Adamo,, C., & Barone,, V. (1999). Toward reliable density functional methods without adjustable parameters: The PBE0 model. The Journal of Chemical Physics, 110, 6158–6170.

Alkauskas,, A., Broqvist,, P., & Pasquarello,, A. (2011). Defect levels through hybrid density functionals: Insights and applications. Physica Status Solidi B: Basic Solid State Physics, 248, 775–789.

Allen,, J. P., & Watson,, G. W. (2014). Occupation matrix control of d‐ and f‐electron localisations using DFT + U. Physical Chemistry Chemical Physics, 16, 21016–21031.

Allen,, R. E., & De Wette,, F. W. (1969). Calculation of dynamical surface properties of noble‐gas crystals. I. The quasiharmonic approximation. Physics Review, 179, 873–886.

Amdahl,, G. M. (1967). Proceedings of the April 18–20, 1967, Spring Joint Computer Conference, AFIPS ‘67, ACM, New York, NY, Spring, 483–485.

Anderson,, D. G. (1965). Iterative procedures for nonlinear integral equations. Journal of the Association for Computing Machinery, 12, 547–560.

Anderson,, O. L., Isaak,, D., & Oda,, H. (1992). High‐temperature elastic constant data on minerals relevant to geophysics. Reviews of Geophysics, 30, 57.

Andreoni,, W., & Curioni,, A. (2000). New advances in chemistry and materials science with CPMD and parallel computing. Parallel Computing, 26, 819–842.

Andrushchak,, A. S., Mytsyk,, B. G., Laba,, H. P., Yurkevych,, O. V., Solskii,, I. M., Kityk,, A. V., & Sahraoui,, B. (2009). Complete sets of elastic constants and photoelastic coefficients of pure and MgO‐doped lithium niobate crystals at room temperature. Journal of Applied Physics, 106, 073510.

Artacho,, E., Anglada,, E., Dioguez,, O., Gale,, J. D., Garcia,, A., Junquera,, J., et al. (2008). The SIESTA Method; developments and applicability. Journal of Physics: Condensed Matter, 20, 064208.

Ashcroft,, N. W., & Mermin,, N. D. (1976). Solid state physics. Philadelphia, PA: Saunders College.

Auld,, B. A. (1973). Acoustic fields and waves in solids. Malabar, FL: Krieger Publishing Company.

Bader,, R. F. W. (1990). Atoms in molecules – A quantum theory. Oxford, England: Oxford University Press.

Badoz,, J., Billardon,, M., Canit,, J. C., & Russel,, M. F. (1977). Sensitive devices to determine the state and degree of polarization of a light beam using a birefringence modulator. Journal of Optics, 8, 373–384.

Baima,, J., Erba,, A., Maschio,, L., Zicovich‐Wilson,, C., Dovesi,, R., & Kirtman,, B. (2016). Direct piezoelectric tensor of 3D periodic systems through a coupled perturbed Hartree–Fock/Kohn–Sham method. Zeitschrift für Physikalische Chemie, 230, 719.

Baima,, J., Erba,, A., Orlando,, R., Rérat,, M., & Dovesi,, R. (2013). Beryllium oxide nanotubes and their connection to the flat monolayer. Journal of Physical Chemistry C, 117, 12864–12872.

Baima,, J., Ferrabone,, M., Orlando,, R., Erba,, A., & Dovesi,, R. (2016). Thermodynamics and phonon dispersion of pyrope and grossular silicate garnets from ab initio simulations. Physics and Chemistry of Minerals, 43, 137–149.

Baima,, J., Zelferino,, A., Olivero,, P., Erba,, A., & Dovesi,, R. (1961, 2016). Raman spectroscopic features of the neutral vacancy in diamond from ab initio quantum–mechanical calculations. Physical Chemistry Chemical Physics, 18, 1961–1968.

Baker,, J., Scheiner,, A., & Andzelm,, J. (1993). Spin contamination in density functional theory. Chemical Physics Letters, 216, 380–388.

Bankura,, A., Santra,, B., Jr,, R. A. D., Swartz,, C. W., & Klein,, M. L. (2015). A systematic study of chloride ion solvation in water using Van der Waals inclusive hybrid density functional theory. Molecular Physics, 113, X. Wu, 2842.

Baroni,, S., Giannozzi,, P., & Isaev,, E. (2010). Density‐functional perturbation theory for quasi‐harmonic calculations. Reviews in Mineralogy and Geochemistry, 71, 39–57.

Becke,, A. D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98, 5648–5652.

Bernasconi,, L., Tomić,, S., Ferrero,, M., Rérat,, M., Orlando,, R., Dovesi,, R., & Harrison,, N. M. (2011). First‐principles optical response of semiconductors and oxide materials. Physical Review B, 83, 195325.

Bilc,, D. I., Orlando,, R., Shaltaf,, R., Rignanese,, G.‐M., Íñiguez,, J., & Ghosez,, P. (2008). Hybrid exchange‐correlation functional for accurate prediction of the electronic and structural properties of ferroelectric oxides. Physical Review B, 77, 165107.

Bishop,, D. M., & Kirtman,, B. (1991). A perturbation method for calculating vibrational dynamic dipole polarizabilities and hyperpolarizabilities. The Journal of Chemical Physics, 95, 2646–2658.

Boyer,, L. L. (1979). Calculation of thermal expansion, compressiblity, an melting in alkali halides: NaCl and KCl. Physical Review Letters, 42, 584–587.

Boys,, S. F., & Bernardi,, F. (1970). The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Molecular Physics, 19, 553–566.

Brandenburg,, J. G., Alessio,, M., Civalleri,, B., Peintinger,, M. F., Bredow,, T., & Grimme,, S. (2013). Geometrical correction for the inter‐ and intramolecular basis set superposition error in periodic density functional theory calculations. The Journal of Physical Chemistry. A, 117, 9282–9292.

Brandenburg,, J. G., & Grimme,, S. (2013a). Dispersion corrected hartreefock and density functional theory for organic crystal structure prediction. In S. Atahan‐Evrenk, & A. Aspuru‐Guzik, (Eds.), Prediction and calculation of crystal structures. Methods and applications (pp. 1–24). Cambridge, England: Springer.

Brandenburg,, J. G., & Grimme,, S. (Eds.). (2013b). Dispersion corrected hartree–fock and density functional theory for organic crystal structure prediction. Topics in Current Chemistry, 345, 1.

Brandenburg,, J. G., Potticary,, J., Sparkes,, H. A., Price,, S. L., & Hall,, S. R. (2017). Thermal expansion of carbamazepine: Systematic crystallographic measurements challenge quantum chemical calculations. Journal of Physical Chemistry Letters, 8, 4319–4324.

Bultinck,, P., Alsenoy,, C. V., Ayers,, P. W., & Carbó‐Dorca,, R. (2007). Critical analysis and extension of the Hirshfeld atoms in molecules. The Journal of Chemical Physics, 126, 144111.

Bush,, I. J., Tomic,, S., Searle,, B. G., Mallia,, G., Bailey,, C. L., Montanari,, B., … Harrison,, N. M. (2011). Parallel implementation of the ab initio CRYSTAL program: Electronic structure calculations for periodic systems. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 467, 2112–2126.

Carteret,, C., De La Pierre,, M., Dossot,, M., Pascale,, F., Erba,, A., & Dovesi,, R. (2013). The vibrational spectrum of CaCO3aragonite: A combined experimental and quantum‐mechanical investigation. The Journal of Chemical Physics, 138, 014201.

Casassa,, S., Erba,, A., Baima,, J., & Orlando,, R. (2015). Electron density analysis of large (molecular and periodic) systems: A parallel implementation. Journal of Computational Chemistry, 36, 1940–1946.

