Novoselov, KS, Geim, AK, Morozov, SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306:666–669.
Vogt, P, De Padova, P, Quaresima, C, et al. Silicene: Compelling experimental evidence for graphenelike two‐dimensional silicon. Phys Rev Lett. 2012;108:155501.
Dávila, ME, Xian, L, Cahangirov, S, Rubio, A, Lay, GL. Germanene: A novel two‐dimensional germanium allotrope akin to graphene and silicene. New J Phys. 2014;16:095002.
Tang, Q, Zhou, Z. Graphene‐analogous low dimensional materials. Prog Mater Sci. 2013;58:1244–1315.
Gupta, A, Sakthivel, T, Seal, S. Recent development in 2D materials beyond graphene. Prog Mater Sci. 2015;73:44–126.
Balendhran, S, Walia, S, Hussein, N, Sriram, S, Bhaskaran, M. Elemental analogues of graphene: Silicene, germanene, and phosphorene. Small. 2015;11:640–652.
Buscema, M, Island, JO, Groenendijk, DJ, et al. Photocurent generation with two‐dimensional van der Waals semiconductors. Chem Soc Rev. 2015;44:3691–3718.
Ajayan, P, Kim, P, Banerjee, K. Two‐dimensional van der Waals materials. Phys Today. 2016;69(9):38–44.
Novoselov, KS, Mishchenko, A, Carvalho, A, Castro Neto, AH. 2D material and van der Waals heterostructures. Science. 2016;353:aac9439.
Mak, KF, Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat Photonics. 2016;10:216–226.
Chhowalla, M, Jena, D, Zhang, H. Two‐dimensional semiconductors for transistors. Nat Rev Mater. 2016;1:16052.
Grazianetti, C, Cinquanta, E, Molle, A. Two‐dimenstional silicon: The advent of silicene. 2D Mater. 2016;3:012001.
Molle, A, Goldberger, J, Michel, H, Xu, Y, Zhang, S‐C, Akinwande, D. Buckled two‐dimensional Xene sheets. Nat Mater. 2017;16:163–169.
Mannix, AJ, Kiraly, B, Hersam, MC, Guisinger, NP. Synthesis and chemistry of elemental 2D materials. Nat Rev Mater. 2017;1:0014.
Duong, DL, Yun, SJ, Lee, YH. Van der Waals layered materials: Opportunities and challenges. ACS Nano. 2017;11:11803–11830.
Hu, ZH, Wu, ZT, Han, C, He, J, Ni, ZH, Chen, W. Two‐dimensional transition metal dichalcogenides: Interface and defect engineering. Chem Soc Rev. 2018;47:3100–3128. https://doi.org/10.1039/c8cs00024g
Wang, C, He, Q, Halim, U, et al. Monolayer atomic crystal molecular superlattices. Nature. 2018;555:231–236.
Xie, SE, Tu, L, Han, Y, et al. Coherent, atomically thin transition‐metal dichalcogenide superlattices with engineered strain. Science. 2018;359:1131–1136.
Li, XM, Tao, L, Chen, ZF, et al. Graphene and related two‐dimensional materials: Structure‐property relationships for electronics and optoelectronics. Appl Phys Rev. 2017;4:021306.
Zhang, SL, Yan, Z, Li, YF, Chen, ZF, Zeng, HB. Atomically thin arsenene and antimonene: Semimetal–semiconductor and indirect‐direct band‐gap transitions. Angew Chem Int Ed. 2015;54:3112–3115.
Kamal, C, Ezawa, M. Arsenene: Two‐dimensional buckled and puckered honeycomb arsenic systems. Phys Rev B. 2015;91:085423.
Kou, LZ, Ma, YD, Tan, X, Frauenheim, T, Du, AJ, Smith, S. Structural and electronic properties of layered arsenic and antimony arsenide. J Phys Chem C. 2015;119:6918–6922.
Xu, JH, Wang, EG, Ting, CS, Su, WP. Tight‐binding theory of the electronic structures for rhombohedral semimetals. Phys Rev B. 1993;48:17271–17279.
Krebs, H, Holz, W, Worms, KH. Über die Struktur und die Eigenschaften der Halbmetalle, X. Eine Neue Rhombische Arsenmodifikation und Ihre Mischkristallbildung mit Schwarzem Phosphor. Chem Ber. 1957;90:1031–1037.
