Ambrosetti,, A., Ferri,, N., DiStasio,, R. A., & Tkatchenko,, A. (2016). Wavelike charge density fluctuations and van der Waals interactions at the nanoscale. Science, 351, 1171–1176.

Ambrosetti,, A., Reilly,, A. M., DiStasio, Jr., R. A., & Tkatchenko,, A. (2014). Long‐range correlation energy calculated from coupled atomic response functions. The Journal of Chemical Physics, 140, 18A508.

Ambrosetti,, A., Silvestrelli,, P. L., & Tkatchenko,, A. (2017). Physical adsorption at the nanoscale: Towards controllable scaling of the substrate‐adsorbate van der Waals interaction. Physical Review B, 95, 235417.

Ayala,, P. Y., Kudin,, K. N., & Scuseria,, G. E. (2001). Atomic orbital Laplace‐transformed second‐order Møller–Plesset theory for periodic systems. The Journal of Chemical Physics, 115, 9698–9707.

Bachhuber,, F., von Appen,, J., Dronskowski,, R., Schmidt,, P., Nilges,, T., Pfitzner,, A., & Weihrich,, R. (2014). The extended stability range of phosphorus allotropes. Angewandte Chemie, International Edition, 53, 11629–11633.

Bachhuber,, F., von Appen,, J., Dronskowski,, R., Schmidt,, P., Nilges,, T., Pfitzner,, A., & Weihrich,, R. (2015). Van der Waals interactions in selected allotropes of phosphorus. Zeitschrift fuer Kristallographie, 230, 107.

Ben,, M. D., Hutter,, J., & VandeVondele,, J. (2012). Second‐order Møller‐Plesset perturbation theory in the condensed phase: An efficient and massively parallel Gaussian and plane waves approach. Journal of Chemical Theory and Computation, 8, 4177.

Ben,, M. D., Hutter,, J., & VandeVondele,, J. (2013). Electron correlation in the condensed phase from a resolution of identity approach based on the Gaussian and plane waves scheme. Journal of Chemical Theory and Computation, 9, 2654.

Ben,, M. D., Hutter,, J., & VandeVondele,, J. (2015). Forces and stress in second order Møller‐Plesset perturbation theory for condensed phase systems within the resolution‐of‐identity Gaussian and plane waves approach. The Journal of Chemical Physics, 143, 102803.

Ben,, M. D., Schönherr,, M., Hutter,, J., & VandeVondele,, J. (2013). Bulk liquid water at ambient temperature and pressure from MP2 theory. Journal of Physical Chemistry Letters, 4, 3753.

Beran,, G. J. O. (2016). Modeling polymorphic molecular crystals with electronic structure theory. Chemical Reviews, 116, 5567–5613.

Beran,, G. J. O., & Nanda,, K. (2010). Predicting organic crystal lattice energies with chemical accuracy. Journal of Physical Chemistry Letters, 1, 3480–3487.

Birkenheuer,, U., Fulde,, P., & Stoll,, H. (2006). A simplified method for the computation of correlation effects on the band structure of semiconductors. Theoretical Chemistry Accounts, 116, 398–403.

Bischoff,, F., Alessio,, M., John,, M., Rybicki,, M., & Sauer,, J. (2017). Retrieved from). Multi‐level energy landscapes: The MonaLisa Program. Berlin, Germany: Humboldt‐Universität zu Berlin. https://www.chemie.hu-berlin.de/de/forschung/quantenchemie/monalisa/

Björkman,, T., Kurasch,, S., Lehtinen,, O., Kotakoski,, J., Yazyev,, O. V., Srivastava,, A., … Krasheninnikov,, A. V. (2013). Defects in bilayer silica and graphene: Common trends in diverse hexagonal two‐dimensional systems. Scientific Reports, 3, 3482.

Blunt,, N. S., Smart,, S. D., Kersten,, J. A. F., Spencer,, J. S., Booth,, G. H., & Alavi,, A. (2015). Semi‐stochastic full configuration interaction quantum Monte Carlo: Developments and application. The Journal of Chemical Physics, 142, 184107.

Boese,, A. D., & Sauer,, J. (2013). Accurate adsorption energies of small molecules on oxide surfaces: CO–MgO(001). Physical Chemistry Chemical Physics, 15, 16481–16493.

Booth,, G. H., Grüneis,, A., Kresse,, G., & Alavi,, A. (2013). Towards an exact description of electronic wavefunctions in real solids. Nature, 493, 365.

Booth,, G. H., Tsatsoulis,, T., Chan,, G. K.‐L., & Grüneis,, A. (2016). From plane waves to local Gaussians for the simulation of correlated periodic systems. The Journal of Chemical Physics, 145, 084111.

Boughton,, J. W., & Pulay,, P. (1993). Comparison of the boys and Pipek‐Mezey localizations in the local correlation approach and automatic virtual basis selection. Journal of Computational Chemistry, 14, 736–740.

Burow,, A. M., Bates,, J. E., Furche,, F., & Eshuis,, H. (2014). Analytical first‐order molecular properties and forces within the adiabatic connection random phase approximation. Journal of Chemical Theory and Computation, 10, 180–194.

Burson,, K. M., Büchner,, C., Heyde,, M., & Freund,, H.‐J. (2017). Domain boundaries and defect structures in 2D insulating silica bilayers. J. Phys.: Condensed Matter, 29, 035002.

Bygrave,, P. J., Allan,, N. L., & Manby,, F. R. (2012). The embedded many‐body expansion for energetics of molecular crystals. The Journal of Chemical Physics, 137, 164102.

Casassa,, S., Zicovich‐Wilson,, C. M., & Pisani,, C. (2006). Symmetry‐adapted localized Wannier functions suitable for periodic local correlation methods. Theoretical Chemistry Accounts, 116, 726–733.