Catti,, M., Noël,, Y., & Dovesi,, R. (2003). Full piezoelectric tensors of wurtzite and zinc blende ZnO and ZnS by first‐principles calculations. Journal of Physics and Chemistry of Solids, 64, 2183–2190.

Catti,, M., Sandrone,, G., Valerio,, G., & Dovesi,, R. (1996). Electronic, magnetic and crystal structure of Cr2O3 by theoretical methods. Journal of Physics and Chemistry of Solids, 57, 1735–1741.

Catti,, M., Valerio,, G., & Dovesi,, R. (1995). Theoretical study of electronic, magnetic, and structural properties of α‐Fe2O3(hematite). Physical Review B, 51, 7441–7450.

Causà,, M., Dovesi,, R., Pisani,, C., Colle,, R., & Fortunelli,, A. (1987). Correlation correction to the Hartree‐Fock total energy of solids. Physical Review B, 36, 891–897.

Chai,, J.‐D., & Head‐Gordon,, M. (2008). Systematic optimization of long‐range corrected hybrid density functionals. The Journal of Chemical Physics, 128, 084106.

Champagne,, B., Fripiat,, J. G., & André,, J. (1992). From uncoupled to coupled Hartree–Fock polarizabilities of infinite polymeric chains. Pariser–Parr–Pople applications to the polyacetylene chains. The Journal of Chemical Physics, 96, 8330–8337.

Civalleri,, B., Zicovich‐Wilson,, C. M., Valenzano,, L., & Ugliengo,, P. (2008). B3LYP augmented with an empirical dispersion term (B3LYP‐D*) as applied to molecular crystals. CrystEngComm, 10, 405–410.

Colle,, R., & Salvetti,, O. (1975). Approximate calculation of the correlation energy for the closed shells. Theoretical Chemistry Accounts, 37, 329–334.

Conesa,, J. (2012). Modeling with hybrid density functional theory the electronic band alignment at the zinc oxide–anatase interface. Journal of Physical Chemistry C, 116, 18884–18890.

Corá,, F. (2005). The performance of hybrid density functionals in solid state chemistry: The case of BaTiO3. Molecular Physics, 103, 2483–2496.

Corà,, F., Alfredsson,, M., Mallia,, G., Middlemiss,, D. S., Mackrodt,, W. C., Dovesi,, R., & Orlando,, R. (2004). The performance of hybrid density Functionals in solid state chemistry (pp. 171–232). Berlin, Germany: Springer.

Crowley,, J. M., Tahir‐Kheli,, J., & Goddard,, W. A. (2016). Resolution of the band gap prediction problem for materials design. Journal of Physical Chemistry Letters, 7, 1198–1203.

Cutini,, M., Civalleri,, B., Corno,, M., Orlando,, R., Brandenburg,, J. G., Maschio,, L., & Ugliengo,, P. (2016). Assessment of different quantum mechanical methods for the prediction of structure and cohesive energy of molecular crystals. Journal of Computational Chemistry, 12, 3340.

Dal Corso,, A., Posternak,, M., Resta,, R., & Baldereschi,, A. (1994). Ab initiostudy of piezoelectricity and spontaneous polarization in ZnO. Physical Review B, 50, 10715–10721.

De La Pierre,, M., Carteret,, C., Maschio,, L., André,, E., Orlando,, R., & Dovesi,, R. (2014). The Raman spectrum of CaCO3polymorphs calcite and aragonite: A combined experimental and computational study. The Journal of Chemical Physics, 140, 164509.

Delle Piane,, M., Corno,, M., Orlando,, R., Dovesi,, R., & Ugliengo,, P. (2016). Elucidating the fundamental forces in protein crystal formation: the case of crambin. Chemical Science, 7, 1496–1507.

Delle Piane,, M., Corno,, M., Pedone,, A., Dovesi,, R., & Ugliengo,, P. (2014). Large‐scale B3LYP simulations of ibuprofen adsorbed in mcm‐41 mesoporous silica as drug delivery system. Journal of Physical Chemistry C, 118, 26737–26749.

Demichelis,, R., De La Pierre,, M., Mookherjee,, M., Zicovich‐Wilson,, C. M., & Orlando,, R. (2016). Serpentine polymorphism: A quantitative insight from first‐principles calculations. CrystEngComm, 18, 4412–4419.

Detraux,, F., & Gonze,, X. (2001). Photoelasticity ofα‐quartz from first principles. Physical Review B, 63, 115118.

Doll,, K. (2010). Analytical stress tensor and pressure calculations with the CRYSTAL code. Molecular Physics, 108, 223–227.

Doll,, K., Dovesi,, R., & Orlando,, R. (2004). Analytical Hartree?Fock gradients with respect to the cell parameter for systems periodic in three dimensions. Theoretical Chemistry Accounts, 112, 394–402.

Doll,, K., Dovesi,, R., & Orlando,, R. (2006). Analytical Hartree–Fock gradients with respect to the cell parameter: Systems periodic in one and two dimensions. Theoretical Chemistry Accounts, 115, 354–360.

Donadio,, D., Bernasconi,, M., & Tassone,, F. (2003). Photoelasticity of crystalline and amorphous silica from first principles. Physical Review B, 68, 134202.

Dovesi,, R. (1986). On the role of symmetry in the ab initio hartree‐fock linear‐combination‐of‐atomic‐orbitals treatment of periodic systems. International Journal of Quantum Chemistry, 29, 1755–1774.

Dovesi,, R., Civalleri,, B., Orlando,, R., Roetti,, C., & Saunders,, V. R. (2005). Ab initio quantum simulation in solid state chemistry. Reviews in Computational Chemistry, 21, 1.

Dovesi,, R., Freyria Fava,, F., Roetti,, C., & Saunders,, V. R. (1997). Structural, electronic and magnetic properties of KMF3(M=Mn, Fe, Co, Ni). Faraday Discussions, 106, 173–187.

Dovesi,, R., Orlando,, R., Erba,, A., Zicovich‐Wilson,, C. M., Civalleri,, B., Casassa,, S., et al. (2014). CRYSTAL14: A program for theab initioinvestigation of crystalline solids. International Journal of Quantum Chemistry, 114, 1287–1317.

Dovesi,, R., Pisani,, C., Roetti,, C., & Saunders,, V. R. (1983). Treatment of Coulomb interactions in Hartree‐Fock calculations of periodic systems. Physical Review B, 28, 5781–5792.

Dovesi,, R., Ricart,, J. M., Saunders,, V. R., & Orlando,, R. (1995). Superexchange interaction in K2NiF4: an ab initio Hartree‐Fock study. Journal of Physics: Condensed Matter, 7, 7997.

El‐Kelany,, K. E., Carbonnière,, P., Erba,, A., & Rérat,, M. (2015). Inducing a finite in‐plane piezoelectricity in graphene with low concentration of inversion symmetry‐breaking defects. Journal of Physical Chemistry C, 119, 8966–8973.

El‐Kelany,, K. E., Carbonnière,, P., Erba,, A., Sotiropoulos,, J.‐M., & Rérat,, M. (2016). Piezoelectricity of functionalized graphene: A quantum‐mechanical rationalization. Journal of Physical Chemistry C, 120, 7795–7803.

El‐Kelany,, K. E., Ravoux,, C., Desmarais,, J. K., Pan,, Y., Tse,, J. S., Dovesi,, R., & Erba,, A. (2018). Spin localization magnetic ordering and electronic properties of strongly correlated Ln_{2}O_{3} sesquioxides (Ln= La, Ce, Pr, Nd). In preparation.

Erba,, A. (2014). On combining temperature and pressure effects on structural properties of crystals with standardab initiotechniques. The Journal of Chemical Physics, 141, 124115.

Erba,, A. (2016). The internal‐strain tensor of crystals for nuclear‐relaxed elastic and piezoelectric constants: on the full exploitation of its symmetry features. Physical Chemistry Chemical Physics, 18, 13984–13992.