Mak, KF, Lee, C, Hone, J, Shan, J, Heinz, TF. Atomically thin MoS2: A new direct‐gap semiconductor. Phys Rev Lett. 2010;105:136805.
Van Zeghbroeck, B. Principles of semiconductor devices. Colarado University, 2004. Available from: http://ece-www.colorado.edu/~bart/book/
Ding, F, Ji, HX, Chen, YH, et al. Stretchable graphene: A close look at fundamental parameters through biaxial straining. Nano Lett. 2010;10:3453–3458.
Tang, Q, Zhou, Z, Chen, ZF. Innovation and discovery of graphene‐like materials via density‐functional theory computations. WIREs Comput Mol Sci. 2015;5:36–379.
Perdew, JP, Burke, K, Ernzerhof, M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865–3868.
Heyd, J, Scuseria, GE, Ernzerhof, M. Hybrid functionals based on a screened coulomb potential. J Chem Phys. 2003;118:8207–8215.
Jain, M, Chelikowsky, JR, Louie, SG. Reliability of hybrid functionals in predicting band gaps. Phys Rev Lett. 2011;107:216806.
Zhang, SL, Xie, MQ, Li, FY, et al. Semiconducting group 15 monolayers: A broad range of band gaps and high carrier mobilities. Angew Chem Int Ed. 2016;55:1666–1669.
Ma, SY, Zhou, P, Sun, LZ, Zhang, KW. Two‐dimensional tricycle arsenene with a direct band gap. Phys Chem Chem Phys. 2016;18:8723–8729.
Ersan, F, Aktürk, E, Ciraci, S. Stable single‐layer structure of group‐V elements. Phys Rev B. 2016;94:245417.
Carrete, J, Gallego, LJ, Mingo, N. Structural complexity and phono physics in 2D arsenenes. J Phys Chem Lett. 2017;8:1375–1380.
Tsai, HS, Wang, SW, Hsiao, CH, et al. Direct synthesis and practical bandgap estimation of multilayer arsenene nanoribbons. Chem Mater. 2016;28:425–429.
Zhao, J, Liu, CY, Guo, WL, Ma, J. Prediction on the light‐assisted exfoliation of multilayered arsenene by the photo‐isomerization of azobenzene. Nanoscale. 2016;9:7006–7011.
Döbbelin, M, Ciesielski, A, Haar, S, et al. Light‐enhanced liquid‐phase exfoliation and current photoswitching in graphene‐azobenzene composites. Nat Commun. 2016;7:11090.
Lu, L, Tang, X, Cao, R, et al. Broadband nonlinear optical response in few‐layer antimonene and antimonene quantum dots: A promising optical Kerr media with enhanced stability. Adv Opt Mater. 2017;5:1700301.
Du, J, Xia, CX, An, YP, Wang, TX, Jia, Y. Tunable electronic structures and magnetism in arsenene nanosheets via transition metal doping. J Mater Sci. 2016;51:9504–9513.
Liu, MY, Chen, QY, Huang, Y, Cao, C, He, Y. A first‐principles study of transition metal doped arsenene. Superlattice Microst. 2016;100:131–141.
Fu, BT, Feng, WX, Zhou, XD, Yao, YG. Effects of doping and strain on magnetism in buckled phosphorene and arsenene. 2D Mater. 2017;4:025107.
Bai, M, Zhang, WX, He, C. Electronic and magnetic properties of Ga, Ge, P and Sb doped monolayer arsenene. J Solid State Chem. 2017;251:1–6.
Du, J, Xia, CX, Wang, TX, Zhao, X, Tan, XM, Wei, SY. First‐principle studies on substitutional doping by group IV and VI atoms in the two‐dimensional arsenene. Appl Surf Sci. 2016;378:350–356.
Li, ZJ, Xu, W, Yu, YQ, et al. Monolayer hexagonal arsenene with tunable electronic structures and magnetic properties via impurity doping. J Mater Chem C. 2016;4:362–370.
Luo, M, Shen, YH, Yin, TL. Structural, electronic, and magnetic properties in transition‐metal‐doped arsenene: ab initio study. Jpn J Appl Phys. 2017;56:015201.
Wang, YP, Zhang, CW, Ji, WX, Wang, PJ. Unexpected band structure and half‐metal in non‐metal‐doped arsenene sheet. Appl Phys Express. 2015;8:065202.