Cascella,, M., Lin,, I.‐C., Tavernelli,, I., & Rothlisberger,, U. (2009). Dispersion corrected atom‐centered potentials for phosphorus. Journal of Chemical Theory and Computation, 5, 2930–2934.

Castellanos‐Gomez,, A. (2015). Black phosphorus: Narrow gap, wide applications. Journal of Physical Chemistry Letters, 6, 4280–4291.

Chung,, L. W., Sameera,, W. M. C., Ramozzi,, R., Page,, A. J., Hatanaka,, M., Petrova,, G. P., … Morokuma,, K. (2015). The ONIOM method and its applications. Chemical Reviews, 115, 5678–5796.

DiStasio,, R. A., Gobre,, V. V., & Tkatchenko,, A. (2014). Many‐body van der Waals interactions in molecules and condensed matter. J. Phys.: Condensed Matter, 26, 213202.

Doser,, B., Zienau,, J., Clin,, L., Lambrecht,, D., & Ochsenfeld,, C. (2010). A linear‐scaling MP2 method for large molecules by rigorous integral‐screening criteria. Zeitschrift für Physikalische Chemie, 224, 397–412.

Dovesi,, R., Orlando,, R., Erba,, A., Zicovich‐Wilson,, C. M., Civalleri,, B., Casassa,, S., … Kirtman,, B. (2014). CRYSTAL14: A program for the ab initio investigation of crystalline solids. International Journal of Quantum Chemistry, 114, 1287–1317.

Dovesi,, R., Saunders,, V. R., Roetti,, R., Orlando,, R., Zicovich‐Wilson,, C. M., Pascale,, F., … Casassa,, S. (2014). CRYSTAL14 user`s manual. Turin, Italy: University of Turin.

Dunning, Jr., T. H. (1989). Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. The Journal of Chemical Physics, 90, 1007–1023.

Fornace,, M. E., Lee,, J., Miyamoto,, K., Manby,, F. R., & III,, T. F. M. (2015). Embedded mean‐field theory. Journal of Chemical Theory and Computation, 11, 568–580.

Foulkes,, W., Mitás,, L., Needs,, R., & Rajagopal,, G. (2001). Quantum Monte Carlo simulations of solids. Reviews of Modern Physics, 73, 33–83.

Friedrich,, J. (2012). Incremental scheme for intermolecular interactions: Benchmarking the accuracy and the efficiency. Journal of Chemical Theory and Computation, 8, 1597–1607.

Friedrich,, J., & Dolg,, M. (2009). Fully automated incremental evaluation of MP2 and CCSD(T) energies: Application to water clusters. Journal of Chemical Theory and Computation, 5, 287–294.

Gao,, W., & Tkatchenko,, A. (2013). Electronic structure and van der Waals interactions in the stability and mobility of point defects in semiconductors. Physical Review Letters, 111, 045501.

Gaston,, N., Paulus,, B., Rościszewski,, K., Schwerdtfeger,, P., & Stoll,, H. (2006). Lattice structure of mercury: Influence of electronic correlation. Physical Review B, 74, 094102.

Gobre,, V. V., & Tkatchenko,, A. (2013). Scaling laws for van der Waals interactions in nanostructured materials. Nature Communications, 4, 2341.

Grimme,, S. (2006). Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction. Journal of Computational Chemistry, 27, 1787–1799.

Grimme,, S., Antony,, J., Ehrlich,, S., & Krieg,, H. (2010). A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT‐D) for the 94 elements H‐Pu. The Journal of Chemical Physics, 132, 154104.

Grüneis,, A. (2015). Efficient explicitly correlated many‐electron perturbation theory for solids: Application to the Schottky defect in MgO. Physical Review Letters, 115, 066402.

Grüneis,, A., Booth,, G. H., Marsman,, M., Spencer,, J., Alavi,, A., & Kresse,, G. (2011). Natural orbitals for wave function based correlated calculations using a plane wave basis set. Journal of Chemical Theory and Computation, 7, 2780–2785.

Grüneis,, A., Marsman,, M., Harl,, J., Schimka,, L., & Kresse,, G. (2009). Making the random phase approximation to electronic correlation accurate. The Journal of Chemical Physics, 131, 154115.

Grüneis,, A., Marsman,, M., & Kresse,, G. (2010). Second‐order Møller–Plesset perturbation theory applied to extended systems. II. Structural and energetic properties. The Journal of Chemical Physics, 133, 074107.

Grüneis,, A., Shepherd,, J. J., Alavi,, A., Tew,, D. P., & Booth,, G. H. (2013). Explicitly correlated plane waves: Accelerating convergence in periodic wavefunction expansions. The Journal of Chemical Physics, 139, 084112.

Guo,, Y., Sivalingam,, K., Valeev,, E. F., & Neese,, F. (2016). SparseMaps—A systematic infrastructure for reduced‐scaling electronic structure methods. III. Linear‐scaling multireference domain‐based pair natural orbital N‐electron valence perturbation theory. The Journal of Chemical Physics, 144, 094111.

Halkier,, A., Koch,, H., Jørgensen,, P., Christiansen,, O., Nielsen,, I. M. B., & Helgaker,, T. (1997). A systematic ab initio study of the water dimer in hierarchies of basis sets and correlation models. Theoretical Chemistry Accounts, 97, 150–157.

Halo,, M., Pisani,, C., Maschio,, L., Casassa,, S., Schütz,, M., & Usvyat,, D. (2011). Electron correlation decides the stability of cubic versus hexagonal boron nitride. Physical Review B, 83, 035117.

Hammerschmidt,, L., Müller,, C., & Paulus,, B. (2012). Electron correlation contribution to the physisorption of CO on mg F2(110). The Journal of Chemical Physics, 136, 124117.

Hampel,, C., & Werner,, H.‐J. (1996). Local treatment of electron correlation in coupled cluster theory. The Journal of Chemical Physics, 104, 6286–6297.