Erba,, A. (2017). Self‐consistent hybrid functionals for solids: A fully‐automated implementation. Journal of Physics: Condensed Matter, 29, 314001.

Erba,, A., Baima,, J., Bush,, I., Orlando,, R., & Dovesi,, R. (2017). Large‐scale condensed matter DFT simulations: Performance and capabilities of the CRYSTAL code. Journal of Chemical Theory and Computation, 13, 5019–5027.

Erba,, A., Caglioti,, D., Zicovich‐Wilson,, C. M., & Dovesi,, R. (2017). Nuclear‐relaxed elastic and piezoelectric constants of materials: Computational aspects of two quantum‐mechanical approaches. Journal of Computational Chemistry, 38, 257–264.

Erba,, A., Casassa,, S., Dovesi,, R., Maschio,, L., & Pisani,, C. (2009). Periodic density functional theory and local‐MP2 study of the librational modes of Ice XI. The Journal of Chemical Physics, 130, 074505.

Erba,, A., & Dovesi,, R. (2013). Photoelasticity of crystals from theoretical simulations. Physical Review B, 88, 045121.

Erba,, A., El‐Kelany,, K. E., Ferrero,, M., Baraille,, I., & Rérat,, M. (2013). Piezoelectricity of SrTiO3: Anab initiodescription. Physical Review B, 88, 035102.

Erba,, A., Ferrabone,, M., Baima,, J., Orlando,, R., Rérat,, M., & Dovesi,, R. (2013). The vibration properties of the (n,0) boron nitride nanotubes fromab initioquantum chemical simulations. The Journal of Chemical Physics, 138, 054906.

Erba,, A., Ferrabone,, M., Orlando,, R., & Dovesi,, R. (2013). Accurate dynamical structure factors fromab initiolattice dynamics: The case of crystalline silicon. Journal of Computational Chemistry, 34, 346–354.

Erba,, A., Mahmoud,, A., Belmonte,, D., & Dovesi,, R. (2014). High pressure elastic properties of minerals fromab initiosimulations: The case of pyrope, grossular and andradite silicate garnets. The Journal of Chemical Physics, 140, 124703.

Erba,, A., Mahmoud,, A., Orlando,, R., & Dovesi,, R. (2014). Elastic properties of six silicate garnet end members from accurate ab initio simulations. Physics and Chemistry of Minerals, 41, 151–160.

Erba,, A., Maul,, J., & Civalleri,, B. (1820, 2016). Thermal properties of molecular crystals through dispersion‐corrected quasi‐harmonic ab initio calculations: The case of urea. Chemical Communications, 52, 1820–1823.

Erba,, A., Maul,, J., De La Pierre,, M., & Dovesi,, R. (2015). Structural and elastic anisotropy of crystals at high pressures and temperatures from quantum mechanical methods: The case of Mg2SiO4forsterite. The Journal of Chemical Physics, 142, 204502.

Erba,, A., Maul,, J., Demichelis,, R., & Dovesi,, R. (2015). Assessing thermochemical properties of materials through ab initio quantum‐mechanical methods: the case of α‐Al2O3. Physical Chemistry Chemical Physics, 17, 11670–11677.

Erba,, A., Maul,, J., Itou,, M., Dovesi,, R., & Sakurai,, Y. (2015). Anharmonic thermal oscillations of the electron momentum distribution in lithium fluoride. Physical Review Letters, 115, 117402.

Erba,, A., Navarrete‐López,, A. M., Lacivita,, V., D’Arco,, P., & Zicovich‐Wilson,, C. M. (2015). Katoite under pressure: an ab initio investigation of its structural, elastic and vibrational properties sheds light on the phase transition. Physical Chemistry Chemical Physics, 17, 2660–2669.

Erba,, A., Ruggiero,, M. T., Korter,, T. M., & Dovesi,, R. (2015). Piezo‐optic tensor of crystals from quantum‐mechanical calculations. The Journal of Chemical Physics, 143, 144504.

Erba,, A., Shahrokhi,, M., Moradian,, R., & Dovesi,, R. (2015). On how differently the quasi‐harmonic approximation works for two isostructural crystals: Thermal properties of periclase and lime. The Journal of Chemical Physics, 142, 044114.

Eriksen,, J. J., Matthews,, D. A., Jørgensen,, P., & Gauss,, J. (2016). Assessment of the accuracy of coupled cluster perturbation theory for open‐shell systems. I. Triples expansions. The Journal of Chemical Physics, 144, 194102.

Fabris,, S., de Gironcoli,, S., Baroni,, S., Vicario,, G., & Balducci,, G. (2005). Taming multiple valency with density functionals: A case study of defective ceria. Physical Review B, 71, 041102.

Ferrari,, A. M., Orlando,, R., & Rérat,, M. (2015). Ab initio calculation of the ultraviolet–visible (UV‐vis) absorption spectrum, electron‐loss function, and reflectivity of solids. Journal of Chemical Theory and Computation, 11, 3245–3258.

Ferré,, N., Guihéry,, N., & Malrieu,, J. P. (2015). Spin decontamination of broken‐symmetry density functional theory calculations: Deeper insight and new formulations. Physical Chemistry Chemical Physics, 17, 14375–14382.

Ferrero,, M., Rérat,, M., Kirtman,, B., & Dovesi,, R. (2008). Calculation of first and second static hyperpolarizabilities of one‐ to three‐dimensional periodic compounds. Implementation in the CRYSTAL code. The Journal of Chemical Physics, 129, 244110.

Ferrero,, M., Rérat,, M., Orlando,, R., & Dovesi,, R. (2008a). The calculation of static polarizabilities of 1‐3D periodic compounds. The implementation in the crystal code. Journal of Computational Chemistry, 29, 1450–1459.

Ferrero,, M., Rérat,, M., Orlando,, R., & Dovesi,, R. (2008b). Coupled perturbed Hartree‐Fock for periodic systems: The role of symmetry and related computational aspects. The Journal of Chemical Physics, 128, 014110.

Ferrero,, M., Rérat,, M., Orlando,, R., Dovesi,, R., & Bush,, I. (2008). In R. Dovesi,, C. Roetti,, & R. Orlando, (Eds.), Ab initio simulation of crystalline solids: History and prospects (Vol. 117). Bristol, England: IOP Publishing.

Ferretti,, A., Bonferroni,, B., Calzolari,, A., & Nardelli,, M. B. (2007). WANT code(2007). Retrieved from: http://www.wanniertransport.org

Ferretti,, A., Mallia,, G., Martin‐Samos,, L., Bussi,, G., Ruini,, A., Montanari,, B., & Harrison,, N. M. (2012). Ab initiocomplex band structure of conjugated polymers: Effects of hydrid density functional theory andGWschemes. Physical Review B, 85, 235105.

Freyria Fava,, F., Baraille,, I., Lichanot,, A., Larrieu,, C., & Dovesi,, R. (1997). On the structural, electronic and magnetic properties of MnCr_{2}O_{4} spinel. Journal of Physics: Condensed Matter, 9, 10715.

Furche,, F., & Perdew,, J. P. (2006). The performance of semilocal and hybrid density functionals in 3d transition‐metal chemistry. The Journal of Chemical Physics, 124, 044103.

Gaiduk,, A. P., Govoni,, M., Seidel,, R., Skone,, J. H., Winter,, B., & Galli,, G. (2016). Photoelectron spectra of aqueous solutions from first principles. Journal of the American Chemical Society, 138, 6912–6915.

Ganesan,, S. (1962). Temperature variation of the grüneisen parameter in magnesium oxide. Philosophical Magazine, 7, 197–205.

Gerber,, I. C., Angyan,, J. G., Marsman,, M., & Kresse,, G. (2007). Range separated hybrid density functional with long‐range Hartree‐Fock exchange applied to solids. The Journal of Chemical Physics, 127, 054101.

