Ratcliff, L. Optical absorption spectra calculated using linear‐scaling density‐functional theory. Heidelberg: Springer, 2013.

Tsuneda, T. Density functional theory in quantum chemistry. Tokyo: Springer, 2014.

Morin, J, Pelletier, JM. Density functional theory: Principles, applications and analysis. New York: Nova Science Publishers, Incorporated, 2013.

Engel, E, Dreizler, RM. Density functional theory: An advanced course. Berlin: Springer Science %26 Business Media, 2011.

Graziani, F, Desjarlais, MP, Redmer, R, Trickey, SB. Frontiers and challenges in warm dense matter. Vol 96. Cham: Springer Science %26 Business, 2014.

Yang, WT. Direct calculation of electron density in density‐functional theory. Phys Rev Lett. 1991;66:1438–1441.

Li, X, Nunes, W, Vanderbilt, D. Density‐matrix electronic‐structure method with linear system‐size scaling. Phys Rev B. 1993;47:10891–10894.

Ordejon, P, Drabold, DA, Grumbach, MP, Martin, RM. Unconstrained minimization approach for electronic computations that scales linearly with system size. Phys Rev B Condens Matter. 1993;48:14646–14649.

Goedecker, S, Colombo, L. Efficient linear scaling algorithm for tight‐binding molecular dynamics. Phys Rev Lett. 1994;73:122–125.

Nunes, RW, Vanderbilt, D. Generalization of the density‐matrix method to a nonorthogonal basis. Phys Rev B Condens Matter. 1994;50:17611–17614.

Wang, Y, Stocks, GM, Shelton, WA, Nicholson, DMC, Szotek, Z, Temmerman, WM. Order‐N multiple scattering approach to electronic structure calculations. Phys Rev Lett. 1995;75:2867–2870.

Hernandez, E, Gillan, MJ. Self‐consistent first‐principles technique with linear scaling. Phys Rev B Condens Matter. 1995;51:10157–10160.

Goedecker, S. Low complexity algorithms for electronic structure calculations. J Comput Phys. 1995;118:261–268.

Ordejon, P, Artacho, E, Soler, JM. Self‐consistent order‐N density‐functional calculations for very large systems. Phys Rev B Condens Matter. 1996;53:10441.

Bowler, DR, Aoki, M, Goringe, CM, Horsfield, AP, Pettifor, DG. A comparison of linear scaling tight‐binding methods. Model Simul Mat Sci Eng. 1997;5:199–222.

Baer, R, Head‐Gordon, M. Sparsity of the density matrix in Kohn‐sham density functional theory and an assessment of linear system‐size scaling methods. Phys Rev Lett. 1997a;79:3962–3965.

Baer, R, Head‐Gordon, M. Chebyshev expansion methods for electronic structure calculations on large molecular systems. J Chem Phys. 1997b;107:10003–10013.

Palser, AHR, Manolopoulos, DE. Canonical purification of the density matrix in electronic‐structure theory. Phys Rev B Condens Matter. 1998;58:12704–12711.

Goedecker, S. Linear scaling electronic structure methods. Rev Mod Phys. 1999;71:1085–1123.

Scuseria, GE. Linear scaling density functional calculations with Gaussian orbitals. J Phys Chem A. 1999;103:4782–4790.

Galli, G. Large‐scale electronic structure calculations using linear scaling methods. Phys Status Solidi Rapid Res Lett. 2000;217:231–249.

Adhikari, S, Baer, R. Augmented Lagrangian method for order‐nelectronic structure. J Chem Phys. 2001;115:11–14.

Soler, JM, Artacho, E, Gale, JD, et al. The SIESTA method for ab initio order‐N materials simulation. J Phys C. 2002;14:2745.

Skylaris, C‐K, Haynes, PD, Mostofi, AA, Payne, MC. Introducing ONETEP: Linear‐scaling density functional simulations on parallel computers. J Chem Phys. 2005;122:084119.

Gillan, MJ, Bowler, DR, Torralba, AS, Miyazaki, T. Order‐N first‐principles calculations with the conquest code. Comput Phys Commun. 2007;177:14–18.

Ochsenfeld, C, Kussmann, J, Lambrecht, DS. Chapter 1: Linear‐scaling methods in quantum chemistry. Reviews in computational chemistry. Hoboken, New Jersey: John Wiley %26 Sons, 2007; p. 1–82.

Havu, V, Blum, V, Havu, P, Scheffler, M. Efficient integration for all‐electron electronic structure calculation using numeric basis functions. J Comput Phys. 2009;228:8367–8379.

Lin, L, Lu, J, Ying, L, Weinan, E. Pole‐based approximation of the Fermi‐Dirac function. Chin Ann Math Ser B. 2009;30:729–742.

Ozaki, T. Efficient low‐order scaling method for large‐scale electronic structure calculations with localized basis functions. Phys Rev B. 2010;82:075131.

Bowler, D, Miyazaki, T. \mathcal{O}(N) methods in electronic structure calculations. Rep Prog Phys. 2012;75:036503.

Moussa, JE. Minimax rational approximation of the Fermi‐Dirac distribution. J Chem Phys. 2016;145:164108.

Ratcliff, LE, Mohr, S, Huhs, G, Deutsch, T, Masella, M, Genovese, L. Challenges in large scale quantum mechanical calculations. WIREs Comput Mol Sci. 2017;7:e1290.