Hansen,, A., Liakos,, D. G., & Neese,, F. (2011). Efficient and accurate local single reference correlation methods for high‐spin open‐shell molecules using pair natural orbitals. The Journal of Chemical Physics, 135, 214102.

Harl,, J., & Kresse,, G. (2009). Accurate bulk properties from approximate many‐body techniques. Physical Review Letters, 103, 056401.

Hättig,, C., Tew,, D. P., & Helmich,, B. (2012). Local explicitly correlated second‐ and third‐order Møller–Plesset perturbation theory with pair natural orbitals. The Journal of Chemical Physics, 136, 204105.

Hermann,, A., & Schwerdtfeger,, P. (2008). Ground‐state properties of crystalline ice from periodic Hartree‐Fock calculations and a coupled‐cluster‐based many‐body decomposition of the correlation energy. Physical Review Letters, 101, 183005.

Hermann,, A., & Schwerdtfeger,, P. (2009). Complete basis set limit second‐order Møller–Plesset calculations for the fcc lattices of neon, argon, krypton, and xenon. The Journal of Chemical Physics, 131, 244508.

Hermann,, J., DiStasio,, R. A., & Tkatchenko,, A. (2017). First‐principles models for van der Waals interactions in molecules and materials: Concepts, theory, and applications. Chemical Reviews, 117, 4714–4758.

Herschend,, B., Baudin,, M., & Hermansson,, K. (2004). A combined molecular dynamics+quantum mechanics method for investigation of dynamic effects on local surface structures. The Journal of Chemical Physics, 120, 4939–4948.

Huang,, C., Pavone,, M., & Carter,, E. A. (2011). Quantum mechanical embedding theory based on a unique embedding potential. The Journal of Chemical Physics, 134, 154110.

Huang,, P. Y., Kurasch,, S., Alden,, J. S., Shekhawat,, A., Alemi,, A. A., McEuen,, P. L., … Muller,, D. A. (2013). Imaging atomic rearrangements in two‐dimensional silica glass: Watching Silica`s dance. Science, 342, 224–227.

Karttunen,, A. J., Usvyat,, D., Schütz,, M., & Maschio,, L. (2017). Dispersion interactions in silicon allotropes. Physical Chemistry Chemical Physics, 19, 7699–7707.

Kats,, D. (2014). Speeding up local correlation methods. The Journal of Chemical Physics, 141, 244101.

Kats,, D. (2016a). Speeding up local correlation methods: System‐inherent domains. The Journal of Chemical Physics, 145, 014103.

Kats,, D. (2016b). The distinguishable cluster approach from a screened Coulomb formalism. The Journal of Chemical Physics, 144, 044102.

Kats,, D., & Manby,, F. R. (2013). Sparse tensor framework for implementation of general local correlation methods. The Journal of Chemical Physics, 138, 144101.

Kendall,, R. A., Dunning, Jr., T. H., & Harrison,, R. J. (1992). Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions. The Journal of Chemical Physics, 96, 6796–6806.

Kerber,, T., Kerber,, R. N., Rozanska,, X., Sautet,, P., & Fleurat‐Lessard,, P. (2013). QMX: A versatile environment for hybrid calculations applied to the grafting of Al2Cl3Me3on a silica surface. Journal of Computational Chemistry, 34, 1155–1163.

Kim,, H. (2014). Effect of van der Waals interaction on the structural and cohesive properties of black phosphorus. Journal of the Korean Physical Society, 64, 547–553.

Knizia,, G., & Chan,, G. K. L. (2012). Density matrix embedding: A simple alternative to dynamical mean‐field theory. Physical Review Letters, 109, 186404.

Knizia,, G., & Chan,, G. K. L. (2013). Density matrix embedding: A strong‐coupling quantum embedding theory. Journal of Chemical Theory and Computation, 9, 1428–1432.

Kokalj,, A. (2003). Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale. Computational Materials Science, 28, 155–168.

Kou,, L., Chen,, C., & Smith,, S. C. (2015). Phosphorene: Fabrication, properties, and applications. Journal of Physical Chemistry Letters, 6, 2794–2805.

Krause,, C., & Werner,, H.‐J. (2012). Comparison of explicitly correlated local coupled‐cluster methods with various choices of virtual orbitals. Physical Chemistry Chemical Physics, 14, 7591–7604.

Kristensen,, K., Høyvik,, I.‐M., Jansìk,, B., Jørgensen,, P., Kjaergaard,, T., Reineb,, S., & Jakowskic,, J. (2012). MP2 energy and density for large molecular systems with internal error control using the divide‐expand‐consolidate scheme. Physical Chemistry Chemical Physics, 14, 15706–15714.

Kristensen,, K., Ziolkowski,, M., Jansik,, B., Kjaergaard,, T., & Jorgensen,, P. (2011). A locality analysis of the divide–expand–consolidate coupled cluster amplitude equations. Journal of Chemical Theory and Computation, 7, 1677–1694.

Kurashige,, Y., Yang,, J., Chan,, G. K. L., & Manby,, F. R. (2012). Optimization of orbital‐specific virtuals in local Møller‐Plesset perturbation theory. The Journal of Chemical Physics, 136, 124106.

Lan,, T., Kananenka,, A. A., & Zgid,, D. (2015). Communication: Towards ab initio self‐energy embedding theory in quantum chemistry. The Journal of Chemical Physics, 143, 241102.

Li,, J., Sode,, O., Voth,, G., & Hirata,, S. (2013). A solid‐solid phase transition in carbon dioxide at high pressures and intermediate temperatures. Nature Communications, 4, 2647.

Li,, L., Yang,, F., Ye,, G. J., Zhang,, Z., Zhu,, Z., Lou,, W., … Zhang,, Y. (2016). Quantum hall effect in black phosphorus two‐dimensional electron system. Nature Nanotechnology, 11, 593–597.