Liu, MY, Huang, Y, Chen, QY, Cao, C, He, Y. Unexpected electronic structure of the alloyed and doped arsenene sheets: First‐principles calculations. Sci Rep. 2016;6:29114.
Zhu, Z, Guan, J, Tománek, D. Structural transition in layered As1‐xPx compounds: A computational study. Nano Lett. 2015;15:6042–6046.
Yu, WY, Niu, CY, Zhu, ZL, Wang, XF, Zhang, WB. Atomically thin binary V‐V compound semiconductor: A first‐principles study. J Mater Chem C. 2016;4:6581–6587.
Shojaei, F, Kang, HS. Electronic structures and li‐diffusion properties of group IV‐V layered materials: Hexagonal germanium phosphide and germanium arsenide. J Phys Chem C. 2016;120:23842–23850.
Sun, XT, Liu, YX, Song, ZG, et al. Structures, mobility and electronic properties of point defects in arsenene, antimonene and antimony arsenide alloy. J Mater Chem C. 2017;5:4159–4166.
Lordanidou, K, Kioseoglou, J, Afanas`ev, VV, Stesmas, A, Houssa, M. Intrinsic point defects in buckled and puckered arsenene: A first‐principles study. Phys Chem Chem Phys. 2017;19:9862–9871.
Benam, ZH, Arkin, H, Aktürk, E. Point defects in buckled and asymmetric washboard phases of arsenic phosphorus: A first principles study. Comput Mater Sci. 2017;140:290–298.
Liu, XX, Liu, LZ, Yang, L, Wu, XL, Chu, PK. Optical identification of topological defect types in monolayer arsenene by first‐principles calculation. J Phys Chem C. 2016;120:24917–24924.
Min, L, Xu, YE, Song, XY. Magnetic coupling in nonmagnetic metal adsorption on arsenene monolayer: ab initio study. AIP Adv. 2017;7:115103.
Li, G, Zhao, YC, Zeng, SM, Ni, J. The realization of half‐metal and spin‐semiconductor for metal adatoms on arsenene. Appl Surf Sci. 2016;390:60–67.
Ersan, F, Aktürk, E, Ciraci, S. Interaction of adatoms and molecules with single‐layer arsenene phases. J Phys Chem C. 2016;120:14345–14355.
Liu, C, Liu, CS, Yan, XH. Arsenene as a promising candidate for NO and NO2 sensor: A first‐principles study. Phys Lett A. 2017;381:1092–1096.
Shahzad Khan, Md, Srivastava, A, Pandey, R. Electronic properties of a pristine and NH3/NO2 adsorbed buckled arsenene monolayer. RSC Adv. 2016;6:72634–72642.
Gao, N, Zhu, YF, Jiang, Q. Formation of arsenene p‐n junctions via organic molecular adsorption. J Mater Chem C. 2017;5:7283–7290.
Singh, D, Gupta, SK, Sonvane, Y, Sahoo, S. Modulating the electronic and optical properties of monolayer arsenene phases by organic molecular doping. Nanotechnology. 2017;28:495202.
Shahzad Khan, M, Srivastava, A, Pandey, R. NH3 adsorption on arsenene: A first principle study. 2015 IEEE International Symposium on Nanoelectronic and Information Systems (iNIS)(INIS), Indore, India; 2015. p. 248–251.
Xia, FF, Xiong, SY, He, YY, Shao, ZB, Zhang, XJ, Jie, JS. Tuning the electronic and optical properties of monolayers as, Sb, and bi via surface charge transfer doping. J Phys Chem C. 2017;121:19530–19537.
Zhao, J, Li, YL, Ma, J. Quantum spin hall insulators in functionalized arsenene (AsX, X= F, OH and CH3) monolayers with pronounced light absorption. Nanoscale. 2016;8:9657–9666.
Zhang, SL, Hu, YH, Hu, ZY, Cai, B, Zeng, HB. Hydrogenated arsenenes as planar magnet and Dirac material. Appl Phys Lett. 2015;107:022102.
Wang, YP, Ji, WX, Zhang, CW, et al. Controllable band structure and topological phase transition in two‐dimensional hydrogenated arsenene. Sci Rep. 2016;6:20342.