Gerosa,, M., Bottani,, C. E., Caramella,, L., Onida,, G., Di Valentin,, C., & Pacchioni,, G. (2015a). Electronic structure and phase stability of oxide semiconductors: Performance of dielectric‐dependent hybrid functional DFT, benchmarked againstGWband structure calculations and experiments. Physical Review B, 91, 155201.

Gerosa,, M., Bottani,, C. E., Caramella,, L., Onida,, G., Valentin,, C. D., & Pacchioni,, G. (2015b). Defect calculations in semiconductors through a dielectric‐dependent hybrid DFT functional: The case of oxygen vacancies in metal oxides. The Journal of Chemical Physics, 143, 134702.

Gerosa,, M., Valentin,, C. D., Bottani,, C. E., Onida,, G., & Pacchioni,, G. (2015). Communication: Hole localization in Al‐doped quartz SiO2withinab initiohybrid‐functional DFT. The Journal of Chemical Physics, 143, 111103.

Giannozzi,, P., Baroni,, S., Bonini,, N., Calandra,, M., Car,, R., Cavazzoni,, C., et al. (2009). QUANTUM ESPRESSO: a modular and open‐source software project for quantum simulations of materials. Journal of Physics: Condensed Matter, 21(39), 395502.

Gillen,, R., Clark,, S. J., & Robertson,, J. (2013). Nature of the electronic band gap in lanthanide oxides. Physical Review B, 87, 125116.

Golesorkhtabar,, R., Pavone,, P., Spitaler,, J., Puschnig,, P., & Draxl,, C. (1861, 2013). ElaStic: A tool for calculating second‐order elastic constants from first principles.Computer Physics Communications, 184, 1861–1873.

Gonze,, X., Amadon,, B., Anglade,, P.‐M., Beuken,, J.‐M., Bottin,, F., Boulanger,, P., … Zwanziger,, J. W. (2009). ABINIT: First‐principles approach to material and nanosystem properties. Computer Physics Communications, 180, 2582–2615.

Graciani,, J., Marquez,, A. M., Plata,, J. J., Ortega,, Y., Hernandez,, N. C., Meyer,, A., … Sanz,, J. F. (2011). Comparative study on the performance of hybrid DFT functionals in highly correlated oxides: The case of CeO2and Ce2O3. Journal of Chemical Theory and Computation, 7, 56–65.

Green,, M. C., Nakata,, H., Fedorov,, D. G., & Slipchenko,, L. V. (2016). Radical damage in lipids investigated with the fragment molecular orbital method. Chemical Physics Letters, 651, 56–61.

Grimme,, S. (2006). Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction. Journal of Chemical Theory and Computation, 27, 1787.

Grimme,, S., Antony,, J., Ehrlich,, S., & Krieg,, H. (2010). A consistent and accurateab initioparametrization of density functional dispersion correction (DFT‐D) for the 94 elements H‐Pu. The Journal of Chemical Physics, 132, 154104.

Grimme,, S., Brandenburg,, J. G., Bannwarth,, C., & Hansen,, A. (2015). Consistent structures and interactions by density functional theory with small atomic orbital basis sets. The Journal of Chemical Physics, 143, 054107.

Grimme,, S., Hansen,, A., Brandenburg,, J. G., & Bannwarth,, C. (2016). Dispersion‐corrected mean‐field electronic structure methods. Chemical Reviews, 116, 5105–5154.

Hafner,, J. (2008). Ab‐initiosimulations of materials using VASP: Density‐functional theory and beyond. Journal of Computational Chemistry, 29, 2044–2078.

Hafner,, J., Wolverton,, C., & Ceder,, G. (2006). Toward Computational Materials Design: The Impact of Density Functional Theory on Materials Research. MRS Bulletin, 31, 659–668.

Halls,, M. D., & Schlegel,, H. B. (1998). Comparison of the performance of local, gradient‐corrected, and hybrid density functional models in predicting infrared intensities. The Journal of Chemical Physics, 109, 10587–10593.

Hamann,, D. R., Wu,, X., Rabe,, K. M., & Vanderbilt,, D. (2005). Metric tensor formulation of strain in density‐functional perturbation theory. Physical Review B, 71, 035117.

Hay,, P. J., Martin,, R. L., Uddin,, J., & Scuseria,, G. E. (2006). Theoretical study of CeO2 and Ce2O3 using a screened hybrid density functional. The Journal of Chemical Physics, 125, 034712.

Heyd,, J., & Scuseria,, G. E. (2004). Efficient hybrid density functional calculations in solids: Assessment of the Heyd–Scuseria–Ernzerhof screened Coulomb hybrid functional. The Journal of Chemical Physics, 121, 1187–1192.

Heyd,, J., Scuseria,, G. E., & Ernzerhof,, M. (2006). Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)]. The Journal of Chemical Physics, 124, 219906.

Hirshfeld,, F. L. (1977). Bonded‐atom fragments for describing molecular charge densities. Theoretica Chimica Acta, 44, 129–138.

Hudson,, B. S. (2001). Inelastic neutron scattering: A tool in molecular vibrational spectroscopy and a test of ab initio methods. The Journal of Physical Chemistry. A, 105, 3949–3960.

Hurst,, G., Dupuis,, M., & Clementi,, E. (1988). Abinitioanalytic polarizability, first and second hyperpolarizabilities of large conjugated organic molecules: Applications to polyenes C4H6to C22H24. The Journal of Chemical Physics, 89, 385–395.

Hutter,, J., Iannuzzi,, M., Schiffmann,, F., & VandeVondele,, J. (2014), ISSN 1759‐0884). cp2k:atomistic simulations of condensed matter systems. WIREs Computational Molecular Science, 4, 15–25.

Iikura,, H., Tsuneda,, T., Yanai,, T., & Hirao,, K. (2001). A long‐range correction scheme for generalized‐gradient‐approximation exchange functionals. The Journal of Chemical Physics, 115, 3540–3544.

Jain,, A., Hautier,, G., Moore,, C. J., Ong,, S. P., Fischer,, C. C., Mueller,, T., … Ceder,, G. (2011). A high‐throughput infrastructure for density functional theory calculations. Computational Materials Science, 50, 2295–2310.

Janesko,, B. G., Henderson,, T. M., & Scuseria,, G. E. (2009). Screened hybrid density functionals for solid‐state chemistry and physics. Physical Chemistry Chemical Physics, 11, 443–454.

Jian,, T., Li,, W., Popov,, I. A., Lopez,, G. V., Chen,, X., Boldyrev,, A. I., … Wang,, L. (2016). Manganese‐centered tubular boron cluster – MnB16−: A new class of transition‐metal molecules. The Journal of Chemical Physics, 144, 154310.

Jiang,, H. (2015). First‐principles approaches for strongly correlated materials: A theoretical chemistry perspective. International Journal of Quantum Chemistry, 115, 722–730.

Jiang,, H., Gomez‐Abal,, R. I., Rinke,, P., & Scheffler,, M. (2009). Localized and itinerant states in lanthanide oxides united byGW @ LDA+U. Physical Review Letters, 102, 126403.

Jiang,, H., Rinke,, P., & Scheffler,, M. (2012). Electronic properties of lanthanide oxides from the GW perspective. Physical Review B, 86, 125115.

Johnson,, D. D. (1988). Modified Broyden’s method for accelerating convergence in self‐consistent calculations. Physical Review B, 38, 12807–12813.

Karki,, B. B., Ackland,, G. J., & Crain,, J. (1997). Elastic instabilities in crystals from ab initio stress‐strain relations. Journal of Physics: Condensed Matter, 9, 8579.