Li,, L., Yu,, Y., Ye,, G. J., Ge,, Q., Ou,, X., Wu,, H., … Zhang,, Y. (2014). Black phosphorus field‐effect transistors. Nature Nanotechnology, 9, 372–377.

Liao,, K., & Grüneis,, A. (2016). Communication: Finite size correction in periodic coupled cluster theory calculations of solids. The Journal of Chemical Physics, 145, 141102.

Lichtenstein,, L., Büchner,, C., Yang,, B., Shaikhutdinov,, S., Heyde,, M., Sierka,, M., … Freund,, H.‐J. (2012). The atomic structure of a metal‐supported vitreous thin silica film. Angewandte Chemie International Edition, 51, 404–407.

Lichtenstein,, L., Heyde,, M., & Freund,, H.‐J. (2012). Atomic arrangement in two‐dimensional silica: From crystalline to vitreous structures. Journal of Physical Chemistry C, 116, 20426–20432.

Liu,, H., Neal,, A. T., Zhu,, Z., Luo,, Z., Xu,, X., Tomànek,, D., & Ye,, P. D. (2014). Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano, 8, 4033–4041.

Liu,, W., Carrasco,, J., Santra,, B., Michaelides,, A., Scheffler,, M., & Tkatchenko,, A. (2012). Benzene adsorbed on metals: Concerted effect of covalency and van der Waals bonding. Physical Review B, 86, 245405.

Löffler,, D., Uhlrich,, J. J., Baron,, M., Yang,, B., Yu,, X., Lichtenstein,, L., … Sauer,, J. (2010). Growth and structure of crystalline silica sheet on Ru(0001). Physical Review Letters, 105, 146104.

Lorenz,, M., Maschio,, L., Schütz,, M., & Usvyat,, D. (2012). Local ab initio methods for calculating optical bandgaps in periodic systems. II. Periodic density fitted local configuration interaction singles method for solids. The Journal of Chemical Physics, 137, 204119.

Ma,, Q., & Werner,, H.‐J. (2015). Scalable electron correlation methods. 2. Parallel PNO‐LMP2‐F12 with near linear scaling in the molecular size. Journal of Chemical Theory and Computation, 11, 5291–5304.

Manby,, F. R., Stella,, M., Goodpaster,, J. D., & III,, T. F. M. (2012). A simple, exact density‐functional‐theory embedding scheme. Journal of Chemical Theory and Computation, 8, 2564–2568.

Marom,, N., Bernstein,, J., Garel,, J., Tkatchenko,, A., Joselevich,, E., Kronik,, L., & Hod,, O. (2010). Stacking and registry effects in layered materials: The case of hexagonal boron nitride. Physical Review Letters, 105, 046801.

Marsman,, M., Grüneis,, A., Paier,, J., & Kresse,, G. (2009). Second‐order Møller–Plesset perturbation theory applied to extended systems. I. Within the projector‐augmented‐wave formalism using a plane wave basis set. The Journal of Chemical Physics, 130, 184103.

Martinez‐Casado,, R., Usvyat,, D., Maschio,, L., Mallia,, G., Casassa,, S., Ellis,, J., … Harrison,, N. M. (2014). Approaching an exact treatment of electronic correlations at solid surfaces: The binding energy of the lowest bound state of helium adsorbed on MgO(100). Physical Review B, 89, 205138.

Maschio,, L. (2011). Local MP2 with density fitting for periodic systems: A parallel implementation. Journal of Chemical Theory and Computation, 7, 2818–2830.

Maschio,, L., & Usvyat,, D. (2008). Fitting of local densities in periodic systems. Physical Review B, 78, 073102.

Maschio,, L., Usvyat,, D., Manby,, F. R., Casassa,, S., Pisani,, C., & Schütz,, M. (2007). Fast local‐MP2 method with density‐fitting for crystals. I. Theory and algorithms. Physical Review B, 76, 075101.

Maschio,, L., Usvyat,, D., Schütz,, M., & Civalleri,, B. (2010). Periodic local Møller–Plesset second order perturbation theory method applied to molecular crystals: Study of solid NH3 and CO2 using extended basis sets. The Journal of Chemical Physics, 132, 134706.

Masur,, O., Schütz,, M., Maschio,, L., & Usvyat,, D. (2016). Fragment‐based direct‐local‐ring‐coupled‐cluster doubles treatment embedded in the periodic Hartree–Fock solution. Journal of Chemical Theory and Computation, 12, 5145–5156.

Masur,, O., Usvyat,, D., & Schütz,, M. (2013). Efficient and accurate treatment of weak pairs in local CCSD(T) calculations. The Journal of Chemical Physics, 139, 164116.

Mattuck,, R. D. (1992). A guide to Feynman diagrams in the many‐body problem. New York, NY: Dover Publications.

Maurer,, S. A., Lambrecht,, D. S., Kussmann,, J., & Ochsenfeld,, C. (2013). Efficient distance‐including integral screening in linear‐scaling Møller‐Plesset perturbation theory. The Journal of Chemical Physics, 138, 014101.

McClain,, J., Sun,, Q., Chan,, G. K.‐L., & Berkelbach,, T. C. (2017). Gaussian‐based coupled‐cluster theory for the ground‐state and band structure of solids. Journal of Chemical Theory and Computation, 13, 1209–1218.

Medvedev,, M. G., Bushmarinov,, I. S., Sun,, J., Perdew,, J. P., & Lyssenko,, K. A. (2017). Density functional theory is straying from the path toward the exact functional. Science, 355, 49–52.

Menezes,, F., Kats,, D., & Werner,, H.‐J. (2016). Local complete active space second‐order perturbation theory using pair natural orbitals (PNO‐CASPT2). The Journal of Chemical Physics, 145, 124115.