Tang, WC, Sun, ML, Ren, QQ, Wang, S, Yu, J. Halogenated arsenenes as dirac materials. Appl Surf Sci. 2016;376:286–289.
Wang, DC, Chen, L, Shi, CM, et al. Quantum spin hall insulator in halogenated arsenene films with sizable energy gaps. Sci Rep. 2016;6:28487.
Zhang, QY, Schwingenschlögl, U. Emergence of Dirac and quantum spin hall states in fluorinated monolayer as and AsSb. Phys Rev B. 2016;93:045312.
Liu, MY, Li, ZY, Chen, QY, Huang, Y, Cao, C, He, Y. Emerging novel electronic structure in hydrogen‐arsenene‐halogen nanosheets: A computational study. Sci Rep. 2017;7:4773.
Wang, DC, Chen, L, Shi, CM, et al. Robust large‐gap quantum spin hall insulators in chemically decorated arsenene films. New J Phys. 2016;18:033026.
Zhao, J, Guo, WL, Ma, J. Tunable Rashba spin splitting in quantum‐spin hall insulator AsF bilayers. Nano Res. 2017;10:491–502.
Wang, YJ, Zhou, KG, Yu, GL, Zhong, X, Zhang, HL. Partial oxidized arsenene: Emerging tunable direct bandgap semiconductor. Sci Rep. 2016;6:24981.
Wang, YP, Ji, WX, Zhang, CW, et al. Two‐dimensional arsenene oxide: A realistic large‐gap quantum spin hall insulator. Appl Phys Lett. 2017;110:213101.
Li, SS, Ji, WX, Li, P, et al. Unconventional band inversion and intrinsic quantum spin hall effect in functionalized group‐V binary films. Sci Rep. 2017;7:6126.
Yuan, JH, Xie, QX, Yu, NN, Wang, JF. Surface regulated arsenenes as Dirac materials: From density functional calculations. Appl Surf Sci. 2017;394:625–629.
Wang, YL, Ding, Y. Electronic structure and carrier mobilities of arsenene and antimonene nanoribbons: A first‐principle study. Nanoscale Res Lett. 2015;10:254.
Luo, YW, Li, YX, Wang, F, Guo, P, Jia, Y. Electric field effects on electronic characteristics of arsenene nanoribbons. Physica E. 2017;94:64–69.
Nagarajan, V, Chandiramouli, R. Investigation on electronic properties of functionalized arsenene nanoribbon and nanotubes: A first‐principles study. Chem Phys. 2017;495:35–41.
Abid, M, Shoaib, A, Aslam, I, Frid, MA. Stain engineering effect on surprising magnetic semiconducting behavior in zigzag arsenene nanoribbons. Comput Mater Sci. 2017;139:185–190.
Zhang, ZY, Cao, HN, Zhang, JC, Wang, YH, Xue, DS, Si, MS. Orientation and strain modulated electronic structures in puckered arsenene nanoribbons. AIP Adv. 2015;5:067117.
Abid, M, Shoaib, A, Hassan Farooq, M, Wu, HB, Ma, DS, Fu, BT. Edge magnetism and electronic structure properties of zigzag nanoribbons of arsenene and antimonene. J Phys Chem Solid. 2017;110:167–152.
Luo, YW, Li, YX, Guo, P, Chen, WG, Tang, YN, Jia, Y. Band structures of one‐dimensional buckled arsenene nanoribbons: Strain and quantum size modulations. Mod Phys Lett B. 2017;31:1750341.
Zamfira, S, Popescu, M, Sava, F. Fullerene‐like and nanotubes based on arsenic networks: A modelling study. Chalcogenide Lett. 2005;2:55–61.
Yang, KW, Li, MJ, Zhang, XJ, Li, XM, Gao, YL, Long, MQ. Spin‐dependent transport characteristics of nanostructures based on armchair arsenene nanoribbons. Chin Phys B. 2017;26:098509.
Kecik, D, Durgun, E, Ciraci, S. Stability of single‐layer and multilayer arsenene and their mechanical and electronic properties. Phys Rev B. 2016;94:205409.
Cao, HW, Yu, ZY, Lu, PF. Electronic properties of monolayer and bilayer arsenene under in‐plain biaxial strains. Superlattice Microst. 2015;86:501–507.