Karki,, B. B., Stixrude,, L., & Wentzcovitch,, R. M. (2001). High‐pressure elastic properties of major materials of Earth`s mantle from first principles. Reviews of Geophysics, 39, 507–534.

Karki,, B. B., & Wentzcovitch,, R. M. (2003). Vibrational and quasiharmonic thermal properties of CaO under pressure. Physical Review B, 68, 224304.

Karki,, B. B., Wentzcovitch,, R. M., de Gironcoli,, S., & Baroni,, S. (2000). High‐pressure lattice dynamics and thermoelasticity of MgO. Physical Review B, 61, 8793–8800.

Karna,, S. P., & Dupuis,, M. (1991). Frequency dependent nonlinear optical properties of molecules: Formulation and implementation in the HONDO program. Journal of Computational Chemistry, 12, 487–504.

Kemp,, J. C. (1969). Piezo‐optical birefringence modulators: New use for a long‐known effect. Journal of the Optical Society of America, 59, 950.

King‐Smith,, R. D., & Vanderbilt,, D. (1993). Theory of polarization of crystalline solids. Physical Review B, 47, 1651–1654.

Kirtman,, B., Gu,, F. L., & Bishop,, D. M. (2000). Extension of the Genkin and Mednis treatment for dynamic polarizabilities and hyperpolarizabilities of infinite periodic systems. I. Coupled perturbed Hartree–Fock theory. The Journal of Chemical Physics, 113, 1294–1309.

Klimes,, J., & Michaelides,, A. (2012). Perspective: Advances and challenges in treating van der Waals dispersion forces in density functional theory. The Journal of Chemical Physics, 137, 120901.

Koch,, W., & Holthausen,, M. C. (2001). A chemists guide to density functional theory. Heidelberg, Germany: Wiley‐VCH.

Kossmann,, S., Kirchner,, B., & Neese,, F. (2007). Performance of modern density functional theory for the prediction of hyperfine structure: Meta‐GGA and double hybrid functionals. Molecular Physics, 105, 2049–2071.

Kresse,, G., & Furthmüller,, J. (1996). Efficient iterative schemes forab initiototal‐energy calculations using a plane‐wave basis set. Physical Review B, 54, 11169–11186.

Krupych,, O., Savaryn,, V., Krupych,, A., Klymiv,, I., & Vlokh,, R. (2013). Determination of piezo‐optic coefficients of crystals by means of four‐point bending. Applied Optics, 52, 4054–4061.

Kruse,, H., & Grimme,, S. (2012). A geometrical correction for the inter‐ and intra‐molecular basis set superposition error in Hartree‐Fock and density functional theory calculations for large systems. The Journal of Chemical Physics, 136, 154101.

Kümmel,, S., & Kronik,, L. (2008). Orbital‐dependent density functionals: Theory and applications. Reviews of Modern Physics, 80, 3–60.

Lacivita,, V., Erba,, A., Dovesi,, R., & D’Arco,, P. (2014). Elasticity of grossular–andradite solid solution: An ab initio investigation. Physical Chemistry Chemical Physics, 16, 15331–15338.

Landers,, J., Gor,, G. Y., & Neimark,, A. V. (2013). Density functional theory methods for characterization of porous materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 437, 3–32.

Li,, T., Baum,, Z. J., & Goldberger,, J. E. (2016). A vanadium chalcogenide dicubane. European Journal of Inorganic Chemistry, 2016, 28–32.

Lillestolen,, T. C., & Wheatley,, R. J. (2009). Atomic charge densities generated using an iterative stockholder procedure. The Journal of Chemical Physics, 131, 144101.

Loschen,, C., Carrasco,, J., Neyman,, K. M., & Illas,, F. (2007). First‐principlesLDA+UandGGA+Ustudy of cerium oxides: Dependence on the effective U parameter. Physical Review B, 75, 035115.

Lucas,, M. S., Kresch,, M., Stevens,, R., & Fultz,, B. (2008). Phonon partial densities of states and entropies of Fe and Cr in bcc Fe‐Cr from inelastic neutron scattering. Physical Review B, 77, 184303.

Lutnaes,, O. B., Ruden,, T. A., & Helgaker,, T. (2004). The performance of hybrid density functional theory for the calculation of indirect nuclear spin–spin coupling constants in substituted hydrocarbons. Magnetic Resonance in Chemistry, 42, S117–S127.

Madsen,, A. O., Civalleri,, B., Ferrabone,, M., Pascale,, F., & Erba,, A. (2013). Anisotropic displacement parameters for molecular crystals from periodic Hartree–Fock and density functional theory calculations. Acta Crystallogrhica Section A, 69, 309–321.

Madsen,, G. K. H., & Singh,, D. J. (2006). BoltzTraP. A code for calculating band‐structure dependent quantities. Computer Physics Communications, 175, 67–71.

Mahmoud,, A., Erba,, A., Doll,, K., & Dovesi,, R. (2014). Pressure effect on elastic anisotropy of crystals fromab initiosimulations: The case of silicate garnets. The Journal of Chemical Physics, 140, 234703.

Mahmoud,, A., Erba,, A., El‐Kelany,, K. E., Rérat,, M., & Orlando,, R. (2014). Low‐temperature phase of BaTiO3: Piezoelectric, dielectric, elastic, and photoelastic properties fromab initiosimulations. Physical Review B, 89, 045103.

Marques,, M. A. L., Vidal,, J., Oliveira,, M. J. T., Reining,, L., & Botti,, S. (2011). Density‐based mixing parameter for hybrid functionals. Physical Review B, 83, 035119.

Marsman,, M., Paier,, J., Stroppa,, A., & Kresse,, G. (2008). Hybrid functionals applied to extended systems. Journal of Physics: Condensed Matter, 20, 064201.

Maschio,, L. (2018). Direct Inversion of the Iterative Subspace (DIIS) convergence accelerator for crystalline solids employing Gaussian basis sets. Theoretical Chemistry Accounts. In press.

Maschio,, L., Kirtman,, B., Orlando,, R., & Rérat,, M. (2012). Ab initioanalytical infrared intensities for periodic systems through a coupled perturbed Hartree‐Fock/Kohn‐Sham method. The Journal of Chemical Physics, 137, 204113.

Maschio,, L., Kirtman,, B., Rérat,, M., Orlando,, R., & Dovesi,, R. (2013a). Comment on “Ab initioanalytical infrared intensities for periodic systems through a coupled perturbed Hartree‐Fock/Kohn‐Sham method” [J. Chem. Phys. 137, 204113 (2012)]. The Journal of Chemical Physics, 139, 167101.

Maschio,, L., Kirtman,, B., Rérat,, M., Orlando,, R., & Dovesi,, R. (2013b). Ab initioanalytical Raman intensities for periodic systems through a coupled perturbed Hartree‐Fock/Kohn‐Sham method in an atomic orbital basis. I. Theory. The Journal of Chemical Physics, 139, 164101.

Maschio,, L., Kirtman,, B., Rérat,, M., Orlando,, R., & Dovesi,, R. (2013c). Ab initioanalytical Raman intensities for periodic systems through a coupled perturbed Hartree‐Fock/Kohn‐Sham method in an atomic orbital basis. II. Validation and comparison with experiments. The Journal of Chemical Physics, 139, 164102.

Maschio,, L., Kirtman,, B., Salustro,, S., Zicovich‐Wilson,, C. M., Orlando,, R., & Dovesi,, R. (2013). Raman spectrum of pyrope garnet. A quantum mechanical simulation of frequencies, intensities, and isotope shifts. The Journal of Physical Chemistry. A, 117, 11464–11471.

Maschio,, L., Rérat,, M., Kirtman,, B., & Dovesi,, R. (2015). Calculation of the dynamic first electronic hyperpolarizabilityβ(−ωσ;ω1,ω2) of periodic systems. Theory, validation, and application to multi‐layer MoS2. The Journal of Chemical Physics, 143, 244102.