Meyer,, W. (1971). Ionization energies of water from PNO‐CI calculations. International Journal of Quantum Chemistry, S5, 341.

Momma,, K., & Izumi,, F. (2011). VESTA 3for three‐dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44, 1272–1276.

Müller,, C., & Hermansson,, K. (2009). Assessment methods for embedding schemes – Ceria as an example. Surface Science, 603, 3329–3338.

Müller,, C., & Spångberg,, D. (2015). Calculation of the stability of nonperiodic solids using classical force fields and the method of increments: N2o as an example. Journal of Computational Chemistry, 36, 1420–1427.

Müller,, C., & Usvyat,, D. (2013). Incrementally corrected periodic local MP2 calculations: I. The cohesive energy of molecular crystals. Journal of Chemical Theory and Computation, 9, 5590–5598.

Müller,, C., Usvyat,, D., & Stoll,, H. (2011). Local correlation methods for solids: Comparison of incremental and periodic correlation calculations for the argon fcc crystal. Physical Review B, 83, 245136.

Neese,, F., Hansen,, A., & Liakos,, D. G. (2009). Efficient and accurate approximations to the local coupled cluster singles doubles method using a truncated pair natural orbital basis. The Journal of Chemical Physics, 131, 064103.

Neese,, F., Wennmohs,, F., & Hansen,, A. (2009). Efficient and accurate local approximations to coupled‐electron pair approaches: An attempt to revive the pair natural orbital method. The Journal of Chemical Physics, 130, 114108.

Nolan,, S. J., Gillan,, M. J., Alfè,, D., Allan,, N. L., & Manby,, F. R. (2009). Calculation of properties of crystalline lithium hydride using correlated wave function theory. Physical Review B, 80, 165109.

Ochsenfeld,, C., Kussmann,, J., & Lambrecht,, D. S. (2007). Reviews in computational chemistry (Vol. 23, pp. 1–82). New York, NY: VCH Publishers.

Paier,, J., Janesko,, B. G., Henderson,, T. M., Scuseria,, G. E., Grüneis,, A., & Kresse,, G. (2010). Hybrid functionals including random phase approximation correlation and second‐order screened exchange. The Journal of Chemical Physics, 132, 094103.

Paulus,, B. (2006). The method of increments—A wavefunction‐based ab initio correlation method for solids. Physics Reports, 428, 1–52.

Paulus,, B., Rosciszewski,, K., Gaston,, N., Schwerdtfeger,, P., & Stoll,, H. (2004). Convergence of the ab initio many‐body expansion for the cohesive energy of solid mercury. Physical Review B, 70, 165106.

Pavosevic,, F., Peng,, C., Pinski,, P., Riplinger,, C., Neese,, F., & Valeev,, E. F. (2017). SparseMaps—A systematic infrastructure for reduced scaling electronic structure methods. V. Linear scaling explicitly correlated coupled‐cluster method with pair natural orbitals. The Journal of Chemical Physics, 146, 174108.

Peintinger,, M. F., Oliveira,, D. V., & Bredow,, T. (2013). Consistent Gaussian basis sets of triple‐zeta valence with polarization quality for solid‐state calculations. Journal of Computational Chemistry, 34, 451–459.

Piccini,, G., Alessio,, M., Sauer,, J., Zhi,, Y., Liu,, Y., Kolvenbach,, R., … Lercher,, J. A. (2015). Accurate adsorption thermodynamics of small alkanes in zeolites. Ab initio theory and experiment for H‐Chabazite. Journal of Physical Chemistry C, 119, 6128–6137.

Pisani,, C., Busso,, M., Capecchi,, G., Casassa,, S., Dovesi,, R., Maschio,, L., … Schütz,, M. (2005). Local‐MP2 electron correlation method for nonconducting crystals. The Journal of Chemical Physics, 122, 094113.

Pisani,, C., Dovesi,, R., & Roetti,, C. (1988). Hartree‐Fock ab initio treatment of crystalline solids, Lecture Notes in Chemistry Series (Vol. 48). Berlin, Germany: Springer‐Verlag.

Pisani,, C., Maschio,, L., Casassa,, S., Halo,, M., Schütz,, M., & Usvyat,, D. (2008). Periodic local MP2 method for the study of electronic correlation in crystals: Theory and preliminary applications. Journal of Computational Chemistry, 29, 2113–2124.

Pisani,, C., Schütz,, M., Casassa,, S., Usvyat,, D., Maschio,, L., Lorenz,, M., & Erba,, A. (2012). Cryscor: A program for the post‐Hartree–Fock treatment of periodic systems. Physical Chemistry Chemical Physics, 14, 7615–7628.

Podeszwa,, R., Rice,, B. M., & Szalewicz,, K. (2008). Predicting structure of molecular crystals from first principles. Physical Review Letters, 101, 115503.

Pulay,, P. (1983). Localizability of dynamic electron correlation. Chemical Physics Letters, 100, 151–154.

Pulay,, P., & Saebø,, S. (1986). Orbital‐invariant formulation and second‐order gradient evaluation in Møller‐Plesset perturbation theory. Theoretica Chimica Acta, 69, 357–368.

Pulay,, P., Saebø,, S., & Meyer,, W. (1984). An efficient reformulation of the closed‐shell self‐consistent electron pair theory. The Journal of Chemical Physics, 81, 1901.

Qiao,, J., Kong,, X., Hu,, Z.‐X., Yang,, F., & Ji,, W. (2014). High‐mobility transport anisotropy and linear dichroism in few‐layer black phosphorus. Nature Communications, 4, 4475.

Reilly,, A. M., & Tkatchenko,, A. (2013). Understanding the role of vibrations, exact exchange, and many‐body van der Waals interactions in the cohesive properties of molecular crystals. The Journal of Chemical Physics, 139, 024705.