Luo, K, Chen, SY, Duan, CG. Indirect‐direct band gap transition of two‐dimensional arsenic layered semiconductors‐cousins of black phosphorus. Sci China‐Phys Mech Astron. 2015;58:087301.
Mi, K, Xie, JF, Si, MS, Gao, CX. Layer‐stacking effect on electronic structures of bilayer arsenene. EPL. 2017;117:27002.
Zhang, ZY, Xie, JF, Yang, DZ, Wang, YH, Si, MS, Xue, DS. Manifestation of unexpected semiconducting properties in few‐layer orthorhombic arsenene. Appl Phys Express. 2015;8:055201.
Fang, H, Battaglia, C, Carraro, C, et al. Strong interlayer coupling in van der Waals heterostructures built from single‐layer chalcogenides. Proc Natl Acad Sci U S A. 2014;111:6198–6202.
Geim, AK, Grigorieva, IV. Van der Waals heterostructures. Nature. 2013;499:419–425.
Lee, GH, Lee, CH, van der Zande, AM, et al. Heterostructures based on inorganic and organic van der Waals systems. APL Mater. 2014;2:092511.
Lee, CH, Lee, GH, van der Zande, AM, et al. Atomically thin p‐n junctions with van der Waals heterostructures. Nat Nanotechnol. 2014;9:676–681.
Cai, JM, Pignedoli, CA, Talirz, L, et al. Graphene nanoribbon heterojunction. Nat Nanotechnol. 2014;9:896–900.
Li, XH, Wang, BJ, Cai, XL, Zhang, LW, Wang, GD, Ke, SH. Tunable electronic properties of arsenene/GaS van der Waals heterostructures. RSC Adv. 2017;7:28393–28298.
Xia, CX, Xue, B, Wang, TX, Peng, YT, Jia, Y. Interlayer coupling effects on Schottky barrier in the arsenene‐graphene van der Waals heterostructures. Appl Phys Lett. 2015;107:193107.
Li, W, Wang, TX, Dai, XQ, et al. Tuning the Schottky barrier in the arsenene/graphene van der Waals heterostructures by electric field. Physica E. 2017;88:6–10.
Shu, HB, Tong, YL, Guo, JY. Novel electronic and optical properties of ultrathin silicene/arsenene heterostructures and electric field effects. Phys Chem Chem Phys. 2017;19:10644–10650.
Wang, YL, Ding, Y. The electronic structures of group‐V‐group‐IV hetero‐bilayer structures: A first‐principles study. Phys Chem Chem Phys. 2015;17:27769–27776.
Dong, MM, He, C, Zhang, WX. Tunable electronic properties of arsenene and transition‐metal dichalcogenide heterostructures: A first‐principles calculation. J Phys Chem C. 2017;121:22040–22048.
Li, W, Wang, TX, Dai, XQ, Ma, YQ, Tang, YN. Effects of electric field on the electronic structures of MoS2/arsenene van der Waals heterostructure. J Alloy Compd. 2017;705:486–491.
Su, J, Feng, LP, Liu, ZT. Heterostructure consists of monolayer MoS2 and arsenene with novel electronic and optical conductivity. RSC Adv. 2016;6:59633–59638.
Zhang, F, Li, W, Dai, XQ. Electric‐field tunable electronic structure in WSe2/arsenene van der Waals heterostructure. Superlattices Microst. 2017;104:518–524.
Song, Y, Li, D, Mi, WB, Wang, XC, Cheng, YC. Electric field effects on spin splitting of two‐dimensional van der Waals Arsenene/FeCl2 Heterostructures. J Phys Chem C. 2016;120:5613–5618.
Jin, C, Dai, Y, Wei, W, Sun, QL, Li, XR, Huang, BB. Modulation of silicene properties by AsSb with van der Waals interaction. RSC Adv. 2017;7:5827–5835.
Fu, L, Kane, CL. Time reversal polarization and a Z2 adiabatic spin pump. Phys Rev B. 2006;74:195312.
Bernevig, BA, Hughes, TL, Zhang, SC. Quantum spin hall effect and topological phase transition in HgTe quantum wells. Science. 2006;314:1757–1761.
König, M, Wiedmann, S, Brüne, C, et al. Quantum spin hall insulator state in HgTe quantum wells. Science. 2007;318:766–770.
Fu, L, Kane, CL. Topological insulators with inversion symmetry. Phys Rev B. 2007;76:045302.
