐exchange approximation for molecules. Phys Rev A 1989, 40:4837–4848.

Hedin, L. New method for calculating the one‐particle Green`s function with application to the electron‐gas problem. Phys Rev 1965, 139:A796–A823.

Seidl, A, Görling, A, Vogl, P, Majewski, JA, Levy, M. Generalized Kohn‐Sham schemes and the band‐gap problem. Phys Rev B 1996, 53:3764–3774.

Bylander, DM, Kleinman, L. Good semiconductor band gaps with a modified local‐density approximation. Phys Rev B 1990, 41:7868–7871.

Wigner, EP. Effects of the electron interaction on the energy levels of electrons in metals. Trans Faraday Soc 1938, 34:678.

Hedin, L. On correlation effects in electron spectroscopies and the GW approximation. J Phys C 1999, 11:R489.

Hedin, L, Lundqvist, S. Effects of electron‐electron and electron‐phonon interactions on the one‐electron states of solids. Solid State Phys 1969, 23:1.

Vidal, J, Botti, S, Olsson, P, Guillemoles, J‐F, Reining, L. Strong interplay between structure and electronic properties in CuIn(S,Se)2: a first‐principles study. Phys Rev Lett 2010, 104:056401.

Stoll, H, Savin, A. Density Functional Methods in Physics. New York, NY: Plenum; 1985.

Heyd, J, Scuseria, GE, Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J Chem Phys 2003, 118:8207–8215.

Krukau, AV, Vydrov, OA, Izmaylov, AF, Scuseria, GE. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J Chem Phys 2006, 125:224106.

Yanai, T, Tew, DP, Handy, NC. A new hybrid exchange–correlation functional using the Coulomb‐attenuating method (CAM‐B3LYP). Chem Phys Lett 2004, 393:51–57.

Vydrov, OA, Scuseria, GE. Assessment of a long‐range corrected hybrid functional. J Chem Phys 2006, 125:234109.

Vydrov, OA, Heyd, J, Krukau, AV, Scuseria, GE. Importance of short‐range versus long‐range Hartree‐Fock exchange for the performance of hybrid density functionals. J Chem Phys 2006, 125:074106.

Almbladh, CO, Von Barth, U, Van Leeuwen, R. 9th international conference on recent progress in many‐body theories. Int J Mod Phys B 1999, 13:535.

Dahlen, NE, van Leeuwen, R, von Barth, U. Variational energy functionals of the green function and of the density tested on molecules. Phys Rev A 2006, 73:012511.

Agnihotri, MP, Apel, W, Weller, W. The Luttinger‐Ward method applied to the 2D Coulomb gas. Phys Stat Sol B 2008, 245:421–427.

van Leeuwen, R, Dahlen, NE, Stan, A. Total energies from variational functionals of the green function and the renormalized four‐point vertex. Phys Rev B 2006, 74:195105.

Dahlen, N, Barth, U v. Variational energy functionals tested on atoms. Phys Rev B 2004, 69:195102.

Langreth, DC, Perdew, JP. Exchange‐correlation energy of a metallic surface: wave‐vector analysis. Phys Rev B 1977, 15:2884–2901.

Furche, F. Molecular tests of the random phase approximation to the exchange‐correlation energy functional. Phys Rev B 2001, 64:195120.

Fuchs, M, Gonze, X. Accurate density functionals: approaches using the adiabatic‐connection fluctuation‐dissipation theorem. Phys Rev B 2002, 65:235109.

Paier, J, Ren, X, Rinke, P, Scuseria, GE, Grueneis, A, Kresse, G, Scheffler, M. Assessment of correlation energies based on the random‐phase approximation. New J Phys 2012, 14:043002.

Aryasetiawan, F, Miyake, T, Terakura, K. Total energy method from many‐body formulation. Phys Rev Lett 2002, 88:166401.

Miyake, T, Aryasetiawan, F, Kotani, T, van Schilfgaarde, M, Usuda, M, Terakura, K. Total energy of solids: an exchange and random‐phase approximation correlation study. Phys Rev B 2002, 66:245103.

Fuchs, M, Burke, K, Niquet, Y‐M, Gonze, X. Comment on “Total energy method from many‐body formulation”. Phys Rev Lett 2003, 90:189701.

Aryasetiawan, F, Miyake, T, Terakura, K. Aryasetiawan, Miyake, and Terakura Reply. Phys Rev Lett 2003, 90:189702.

Bruneval, F. GW approximation of the many‐body problem and changes in the particle number. Phys Rev Lett 2009, 103:176403.

Frey, K, Idrobo, JC, Tiago, ML, Reboredo, F, Öğüt, S. Quasiparticle gaps and exciton Coulomb energies in Si nanoshells: first‐principles calculations. Phys Rev B 2009, 80:153411.

Massobrio, C, Pasquarello, A, Car, R. First principles study of photoelectron spectra of Cu^{−}_{n} clusters. Phys Rev Lett 1995, 75:2104–2107.