Řezáč,, J., Riley,, K. E., & Hobza,, P. (2011). S66: A well‐balanced database of benchmark interaction energies relevant to biomolecular structures. Journal of Chemical Theory and Computation, 7, 2427–2438.

Riplinger,, C., & Neese,, F. (2013). An efficient and near linear scaling pair natural orbital based local coupled cluster method. The Journal of Chemical Physics, 138, 034106.

Riplinger,, C., Sandhoefer,, B., Hansen,, A., & Neese,, F. (2013). Natural triple excitations in local coupled cluster calculations with pair natural orbitals. Journal of Computational Physics, 139, 134101.

Rolik,, Z., Szegedy,, L., Ladjanszki,, I., Ladoczki,, B., & Kallay,, M. (2013). An efficient linear‐scaling CCSD(T) method based on local natural orbitals. The Journal of Chemical Physics, 139, 094105.

Rosciszewski,, K., Doll,, K., Paulus,, B., Fulde,, P., & Stoll,, H. (1998). Ground‐state properties of rutile: Electron‐correlation effects. Physical Review B, 57, 14667–14672.

Rościszewski,, K., Paulus,, B., Fulde,, P., & Stoll,, H. (1999). Ab initio calculation of ground‐state properties of rare‐gas crystals. Physical Review B, 60, 7905–7910.

Rubes,, M., & Bludsky,, O. (2008). Intermolecular π–π interactions in solids. Physical Chemistry Chemical Physics, 10, 2611–2615.

Rybkin,, V. V., & VandeVondele,, J. (2016). Spin‐unrestricted second‐order Møller–Plesset (MP2) forces for the condensed phase: From molecular radicals to F‐centers in solids. Journal of Chemical Theory and Computation, 12, 2214–2223.

Saebø,, S., & Pulay,, P. (1988). The Journal of Chemical Physics, 88, 1884.

Saebø,, S., & Pulay,, P. (1985). Local configuration interaction: An efficient approach for larger molecules. The local correlation treatment. II. Implementation and tests. Chemical Physics Letters, 113, 13–18.

Saebø,, S., & Pulay,, P. (1987). Fourth‐order Møller–Plessett perturbation theory in the local correlation treatment. I. Method. The Journal of Chemical Physics, 86, 914–922.

Saebø,, S., & Pulay,, P. (1993). Local treatment of electron correlation. Annual Review of Physical Chemistry, 44, 213–236.

Sansone,, G., Maschio,, L., Usvyat,, D., Schütz,, M., & Karttunen,, A. (2016). Toward an accurate estimate of the exfoliation energy of black phosphorus: A periodic quantum chemical approach. Journal of Physical Chemistry Letters, 7, 131–136.

Santra,, B., Klimes,, J., Alfe,, D., Tkatchenko,, A., Slater,, B., Michaelides,, A., … Scheffler,, M. (2011). Hydrogen bonds and van der Waals forces in ice at ambient and high pressures. Physical Review Letters, 107, 185701.

Saunders,, V., Freyria‐Fava,, C., Dovesi,, R., Salasco,, L., & Roetti,, C. (1992). On the electrostatic potential in crystalline systems where the charge density is expanded in Gaussian functions. Molecular Physics, 77, 629–665.

Schlexer,, P., Pacchioni,, G., Wlodarczyk,, R., & Sauer,, J. (2016). CO adsorption on a silica bilayer supported on Ru(0001). Surface Science, 648, 2–9.

Schurkus,, H. F., & Ochsenfeld,, C. (2016). Communication: An effective linear‐scaling atomic‐orbital reformulation of the random‐phase approximation using a contracted double‐Laplace transformation. The Journal of Chemical Physics, 144, 031101.

Schütz,, M. (2000). Low‐order scaling local electron correlation methods. III. Linear scaling local perturbative triples correction (T). The Journal of Chemical Physics, 113, 9986–10001.

Schütz,, M. (2002a). A new, fast, semi‐direct implementation of linear scaling local coupled cluster theory. Physical Chemistry Chemical Physics, 4, 3941–3947.

Schütz,, M. (2002b). Low‐order scaling local electron correlation methods. V. Connected triples beyond (T): Linear scaling local CCSDT‐1b. The Journal of Chemical Physics, 116, 8772–8785.

Schütz,, M., Hetzer,, G., & Werner,, H.‐J. (1999). Low‐order scaling local electron correlation methods. I. Linear scaling local MP2. The Journal of Chemical Physics, 111, 5691–5705.

Schütz,, M., & Manby,, F. R. (2003). Linear scaling local coupled cluster theory with density fitting. Part I: 4‐external integrals. Physical Chemistry Chemical Physics, 5, 3349–3358.

Schütz,, M., Maschio,, L., Karttunen,, A. J., & Usvyat,, D. (2017). Exfoliation energy of black phosphorus revisited: A coupled cluster benchmark. Journal of Physical Chemistry Letters, 8, 1290–1294.

Schütz,, M., Masur,, O., & Usvyat,, D. (2014). Efficient and accurate treatment of weak pairs in local CCSD(T) calculations. II. Beyond the ring approximation. The Journal of Chemical Physics, 140, 244107.

Schütz,, M., Usvyat,, D., Lorenz,, M., Pisani,, C., Maschio,, L., Casassa,, S., & Halo,, M. (2010). In Density fitting for correlated calculations in periodic systems. F. R. Manby, (Ed.), Accurate condensed phase quantum chemistry (p. 29). Boca Raton, FL: CRC Press.

Schütz,, M., & Werner,, H.‐J. (2001). Low‐order scaling local electron correlation methods. IV. Linear scaling local coupled‐cluster (LCCSD). The Journal of Chemical Physics, 114, 661.

Schütz,, M., Yang,, J., Chan,, G. K. L., Manby,, F. R., & Werner,, H.‐J. (2013). The orbital‐specific virtual local triples correction: OSV‐L(T). The Journal of Chemical Physics, 138, 054109.