Kane, CL, Mele, EJ. Quantum spin hall effect in graphene. Phys Rev Lett. 2005;95:226801.
Si, C, Liu, JW, Xu, Y, Wu, J, Gu, B‐L, Duan, WH. Functionalized germanene as a prototype of large‐gap two‐dimensional topological insulators. Phys Rev B. 2014;89:115429.
Huang, HQ, Xu, Y, Wang, JF, Duan, WH. Emerging topological states in quasi‐two‐dimensional materials. WIREs Comput Mol Sci. 2017;7:e1296.
Liu, JW, Xu, Y, Wu, J, Gu, B‐L, Zhang, SB, Duan, WH. Manipulating topological phase transition by strain. Acta Crystallogr C. 2014;70:118–122.
Zhang, HJ, Ma, YD, Chen, ZF. Quantum spin hall insulators in strain‐modified arsenene. Nanoscale. 2015;7:19152–19159.
Wang, YP, Zhang, CW, Ji, WX, et al. Tunable quantum spin hall effect via strain in two‐dimensional arsenene monolayer. J Phys D Appl Phys. 2016;49:055305.
Mardanya, S, Thakur, VK, Bhowmick, S, Agarwal, A. Four allotropes of semiconducting layered arsenic that switch into a topological insulator via an electric field: Computational study. Phys Rev B. 2016;94:035423.
Xu, Y, Yan, BH, Zhang, H‐J, et al. Large‐gap quantum spin hall insulators in tin films. Phys Rev Lett. 2013;111:136804.
Nie, YZ, Rahman, M, Wang, DW, Wang, C, Guo, GH. Strain induced topological phase transitions in monolayer honeycomb structures of group‐V binary compounds. Sci Rep. 2015;5:17980.
Zhang, SL, Xie, MQ, Cai, B, et al. Semiconductor‐topological insulator transition of two‐dimensional SbAs induced by biaxial tensile strain. Phys Rev B. 2016;93:245303.
Moyniha, G, Sanvito, S, O`Regan, DD. Strain‐induced Weyl and Dirac states and direct‐indirect gap transitions in group‐V materials. 2D Mater. 2017;4:045018.
Hsu, CH, Huang, ZQ, Chuang, FC, et al. The nontrivial electronic structure of bi/Sb honeycombs on SiC(0001). New J Phys. 2015;17:025005.
Reis, F, Li, G, Dudy, L, et al. Bismuthene on a SiC substrate: A candidate for a high‐temperature quantum spin hall material. Science. 2017;357:287–290.
Wang, C, Xia, CX, Nie, YZ, Rahman, M, Guo, GH. Strain engineering band gap, effective mass and anisotropic Dirac‐like cone in monolayer arsenene. AIP Adv. 2016;6:035204.
Xu, WQ, Lu, PF, Wu, LY, et al. Electronic and optical properties of arsenene under uniaxial strain. IEEE J Select Top Quant. 2017;23:9000305.
Guo, DL, Shao, B, Li, CH, Ma, YL. Theoretical insight into structure stability, elastic property and carrier mobility of monolayer arsenene under biaxial strains. Superlattice Microst. 2016;100:324–334.
Niehues, I, Schmidt, R, Drüppel, M, et al. Strain control of exciton‐phonon coupling in atomically thin semiconductors. Nano Lett. 2018;18:1751–1757.
Kecik, D, Durgun, E, Ciraci, S. Optical properties of single‐layer and bilayer arsenene phases. Phys Rev B. 2016;94:205410.
Sandonas, LM, Teich, D, Gutierrez, R, et al. Anisotropic thermoelectric response in two‐dimensional puckered structures. J Phys Chem C. 2016;120:18841–18849.
Xu, YF, Peng, B, Zhang, H, Shao, HZ, Zhang, RJ, Zhu, HY. First‐principle calculations of optical properties of monolayer arsenene and antimonene allotropes. Ann Phys (Berlin). 2017;529:1600152.
Zhou, XD, Feng, WX, Li, F, Yao, YG. Large magneto‐optical effects in hole‐doped blue phosphorene and gray arsenene. Nanoscale. 2017;9:17405–17414.
Yang, JY, Liu, LH. Temperature‐dependent dielectric functions in atomically thin graphene, silicene, and arsenene. Appl Phys Lett. 2015;107:091902.