Maul,, J., Erba,, A., Santos,, I. M. G., Sambrano,, J. R., & Dovesi,, R. (2015). In silico infrared and Raman spectroscopy under pressure: The case of CaSnO3perovskite. The Journal of Chemical Physics, 142, 014505.

Maul,, J., Santos,, I. M. G., Sambrano,, J. R., & Erba,, A. (2016). Thermal properties of the orthorhombic CaSnO_{3} Perovskite under pressure from ab initio quasi‐harmonic calculations. Theoretical Chemistry Accounts, 135, 1.

McWeeny,, R., & Sutcliffe,, B. T. (1969). Methods of molecular quantum mechanics (Vol. 2). New York, NY: Academic Press.

Menéndez‐Proupin,, E., Palacios,, P., Wahnón,, P., & Conesa,, J. C. (2014). Self‐consistent relativistic band structure of theCH3NH3PbI3perovskite. Physical Review B, 90, 045207.

Menon,, A. S., & Radom,, L. (2008). Consequences of spin contamination in unrestricted calculations on open‐shell species: Effect of Hartree−Fock and Møller−Plesset contributions in hybrid and double‐hybrid density functional theory approaches. The Journal of Physical Chemistry. A, 112, 13225–13230.

Meyer,, A., Catti,, M., & Dovesi,, R. (2010). Chemical and magnetic ordering derived from ab initio simulations: The case of β`‐LiFeO_{2}. Journal of Physics: Condensed Matter, 22, 146008.

Milman,, V., & Warren,, M. C. (2001). Elasticity of hexagonal BeO. Journal of Physics: Condensed Matter, 13, 5585.

Morbec,, J. M., Narkeviciute,, I., Jaramillo,, T. F., & Galli,, G. (2014). Optoelectronic properties ofTa3N5: A joint theoretical and experimental study. Physical Review B, 90, 155204.

Moussa,, J. E., Schultz,, P. A., & Chelikowsky,, J. R. (2012). Analysis of the Heyd‐Scuseria‐Ernzerhof density functional parameter space. The Journal of Chemical Physics, 136, 204117.

Muñoz‐Santiburcio,, D., & Hernández‐Laguna,, A. (2017). AWESoMe 1.1: A code for the calculation of phase and group velocities of acoustic waves in homogeneous solids. Computer Physics Communications, 217, 212–214.

Muñoz‐Santiburcio,, D., Hernández‐Laguna,, A., & Soto,, J. I. (2015). AWESoMe: A code for the calculation of phase and group velocities of acoustic waves in homogeneous solids. Computer Physics Communications, 192, 272–277.

Musgrave,, M. J. P. (1970). Crystal acoustics. San Francisco, CA: Holden‐Day.

Mytsyk,, B., Demyanyshyn,, N., Erba,, A., Shut,, V., Mozzharov,, S., Kost,, Y., … Vlokh,, R. (2017). Piezo‐optic and elasto‐optic properties of monoclinic triglycine sulfate crystals. Applied Optics, 56, 9484–9490.

Mytsyk,, B., Erba,, A., Demyanyshyn,, N., & Saharuk,, A. (2016). Piezo‐optic and elasto‐optic effects in lead molibdate crystals. Optical Materials, 62, 632–638.

Mytsyk,, B., Shut,, V., Demyanyshyn,, N., Mozzharov,, S., Erba,, A., Kalynyak,, B., … Vlokh,, R. (2017). Piezooptic coefficients and acoustooptic efficiency of TGS crystals. Ukrainian Journal of Physical Optics, 18, 46.

Mytsyk,, B. G., Andrushchak,, A. S., Demyanyshyn,, N. M., Kost,, Y. P., Kityk,, A. V., Mandracci,, P., & Schranz,, W. (2009). Piezo‐Optic coefficients of MgO‐doped LiNbO_{3} crystals. Applied Optics, 48, 1904.

Narasimhamurty,, T. S. (1981). Photoelastic and electrooptic properties of crystals. New York: Springer.

Noel,, Y., De La Pierre,, M., Zicovich‐Wilson,, C. M., Orlando,, R., & Dovesi,, R. (2014). Structural, electronic and energetic properties of giant icosahedral fullerenes up to C6000: Insights from an ab initio hybrid DFT study. Physical Chemistry Chemical Physics, 16, 13390–13401.

Noël,, Y., Llunell,, M., Orlando,, R., D’Arco,, P., & Dovesi,, R. (2002). Performance of various Hamiltonians in the study of the piezoelectric properties of crystalline compounds: The case of BeO and ZnO. Physical Review B, 66, 214107.

Nye,, J. F. (1957). Physical properties of crystals. Oxford, England: Oxford University Press.

Orlando,, R., De La Pierre,, M., Zicovich‐Wilson,, C. M., Erba,, A., & Dovesi,, R. (2014). On the full exploitation of symmetry in periodic (as well as molecular) self‐consistent‐fieldab initiocalculations. The Journal of Chemical Physics, 141, 104108.

Orlando,, R., Delle Piane,, M., Bush,, I. J., Ugliengo,, P., Ferrabone,, M., & Dovesi,, R. (2012). A new massively parallel version of CRYSTAL for large systems on high performance computing architectures. Journal of Computational Chemistry, 33, 2276–2284.

Orlando,, R., Ferrero,, M., Rérat,, M., Kirtman,, B., & Dovesi,, R. (2009). Calculation of the static electronic second hyperpolarizability or χ(3) tensor of three‐dimensional periodic compounds with a local basis set. The Journal of Chemical Physics, 131, 184105.

Orlando,, R., Lacivita,, V., Bast,, R., & Ruud,, K. (2010). Calculation of the first static hyperpolarizability tensor of three‐dimensional periodic compounds with a local basis set: A comparison of LDA, PBE, PBE0, B3LYP, and HF results. The Journal of Chemical Physics, 132, 244106.

Orr,, B. J., & Ward,, J. F. (1971). Perturbation theory of the non‐linear optical polarization of an isolated system. Molecular Physics, 20, 513–526.

Osborn,, R., Goremychkin,, E. A., Kolesnikov,, A. I., & Hinks,, D. G. (2001). Phonon density of states in MgB2. Physical Review Letters, 87, 017005.

Otero,, N., Karamanis,, P., El‐Kelany,, K. E., Rerat,, M., Maschio,, L., Civalleri,, B., & Kirtman,, B. (2017). Exploring the linear optical properties of borazine (B3N3) doped graphenes. 0D Flakes vs 2D sheets. Journal of Physical Chemistry C, 121, 709–722.

Otero‐De‐La‐Roza,, A., & Johnson,, E. R. (2012). A benchmark for non‐covalent interactions in solids. The Journal of Chemical Physics, 137, 054103.

Otto,, P. (1992). Calculation of the polarizability and hyperpolarizabilities of periodic quasi‐one‐dimensional systems. Physical Review B, 45, 10876–10885.

Otto,, P., Gu,, F. L., & Ladik,, J. (1999). Calculation ofab initiodynamic hyperpolarizabilities of polymers. The Journal of Chemical Physics, 110, 2717–2726.

Pacchioni,, G. (2015). First principles calculations on oxide‐based heterogeneous catalysts and photocatalysts: Problems and advances. Catalysis Letters, 145, 80–94.

Paier,, J., Marsman,, M., Hummer,, K., Kresse,, G., Gerber,, I. C., & Angyan,, J. G. (2006). Screened hybrid density functionals applied to solids. The Journal of Chemical Physics, 124, 154709.

Pamuk,, B., Baima,, J., Dovesi,, R., Calandra,, M., & Mauri,, F. (2016). Spin susceptibility and electron‐phonon coupling of two‐dimensional materials by range‐separated hybrid density functionals: Case study ofLixZrNCl. Physical Review B, 94, 035101.