Schwerdtfeger,, P., Assadollahzadeh,, B., & Hermann,, A. (2010). Convergence of the Møller‐Plesset perturbation series for the fcc lattices of neon and argon. Physical Review B, 82, 205111.

Schwilk,, M., Ma,, Q., Köppl,, C., & Werner,, H.‐J. (2017). Scalable electron correlation methods. 3. Efficient and accurate parallel local coupled cluster with pair natural orbitals (PNO‐LCCSD). J Chem Theory Comput, 13, 3650.

Schwilk,, M., Usvyat,, D., & Werner,, H.‐J. (2015). Communication: Improved pair approximations in local coupled‐cluster methods. The Journal of Chemical Physics, 142, 121102.

Scuseria,, G. E., Henderson,, T. M., & Sorensen,, D. C. (2008). The ground state correlation energy of the random phase approximation from a ring coupled cluster doubles approach. The Journal of Chemical Physics, 129, 231101.

Shepherd,, J. J., & Grüneis,, A. (2013). Many‐body quantum chemistry for the electron gas: Convergent perturbative theories. Physical Review Letters, 110, 226401.

Shepherd,, J. J., Grüneis,, A., Booth,, G., Marsman,, M., Kresse,, G., & Alavi,, A. (2012). Convergence of many‐body wave‐function expansions using a plane‐wave basis: From homogeneous electron gas to solid state systems. Physical Review B, 86, 035111.

Sherwood,, P., de Vries,, A. H., Guest,, M. F., Schreckenbach,, G., Catlow,, C. R. A., French,, S. A., … Lennartz,, C. (2003). QUASI: A general purpose implementation of the QM/MM approach and its application to problems in catalysis. THEOCHEM, 632, 1–28.

Shiozaki,, T., & Hirata,, S. (2010). Communications: Explicitly correlated second‐order Møller–Plesset perturbation method for extended systems. The Journal of Chemical Physics, 132, 151101.

Shulenburger,, L., Baczewski,, A., Zhu,, Z., Guan,, J., & Tománek,, D. (2015). The nature of the interlayer interaction in bulk and few‐layer phosphorus. Nano Letters, 15, 8170–8175.

Sierka,, M., & Sauer,, J. (1997). Structure and reactivity of silica and zeolite catalysts by a combined quantum mechanics–shell‐model potential approach based on DFT. Faraday Discussions, 106, 41–62.

Sode,, O., Keceli,, M., Yagi,, K., & Hirata,, S. (2013). Fermi resonance in solid CO_{2} under pressure. The Journal of Chemical Physics, 138, 074501.

Šponer,, J., & Hobza,, P. (1997). MP2 and CCSD(T) study on hydrogen bonding, aromatic stacking and nonaromatic stacking. Chemical Physics Letters, 267, 263–270.

Steenbergen,, K. G., Gaston,, N., Müller,, C., & Paulus,, B. (2014). Method of increments for the halogen molecular crystals: Cl, Br, and I. The Journal of Chemical Physics, 141, 124707.

Stoll,, H. (1992a). Correlation energy of diamond. Physical Review B, 46, 6700–6704.

Stoll,, H. (1992b). The correlation energy of crystalline silicon. Chemical Physics Letters, 191, 548–552.

Stoll,, H. (1992c). On the correlation energy of graphite. The Journal of Chemical Physics, 97, 8449–8454.

Taylor,, C. R., Bygrave,, P. J., Hart,, J. N., Allan,, N. L., & Manby,, F. R. (2012). Improving density functional theory for crystal polymorph energetics. Physical Chemistry Chemical Physics, 14, 7739–7743.

Tew,, D. P., Helmich,, B., & Hättig,, C. (2011). Local explicitly correlated second‐order Møller–Plesset perturbation theory with pair natural orbitals. The Journal of Chemical Physics, 135, 074107.

Tkatchenko,, A., DiStasio,, R. A., Car,, R., & Scheffler,, M. (2012). Accurate and efficient method for many‐body van der Waals interactions. Physical Review Letters, 108, 236402.

Tkatchenko,, A., & Scheffler,, M. (2009). Accurate molecular van der Waals interactions from ground‐state electron density and free‐atom reference data. Physical Review Letters, 102, 073005.

Tosoni,, S., Civalleri,, B., & Ugliengo,, P. (2010). Hydrophobic behavior of Dehydroxylated silica surfaces: A B3LYP periodic study. Journal of Physical Chemistry C, 114, 19984–19992.

Tosoni,, S., & Sauer,, J. (2010). Accurate quantum chemical energies for the interaction of hydrocarbons with oxide surfaces: CH4/MgO(001). Physical Chemistry Chemical Physics, 12, 14330–14340.

Toulouse,, J., Zhu,, W., Savin,, A., Jansen,, G., & Ángyán,, J. G. (2011). Closed‐shell ring coupled cluster doubles theory with range separation applied on weak intermolecular interactions. The Journal of Chemical Physics, 135, 084119.

Tran,, V., Soklaski,, R., Liang,, Y., & Yang,, L. (2014). Layer‐controlled band gap and anisotropic excitons in few‐layer black phosphorus. Physical Review B, 89, 235319.

Tsatsoulis,, T., Hummel,, F., Usvyat,, D., Schütz,, M., Booth,, G. H., Binnie,, S. S., … Grüneis,, A. (2017). A comparison between quantum chemistry and quantum Monte Carlo techniques for the adsorption of water on the (001) LiH surface. The Journal of Chemical Physics, 146, 204108.

Tuma,, C., & Sauer,, J. (2006). Treating dispersion effects in extended systems by hybrid MP2:DFT calculations—Protonation of isobutene in zeolite ferrierite. Physical Chemistry Chemical Physics, 8, 3955–3965.