DiSalvo, FJ. Thermoelectric cooling and power generation. Science. 1999;285:703–706.
Goldsmid, HJ. Introduction to thermoelectricity. New York: Springer Series in Materials Science, Springer, 2009.
Xu, Y, Gan, Z, Zhang, S‐C. Enhanced thermoelectric performance and anomalous seebeck effects in topological insulators. Phys Rev Lett. 2014;112:226801.
Xu, Y. Thermoelectric effects and topological insulators. Chin Phys B. 2016;25:117309.
Xu, N, Xu, Y, Zhu, J. Topological insulators for thermoelectrics. NPJ Quant Mater. 2017;2:51.
Zhang, J, Feng, X, Xu, Y, et al. Disentangling the magnetoelectric and thermoelectric transport in topological insulator thin films. Phys Rev B. 2015;91:075431.
Guo, MH, Wang, Z, Xu, Y, et al. Tuning thermoelectricity in a Bi2Se3 topological insulator via varied film thickness. New J Phys. 2016;18:015008.
Guo, MH, Ou, YB, Xu, Y, et al. Ambi‐chiral anomalous Nernst effect in a magnetic topological insulator. New J Phys. 2017;19:113009.
Xu, Y, Li, ZY, Duan, WH. Thermal and thermoelectric properties of graphene. Small. 2014;10:2182–2199.
Zeraati, M, Mehdi Vaez Allaei, S, Abdolhosseini Sarsari, I, Pourfath, M, Donadio, D. Highly anisotropic thermal conductivity of arsenene: An ab initio study. Phys Rev B. 2016;93:085424.
Sun, YJ, Wang, D, Shuai, ZG. Puckered arsenene: A promising room‐temperature thermoelectric material from first‐principles prediction. J Phys Chem C. 2017;121:19080–19086.
Sharma, S, Kumar, S, Schwingenschlögl, U. Arsenene and antimonene: Two‐dimensional material with high thermoelectric figures of merit. Phys Rev Appl. 2017;8:044013.
Sevinçli, H. Quartic dispersion, strong singularity, magnetic instability, and unique thermoelectric properties in two‐dimensional hexagonal lattices of group‐VA elements. Nano Lett. 2017;17:2589–2595.
Peng, B, Zhang, DQ, Zhang, H, et al. The conflicting role of buckled structure in phonon transport of 2D group‐IV and group‐V materials. Nanoscale. 2017;9:7397–7407.
Zhang, DC, Zhang, AX, Guo, SD, Duan, YF. Thermoelectric properties of β‐as, Sb and bi monolayers. RSC Adv. 2017;7:24537–24546.
Pizzi, G, Gibertini, M, Dib, E, Marzari, N, Lannaccone, G, Fiori, G. Performance of arsenene and antimonene double‐gate MOSFETs from first principles. Nat Commun. 2016;7:12585.
Wang, YY, Ye, M, Weng, MY, et al. Electrical contacts in monolayer arsenene devices. ACS Appl Mater Interfaces. 2017;9:29273–29284.
Wang, YY, Huang, P, Ye, M, et al. Many‐body effect, carrier mobility, and device performance of hexagonal arsenene and antimonene. Chem Mater. 2017;29:2191–2201.
Niu, XH, Li, YH, Zhou, QH, Shu, HB, Wang, JL. Arsenene‐based heterostructures: Highly efficient bifunctional materials for photovoltaics and photocatalytics. ACS Appl Mater Interfaces. 2017;9:42856–42861.
Som, NN, Mankad, V, Jha, PK. Hydrogen evolution reaction: The role of arsenene nanosheet and dopant. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2018.03.066. In press 2018.
Zhang, SL, Guo, SY, Chen, ZF, et al. Recent progress in 2D group‐VA semiconductors: From theory to experiment. Chem Soc Rev. 2018;47:982–1021.
Lim, YR, Shojaei, F, Park, K, et al. Arsenic for high‐capacity lithium‐ and sodium‐ion batteries. Nanoscale. 2018;10:7047–7057.
Chen, JY, Ge, YF, Zhou, WZ, Peng, MQ, Pan, JL, Ouyang, FP. Superconductivity in li‐intercalated bilayer arsenene and hole‐doped monolayer arsenene: A first‐principles prediction. J Phys Condens Matter. 2018;30:245701.