Parlinski,, K., Li,, Z. Q., & Kawazoe,, Y. (1997). First‐principles determination of the soft mode in cubic ZrO2. Physical Review Letters, 78, 4063–4066.

Pascale,, F., Zicovich‐Wilson,, C. M., Gejo,, F. L., Civalleri,, B., Orlando,, R., & Dovesi,, R. (2004). The calculation of the vibrational frequencies of crystalline compounds and its implementation in the CRYSTAL code. Journal of Computational Chemistry, 25, 888–897.

Pascale,, F., Zicovich‐Wilson,, C. M., Orlando,, R., Roetti,, C., Ugliengo,, P., & Dovesi,, R. (2005). Vibration Frequencies of Mg3Al2Si3O12Pyrope. An ab initio study with the CRYSTAL code. The Journal of Physical Chemistry. B, 109, 6146–6152.

Peintinger,, M. F., Oliveira,, D. V., & Bredow,, T. (2013). Consistent Gaussian basis sets of triple‐zeta valence with polarization quality for solid‐state calculations. Journal of Computational Chemistry, 34, 451–459.

Perger,, W. F., Criswell,, J., Civalleri,, B., & Dovesi,, R. (2009). Ab‐initio calculation of elastic constants of crystalline systems with the CRYSTAL code. Computer Physics Communications, 180, 1753–1759.

Petit,, L., Svane,, A., Szotek,, Z., & Temmerman,, W. M. (2005). First‐principles study of rare‐earth oxides. Physical Review B, 72, 205118.

Pisani,, C., Dovesi,, R., & Roetti,, C. (1988). Hartree‐Fock ab initio treatment of crystalline solids *Lecture Notes in Chemistry Series* (Vol. 48). Berlin, Germany: Springer Verlag.

Pizzi,, G., Volja,, D., Kozinsky,, B., Fornari,, M., & Marzari,, N. (2014). BoltzWann: A code for the evaluation of thermoelectric and electronic transport properties with a maximally‐localized Wannier functions basis. Computer Physics Communications, 185, 422–429.

Prencipe,, M., Maschio,, L., Kirtman,, B., Salustro,, S., Erba,, A., & Dovesi,, R. (2014). Raman spectrum of NaAlSi2O6jadeite. A quantum mechanical simulation. Journal of Raman Specroscopy, 45, 703–709.

Pulay,, P. (1969). Ab initiocalculation of force constants and equilibrium geometries in polyatomic molecules. Molecular Physics, 17, 197–204.

Pulay,, P. (1980), ISSN 0009‐2614). Convergence acceleration of iterative sequences. The case of SCF iteration. Chemical Physics Letters, 73, 393–398.

Pulay,, P. (1982), ISSN 1096‐987X). Improved SCF convergence acceleration. Journal of Computational Chemistry, 3, 556–560.

Reilly,, A. M., & Tkatchenko,, A. (2013). Understanding the role of vibrations, exact exchange, and many‐body van der Waals interactions in the cohesive properties of molecular crystals. The Journal of Chemical Physics, 139, 024705.

Rérat,, M., Maschio,, L., Kirtman,, B., Civalleri,, B., & Dovesi,, R. (2016). Computation of second harmonic generation for crystalline urea and KDP. An ab initio approach through the coupled perturbed Hartree–Fock/Kohn–Sham scheme. Journal of Chemical Theory and Computation, 12, 107–113.

Resta,, R. (1994). Macroscopic polarization in crystalline dielectrics: The geometric phase approach. Reviews of Modern Physics, 66, 899–915.

Ricart,, J. M., Dovesi,, R., Roetti,, C., & Saunders,, V. R. (1995). Electronic and magnetic structure ofKNiF3perovskite. Physical Review B, 52, 2381–2389.

Richard,, D., Muñoz,, E. L., Rentería,, M., Errico,, L. A., Svane,, A., & Christensen,, N. E. (2013). AbinitioLSDA and LSDA+Ustudy of pure and Cd‐doped cubic lanthanide sesquioxides. Physical Review B, 88, 165206.

Rivero,, P., Moreira,, I. P. R., Scuseria,, G. E., & Illas,, F. (2009). Description of magnetic interactions in strongly correlated solids via range‐separated hybrid functionals. Physical Review B, 79, 245129.

Roothaan,, C. (1960). Self‐consistent field theory for open shells of electronic systems. Reviews of Modern Physics, 32, 179–185.

Ruggiero,, M. T., Zeitler,, J., & Erba,, A. (2017). Intermolecular anharmonicity in molecular crystals: interplay between experimental low‐frequency dynamics and quantum quasi‐harmonic simulations of solid purine. Chemical Communications, 53, 3781–3784.

Rusevich,, L., Zvejnieks,, G., Erba,, A., Dovesi,, R., & Kotomin,, E. (2017). Electromechanical properties of Ba(1–x)SrxTiO3Perovskite solid solutions from first‐principles calculations. The Journal of Physical Chemistry. A, 121, 9409–9414.

Saghi‐Szabo,, G., Cohen,, R. E., & Krakauer,, H. (1998). First‐principles study of piezoelectricity inPbTiO3. Physical Review Letters, 80, 4321–4324.

Salustro,, S., Erba,, A., Zicovich‐Wilson,, C., Nöel,, Y., Maschio,, L., & Dovesi,, R. (2016). Infrared and Raman spectroscopic features of the self‐interstitial defect in diamond from exact‐exchange hybrid DFT calculations. Physical Chemistry Chemical Physics, 18, 21288–21295.

Salustro,, S., Ferrari,, A., Orlando,, R., & Dovesi,, R. (2017). Comparison between cluster and supercell approaches: The case of defects in diamond. Theoretical Chemistry Accounts, 136(4), 1–13.

Salustro,, S., Maschio,, L., Kirtman,, B., Rérat,, M., & Dovesi,, R. (2016). Third‐order electric field response of infinite linear chains composed of phenalenyl radicals. Journal of Physical Chemistry C, 120, 6756–6761.

Sansone,, G., Ferretti,, A., & Maschio,, L. (2017). Ab initioelectronic transport and thermoelectric properties of solids from full and range‐separated hybrid functionals. The Journal of Chemical Physics, 147, 114101.

Sansone,, G., Maschio,, L., & Karttunen,, A. (2017). One‐dimensional phosphorus nanostructures: From nanorings to nanohelices. Chemistry ‐ A European Journal, 23, 15884–15888.

Schmerler,, S., & Kortus,, J. (2014). Ab initiostudy of AlN: Anisotropic thermal expansion, phase diagram, and high‐temperature rocksalt to wurtzite phase transition. Physical Review B, 89, 064109.

Schwarz,, K., Blaha,, P., & Madsen,, G. (2002). Electronic structure calculations of solids using the WIEN2k package for material sciences. Computer Physics Communications, 147, 71–76.

Sears,, V. (1992). Neutron scattering lengths and cross sections. Neutron News, 3, 29.

Segall,, M. D., Lindan,, P. J. D., Probert,, M. J., Pickard,, C. J., Hasnip,, P. J., Clark,, S. J., & Payne,, M. C. (2002). First‐principles simulation: Ideas, illustrations and the CASTEP code. Journal of Physics: Condensed Matter, 14, 2717.

Shang,, S.‐L., Zhang,, H., Wang,, Y., & Liu,, Z.‐K. (2010). Temperature‐dependent elastic stiffness constants of α‐ and ϑ‐Al_{2}O_{3} from first‐principles calculations. Journal of Physics: Condensed Matter, 22, 375403.

Shimazaki,, T., & Nakajima,, T. (2014). Dielectric‐dependent screened Hartree–Fock exchange potential and Slater‐formula with Coulomb‐hole interaction for energy band structure calculations. The Journal of Chemical Physics, 141, 114109.