Usvyat,, D. (2013). Linear‐scaling explicitly correlated treatment of solids: Periodic local MP2‐F12 method. The Journal of Chemical Physics, 139, 194101.

Usvyat,, D. (2015). High precision quantum‐chemical treatment of adsorption: Benchmarking physisorption of molecular hydrogen on graphane. The Journal of Chemical Physics, 143, 104704.

Usvyat,, D., Maschio,, L., Manby,, F. R., Casassa,, S., Schütz,, M., & Pisani,, C. (2007). Fast local‐MP2 method with density‐fitting for crystals. II. Test calculations and application to the carbon dioxide crystal. Physical Review B, 76, 075102.

Usvyat,, D., Maschio,, L., Pisani,, C., & Schütz,, M. (2010). Second order local Møller‐Plesset perturbation theory for periodic systems: The CRYSCOR code. Zeitschrift für Physikalische Chemie, 224, 441–454.

Usvyat,, D., Maschio,, L., & Schütz,, M. (2015). Periodic local MP2 method employing orbital specific virtuals. The Journal of Chemical Physics, 143, 102805.

Usvyat,, D., Sadeghian,, K., Maschio,, L., & Schütz,, M. (2012). Geometrical frustration of an argon monolayer adsorbed on the MgO (100) surface: An accurate periodic ab initio study. Physical Review B, 86, 045412.

Voloshina,, E., & Paulus,, B. (2006). Influence of electronic correlations on the ground‐state properties of cerium dioxide. The Journal of Chemical Physics, 124, 234711.

Voloshina,, E., & Paulus,, B. (2007). Wave‐function‐based ab initio method for metals: Application of the incremental scheme to magnesium. Physical Review B, 75, 245117.

Warshel,, A., & Levitt,, M. (1976). Theoretical studies of enzymic reactions: Dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. Journal of Molecular Biology, 103, 227–249.

Weigend,, F., & Ahlrichs,, R. (2005). Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Physical Chemistry Chemical Physics, 7, 3297–3305.

Weigend,, F., Köhn,, A., & Hättig,, C. (2002). Efficient use of the correlation consistent basis sets in resolution of the identity MP2 calculations. The Journal of Chemical Physics, 116, 3175–3183.

Wen,, S., Nanda,, K., Huanga,, Y., & Beran,, G. J. O. (2012). Practical quantum mechanics‐based fragment methods for predicting molecular crystal properties. Physical Chemistry Chemical Physics, 14, 7578–7590.

Werner,, H.‐J., Knizia,, G., Krause,, C., Schwilk,, M., & Dornbach,, M. (2015). Scalable electron correlation methods I.: PNO‐LMP2 with linear scaling in the molecular size and near‐inverse‐linear scaling in the number of processors. Journal of Chemical Theory and Computation, 11, 484–507.

Werner,, H.‐J., Knowles,, P. J., Knizia,, G., Manby,, F. R., & Schütz,, M. (2012). Molpro: A general‐purpose quantum chemistry program package. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2, 242–253.

Werner,, H.‐J., Knowles,, P. J., Knizia,, G., Manby,, F. R., Schütz,, M., Celani,, P., … Wang,, M. (2015). Molpro, version 2015.1, a package of ab initio programs. Cardiff, England: Cardiff University.

Werner,, H.‐J., & Schütz,, M. (2011). An efficient local coupled cluster method for accurate thermochemistry of large systems. The Journal of Chemical Physics, 135, 144116.

Woon,, D. E., & Dunning, Jr., T. H. (1993). Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. The Journal of Chemical Physics, 98, 1358–1371.

Wu,, M., Fu,, H., Zhou,, L., Yao,, K., & Zeng,, X. C. (2015). Nine new phosphorene polymorphs with non‐honeycomb structures: A much extended family. Nano Letters, 15, 3557–3562.

Yang,, J., Chan,, G. K. L., Manby,, F. R., Schütz,, M., & Werner,, H.‐J. (2012). The orbital‐specific‐virtual local coupled cluster singles and doubles method. The Journal of Chemical Physics, 136, 144105.

Yang,, J., Hu,, W., Usvyat,, D., Matthews,, D., Schütz,, M., & Chan,, G. K.‐L. (2014). Ab initio determination of the crystalline benzene lattice energy to sub‐kilojoule/mole accuracy. Science, 345, 6197.

Yang,, J., Kurashige,, Y., Manby,, F. R., & Chan,, G. K. L. (2011). Tensor factorizations of local second‐order Møller–Plesset theory. The Journal of Chemical Physics, 134, 044123.

J. Yang,, R. Xu,, J. Pei,, Y. W. Myint,, F. Wang,, Z. Wang,, S. Zhang,, Z. Yu,, and Y. Lu, (2014), Unambiguous identification of monolayer phosphorene by phase‐shifting interferometry. Retrieved from https://arxiv.org/abs/1412.6701.

Yu,, X., Emmez,, E., Pan,, Q., Yang,, B., Pomp,, S., Kaden,, W. E., … Sauer,, J. (2016). Electron stimulated hydroxylation of a metal supported silicate film. Physical Chemistry Chemical Physics, 18, 3755–3764.

Zhang,, G.‐X., Tkatchenko,, A., Paier,, J., Appel,, H., & Scheffler,, M. (2011). Van der Waals interactions in ionic and semiconductor solids. Physical Review Letters, 107, 245501.

Zicovich‐Wilson,, C. M., Dovesi,, R., & Saunders,, V. R. (2001). A general method to obtain well localized Wannier functions for composite energy bands in linear combination of atomic orbital periodic calculations. The Journal of Chemical Physics, 115, 9708–9719.

Ziolkowski,, M., Jansik,, B., Kjaergaard,, T., & Jorgensen,, P. (2010). Linear scaling coupled cluster method with correlation energy based error control. The Journal of Chemical Physics, 133, 014107.