Bohm, D, Pines, D. A collective description of electron interactions: III. Coulomb interactions in a degenerate electron gas. Phys Rev 1953, 92:609–625.

Lindhard, J. Electron capture and loss by heavy ions penetrating through matter. Kgl Danske Videnskab Selskab, Mat‐Fys Medd 1954, 28:1.

Rieger, MM, Steinbeck, L, White, ID, Rojas, HN, Godby, RW. The GW space‐time method for the self‐energy of large systems. Comput Phys Commun 1999, 117:211–228.

Rojas, HN, Godby, RW, Needs, RJ. Space‐time method for ab initio calculations of self‐energies and dielectric response functions of solids. Phys Rev Lett 1995, 74:1827–1830.

Aryasetiawan, F. Self‐energy of ferromagnetic nickel in the GW approximation. Phys Rev B 1992, 46:13051–13064.

Lebègue, S, Arnaud, B, Alouani, M, Bloechl, PE. Implementation of an all‐electron GW approximation based on the projector augmented wave method without plasmon pole approximation: application to Si, SiC, AlAs, InAs, NaH, and KH. Phys Rev B 2003, 67:155208.

Hybertsen, MS, Louie, SG. Electron correlation in semiconductors and insulators: band gaps and quasiparticle energies. Phys Rev B 1986, 34:5390–5413.

Godby, RW, Needs, RJ. Metal‐insulator transition in Kohn‐Sham theory and quasiparticle theory. Phys Rev Lett 1989, 62:1169–1172.

Soininen, JA, Rehr, JJ, Shirley, EL. Electron self‐energy calculation using a general multi‐pole approximation. J Phys Condense Matter 2003, 15:2573–2586.

Soininen, JA, Rehr, JJ, Shirley, EL. Final‐state rule vs the Bethe‐Salpeter equation for deep‐core x‐ray absorption spectra. Phys Scr 2005, T115:243.

van Setten, MJ, Weigend, F, Evers, F. The GW‐method for quantum chemistry applications: theory and implementation. J. Chem Theory Comput 2013, 9:232–246.

van Schilfgaarde, M, Kotani, T, Faleev, S. Quasiparticle self‐consistent GW theory. Phys Rev Lett 2006, 96:226402.

Faleev, SV, van Schilfgaarde, M, Kotani, T. All‐electron self‐consistent GW approximation: application to Si, MnO, and NiO. Phys Rev Lett 2004, 93:126406.

Kotani, T, van Schilfgaarde, M, Faleev, SV. Quasiparticle self‐consistent GW method: a basis for the independent‐particle approximation. Phys Rev B 2007, 76:165106.

Holm, B, von Barth, U. Fully self‐consistent GW self‐energy of the electron gas. Phys Rev B 1998, 57:2108–2117.

Schindlmayr, A, García‐González, P, Godby, RW. Diagrammatic self‐energy approximations and the total particle number. Phys Rev B 2001, 64:235106.

García‐González, P, Godby, RW. Self‐consistent calculation of total energies of the electron gas using many‐body perturbation theory. Phys Rev B 2001, 63:075112.

Rieger, MM, Godby, RW. Charge density of semiconductors in the GW approximation. Phys Rev B 1998, 58:1343–1348.

Stan, A, Dahlen, NE, van Leeuwen, R. Levels of self‐consistency in the GW approximation. J Chem Phys 2009, 130:114105.

Schindlmayr, A. Violation of particle number conservation in the GW approximation. Phys Rev B 1997, 56:3528–3531.

Strinati, G, Mattausch, HJ, Hanke, W. Dynamical correlation effects on the quasiparticle Bloch states of a covalent crystal. Phys Rev Lett 1980, 45:290–294.

Strinati, G, Mattausch, HJ, Hanke, W. Dynamical aspects of correlation corrections in a covalent crystal. Phys Rev B 1982, 25:2867–2888.

Hybertsen, MS, Louie, SG. First‐principles theory of quasiparticles: calculation of band gaps in semiconductors and insulators. Phys Rev Lett 1985, 55:1418–1421.

Aulbur, WG, Jonsson, L, Wilkins, JW. Quasiparticle calculations in solids. Solid State Phys 2000, 54:1.

Aryasetiawan, F, Gunnarsson, O. The GW method. Rep Prog Phys 1998, 61:237–312.

Gatti, M, Bruneval, F, Olevano, V, Reining, L. Understanding correlations in vanadium dioxide from first principles. Phys Rev Lett 2007, 99:266402.

Rödl, C, Fuchs, F, Furthmüller, J, Bechstedt, F. Quasiparticle band structures of the antiferromagnetic transition‐metal oxides MnO, FeO, CoO, and NiO. Phys Rev B 2009, 79:235114.

Chulkov, EV, Borisov, AG, Gauyacq, JP, Sanchez‐Portal, D, Silkin, VM, Zhukov, VP, Echenique, PM. Electronic excitations in metals and at metal surfaces. Chem Rev 2006, 106:4160–4206.