Siegbahn,, P. E. M. (2006). The performance of hybrid DFT for mechanisms involving transition metal complexes in enzymes. Journal of Biological Inorganic Chemistry, 11, 695–701.

Skone,, J. H., Govoni,, M., & Galli,, G. (2014). Self‐consistent hybrid functional for condensed systems. Physical Review B, 89, 195112.

Slezinger,, I., Alievskaya,, A., & Mironov,, Y. (1985). Piezooptic devices. Measurement techniques, 28, 1059–1062.

Sure,, R., Brandenburg,, J. G., & Grimme,, S. (2016). Small atomic orbital basis set first‐principles quantum chemical methods for large molecular and periodic systems: A critical analysis of error sources. ChemistryOpen, 5, 94–109.

Sure,, R., & Grimme,, S. (2013). Corrected small basis set Hartree‐Fock method for large systems. Journal of Chemical Theory and Computation, 34, 1672–1685.

Tawada,, Y., Tsuneda,, T., Yanagisawa,, S., Yanai,, T., & Hirao,, K. (2004). A long‐range‐corrected time‐dependent density functional theory. The Journal of Chemical Physics, 120, 8425–8433.

Tersoff,, J. (1984). Schottky barrier heights and the continuum of gap states. Physical Review Letters, 52, 465–468.

Togo,, A., Oba,, F., & Tanaka,, I. (2008). First‐principles calculations of the ferroelastic transition between rutile‐type and CaCl2‐type SiO2 at high pressures. Physical Review B, 78, 134106.

Tomfhor,, J. K., & Sankey,, O. F. (2002). Complex band structure, decay lengths, and Fermi level alignment in simple molecular electronic systems. Physical Review B, 65, 245105.

Toulouse, J., Savin, A., & Flad, H.‐J. (2004). Short‐range exchange‐correlation energy of a uniform electron gas with modified electron–electron interaction. International Journal of Quantum Chemistry, 100, 1047.

Towler,, M. D., Allan,, N. L., Harrison,, N. M., Saunders,, V. R., Mackrodt,, W. C., & Aprà,, E. (1994). Ab initiostudy of MnO and NiO. Physical Review B, 50, 5041–5054.

Towler,, M. D., Dovesi,, R., & Saunders,, V. R. (1995). Magnetic interactions and the cooperative Jahn‐Teller effect inKCuF3. Physical Review B, 52, 10150–10159.

Towler,, M. D., Zupan,, A., & Causá,, M. (1996). Density functional theory in periodic systems using local Gaussian basis sets. Computer Physics Communications, 98, 181–205.

Tran,, Q. T., & Tran,, V. T. (2016). Quantum chemical study of the geometrical and electronic structures of ScSi3^{−/0} Clusters and assignment of the anion photoelectron spectra. The Journal of Chemical Physics, 144(214305), 1.

Tsuneda,, T., & Hirao,, K. (2014). Long‐range correction for density functional theory. WIREs Computational Molecular Science, 4, 375–390.

Vanderbilt,, D. (2000). Berry‐phase theory of proper piezoelectric response. Journal of Physics and Chemistry of Solids, 61, 147–151.

Veithen,, M., Gonze,, X., & Ghosez,, P. (2005). Nonlinear optical susceptibilities, Raman efficiencies, and electro‐optic tensors from first‐principles density functional perturbation theory. Physical Review B, 71, 125107.

Wahl,, R., Vogtenhuber,, D., & Kresse,, G. (2008). SrTiO3andBaTiO3revisited using the projector augmented wave method: Performance of hybrid and semilocal functionals. Physical Review B, 78, 104116.

Wallace,, D. C. (1965). Lattice dynamics and elasticity of stressed crystals. Reviews of Modern Physics, 37, 57–67.

Wallace,, D. C. (1972). Thermodynamics of crystals. New York, NY: Wiley.

Wang,, J., Li,, J., Yip,, S., Phillpot,, S., & Wolf,, D. (1995). Mechanical instabilities of homogeneous crystals. Physical Review B, 52, 12627–12635.

Wang,, S. Q. (2006). First‐principles study of the anisotropic thermal expansion of wurtzite ZnS. Applied Physics Letters, 88, 061902.

Wang,, Y., Wang,, J. J., Zhang,, H., Manga,, V. R., Shang,, S. L., Chen,, L.‐Q., & Liu,, Z.‐K. (2010). A first‐principles approach to finite temperature elastic constants. Journal of Physics: Condensed Matter, 22, 225404.

Weber,, H.‐J. (1995). Determination of internal strain by optical measurements. Physical Review B, 51, 12209–12215.

Weigend,, F., & Ahlrichs,, R. (2005). Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Physical Chemistry Chemical Physics, 7, 3297–3305.

White,, G. K., & Anderson,, O. L. (1966). Grüneisen Parameter of Magnesium Oxide. Journal of Applied Physics, 37, 430–432.

Wu,, T.‐Y. (1969). On the nature of theories of irreversible processes. International Journal of Theoretical Physics, 2, 325–343.

Wu,, X., Vanderbilt,, D., & Hamann,, D. R. (2005). Systematic treatment of displacements, strains, and electric fields in density‐functional perturbation theory. Physical Review B, 72, 035105.

Xu,, J., & Stroud,, R. (1992). Acousto‐optic devices: Principles, design, and applications. New York: Wiley.

Yanai,, T., Tew,, D. P., & Handy,, N. C. (2004). A new hybrid exchange–correlation functional using the Coulomb‐attenuating method (CAM‐B3LYP). Chemical Physics Letters, 393, 51–57.

Yang,, Z.‐h., Sottile,, F., & Ullrich,, C. A. (2015). Simple screened exact‐exchange approach for excitonic properties in solids. Physical Review B, 92, 035202.

Yu,, R., Zhu,, J., & Ye,, H. (2010). Calculations of single‐crystal elastic constants made simple. Computer Physics Communications, 181, 671–675.

Zhao,, J., Gaskell,, P., Cormier,, L., & Bennington,, S. (1997). Vibrational density of states and structural origin of the heat capacity anomalies in Ca_{3}Al_{2}Si_{3}O_{12} glasses. Physics B, 241, 906.

Zhu,, X., & Aoki,, Y. (2015). Development of minimized mixing molecular orbital method for designing organic ferromagnets. Journal of Computational Chemistry, 36, 1232–1239.

Zicovich‐Wilson,, C., & Dovesi,, R. (1998a). On the use of symmetry‐adapted crystalline orbitals in SCF‐LCAO periodic calculations. I. The construction of the symmetrized orbitals. International Journal of Quantum Chemistry, 67, 299–309.

Zicovich‐Wilson,, C., & Dovesi,, R. (1998b). On the use of symmetry‐adapted crystalline orbitals in SCF‐LCAO periodic calculations. II. Implementation of the self‐consistent‐field scheme and examples. International Journal of Quantum Chemistry, 67, 311–320.

Zicovich‐Wilson,, C. M., Navarrete‐López,, A. M., Ho,, M., & Casassa,, S. (2009). Hirshfeld‐I charges in linear combination of atomic orbitals periodic calculations. The Journal of Chemical Physics, 131, 144101.

Zicovich‐Wilson,, C. M., Pascale,, F., Roetti,, C., Saunders,, V. R., Orlando,, R., & Dovesi,, R. (2004). Calculation of the vibration frequencies of ?‐quartz: The effect of Hamiltonian and basis set. Journal of Computational Chemistry, 25, 1873–1881.

Zoroddu,, A., Bernardini,, F., Ruggerone,, P., & Fiorentini,, V. (2001). First‐principles prediction of structure, energetics, formation enthalpy, elastic constants, polarization, and piezoelectric constants of AlN, GaN, and InN: Comparison of local and gradient‐corrected density‐functional theory. Physical Review B, 64, 045208.