Rinke, P, Delaney, K, Garcia‐Gonzalez, P, Godby, RW. Image states in metal clusters. Phys Rev A 2004, 70:063201.

Koerbel, S, Boulanger, P, Duchemin, I, Blase, X, Marques, MAL, Botti, S. Benchmark many‐body GW and Bethe–Salpeter calculations for small transition metal molecules. J Chem Theory Comput 2014, 10:3934–3943.

Kaplan, F, Harding, ME, Seiler, C, Weigend, F, Evers, F, van Setten, MJ. Quasi‐particle self‐consistent GW for molecules. J Chem Theory Comput 2016, 12:2528–2541.

Wilhelm, J, Del Ben, M, Hutter, J. GW in the Gaussian and plane waves scheme with application to linear acenes. J Chem Theory Comput 2016, 12:3623–3635.

Scherpelz, P, Govoni, M, Hamada, I, Galli, G. Implementation and validation of fully relativistic GW calculations: spin–orbit coupling in molecules, nanocrystals, and solids. J Chem Theory Comput 2016, 12:3523–3544.

Faber, C, Attaccalite, C, Olevano, V, Runge, E, Blase, X. First‐principles GW calculations for DNA and RNA nucleobases. Phys Rev B 2011, 83:115123.

Blase, X, Attaccalite, C, Olevano, V. First‐principles GW calculations for fullerenes, porphyrins, phtalocyanine, and other molecules of interest for organic photovoltaic applications. Phys Rev B 2011, 83:115103.

van Setten, MJ, Caruso, F, Sharifzadeh, S, Ren, X, Scheffler, M, Liu, F, Lischner, J, Lin, L, Deslippe, JR, Louie, SG, et al. GW100: Benchmarking G0W0 for molecular systems. J Chem Theory Comput 2015, 11:5665–5687.

Rangel, T, Hamed, SM, Bruneval, F, Neaton, JB. Evaluating the GW approximation with CCSD(T) for charged excitations across the oligoacenes. J Chem Theory Comput 2016, 12:2834–2842.

Bruneval, F, Marques, MAL. Benchmarking the starting points of the GW approximation for molecules. J Chem Theory Comput 2013, 9:324–329.

Marom, N, Caruso, F, Ren, X, Hofmann, OT, Körzdörfer, T, Chelikowsky, JR, Rubio, A, Scheffler, M, Rinke, P. Benchmark of GW methods for azabenzenes. Phys Rev B 2012, 86:245127.

Blase, X, Boulanger, P, Bruneval, F, Fernandez‐Serra, M, Duchemin, I. GW and Bethe‐Salpeter study of small water clusters. J Chem Phys 2016, 144:034109.

Caruso, F, Atalla, V, Ren, X, Rubio, A, Scheffler, M, Rinke, P. First‐principles description of charge transfer in donor‐acceptor compounds from self‐consistent many‐body perturbation theory. Phys Rev B 2014, 90:085141.

Caruso, F, Rohr, DR, Hellgren, M, Ren, X, Rinke, P, Rubio, A, Scheffler, M. Bond breaking and bond formation: how electron correlation is captured in many‐body perturbation theory and density‐functional theory. Phys Rev Lett 2013, 110:146403.

Hellgren, M, Caruso, F, Rohr, DR, Ren, X, Rubio, A, Scheffler, M, Rinke, P. Static correlation and electron localization in molecular dimers from the self‐consistent RPA and GW approximation. Phys Rev B 2015, 91:165110.

Romaniello, P, Guyot, S, Reining, L. The self‐energy beyond GW: local and nonlocal vertex corrections. J Chem Phys 2009, 131:154111.

Romaniello, P, Bechstedt, F, Reining, L. Beyond the GW approximation: combining correlation channels. Phys Rev B 2012, 85:155131.

Springer, M, Aryasetiawan, F, Karlsson, K. First‐Principles T‐matrix theory with application to the 6 eV satellite in Ni. Phys Rev Lett 1998, 80:2389–2392.

Guzzo, M, Lani, G, Sottile, F, Romaniello, P, Gatti, M, Kas, JJ, Rehr, JJ, Silly, MG, Sirotti, F, Reining, L. Valence electron photoemission spectrum of semiconductors: ab initio description of multiple satellites. Phys Rev Lett 2011, 107:166401.

Zhou, JS, Kas, JJ, Sponza, L, Reshetnyak, I, Guzzo, M, Giorgetti, C, Gatti, M, Sottile, F, Rehr, JJ, Reining, L. Dynamical effects in electron spectroscopy. J Chem Phys 2015, 143:184109.

Aryasetiawan, F, Hedin, L, Karlsson, K. Multiple plasmon satellites in Na and Al spectral functions from ab initio cumulant expansion. Phys Rev Lett 1996, 77:2268–2271.

Bartlett, RJ. Many‐body perturbation theory and coupled cluster theory for electron correlation in molecules. Ann Rev Phys Chem 1981, 32:359–401.