Kohn, W. Density functional and density matrix method scaling linearly with the number of atoms. Phys Rev Lett. 1996;76:3168–3171.

Elstner, M, Porezag, D, Jungnickel, G, et al. Self‐consistent‐charge density‐functional tight‐binding method for simulations of complex materials properties. Phys Rev B. 1998;58:7260–7268.

Aradi, B, Hourahine, B, Frauenheim, T. DFTB+, a sparse matrix‐based implementation of the DFTB method. J Phy Chem A. 2007;111:5678.

Karasiev, VV, Trickey, SB. Frank Discussion of the Status of Ground‐State Orbital‐Free DFT. In: Guillermina Estiu, Frank Jensen, Mel Levy et al, eds. Advances in quantum chemistry. Vol 71. London: Elsevier, 2015;p. 221–245.

Witt, WC, Beatriz, G, Dieterich, JM, Carter, EA. Orbital‐free density functional theory for materials research. J Mater Res. 2018;33:777–795.

Baer, R, Neuhauser, D, Rabani, E. Self‐averaging stochastic Kohn‐sham density‐functional theory. Phys Rev Lett. 2013;111:106402.

Neuhauser, D, Baer, R, Rabani, E. Communication: Embedded fragment stochastic density functional theory. J Chem Phys. 2014;141:041102.

Arnon, E, Rabani, E, Neuhauser, D, Baer, R. Equilibrium configurations of large nanostructures using the embedded saturated‐fragments stochastic density functional theory. J Chem Phys. 2017;146:224111.

Cytter, Y, Rabani, E, Neuhauser, D, Baer, R. Stochastic density functional theory at finite temperatures. Phys Rev B. 2018;97:115207.

Neuhauser, D, Rabani, E, Cytter, Y, Baer, R. Stochastic optimally tuned range‐separated hybrid density functional theory. J Phys Chem A. 2015;120:3071.

Drabold, DA, Sankey, OF. Maximum entropy approach for linear scaling in the electronic structure problem. Phys Rev Lett. 1993;70:3631–3634.

Sankey, OF, Drabold, DA, Gibson, A. Projected random vectors and the recursion method in the electronic‐structure problem. Phys Rev B. 1994;50:1376–1381.

Wang, L‐W. Calculating the density of states and optical‐absorption spectra of large quantum systems by the plane‐wave moments method. Phys Rev B. 1994;49:10154–10158.

Röder, H, Silver, R, Drabold, D, Dong, JJ. Kernel polynomial method for a nonorthogonal electronic‐structure calculation of amorphous diamond. Phys Rev B. 1997;55:15382–15385.

Weiße, A, Wellein, G, Alvermann, A, Fehske, H. The kernel polynomial method. Rev Mod Phys. 2006;78:275–306.

Bekas, C, Kokiopoulou, E, Saad, Y. An estimator for the diagonal of a matrix. Appl Num Math. 2007;57:1214–1229.

Lin, L, Saad, Y, Yang, C. Approximating spectral densities of large matrices. SIAM Rev. 2016;58:34–65.

Wang, Z, Chern, G‐W, Batista, CD, Barros, K. Gradient‐based stochastic estimation of the density matrix. J Chem Phys. 2018;148:094107.

Roothaan, CCJ. New developments in molecular orbital theory. Rev Mod Phys. 1951;23:69–89.

Hall, GG. The molecular orbital theory of chemical valency VIII. A method of calculating ionization potentials. Proc R Soc Lond A. 1951;205:541.

Szabo, A, Ostlund, NS. Modern quantum chemistry: Introduction to advanced electronic structure theory. Mineola, New York: Dover Publications, 1996.

Koch, W, Holthausen, M. A Chemist`s guide to density functional theory. Heidelberg: Wiley, 2001.

Abrol, R, Kuppermann, A. An optimal adiabatic‐to‐diabatic transformation of the 1 2A′ and 2 2A′ states of H3. J Chem Phys. 2002;116:1035–1062.

Shao, YY, Head‐Gordon, M. An improved J matrix engine for density functional theory calculations. Chem Phys Lett. 2000;323:425–433.

White, CA, Johnson, BG, Gill, PM, Head‐Gordon, M. The continuous fast multipole method. Chemical Phys Lett. 1994;230:8–16.

Gross, EKU, Runge, E, Heinonen, O. *Many‐Particle Theory*. Bristol: Adam Hilger, 1991.

Chen, M, Neuhauser, D, Baer, R, Rabani, E. Overlapped Embedded Fragment Stochastic Density Functional Theory for Covalently Bonded Materials. *J. Chem. Phys*. 2019;*150*: 034106.

Hutchinson, MF. A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines. Commun Stat Simul Comput. 1990;19:433.

VandeVondele, J, Krack, M, Mohamed, F, Parrinello, M, Chassaing, T, Hutter, J. QUICKSTEP: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput Phys Commun. 2005;167:103.

Troullier, N, Martins, JL. Efficient pseudopotentials for plane‐wave calculations. Phys Rev B. 1991;43:1993.

Kleinman, L, Bylander, D. Efficacious form for model pseudopotentials. Phys Rev Lett. 1982;48:1425.

Martyna, GJ, Tuckerman, ME. A reciprocal space based method for treating long range interactions in *ab initio* and force‐field‐based calculations in clusters. J Chem Phys. 1999;110:2810.

Shao, Y, Gan, Z, Epifanovsky, E, et al. Advances in molecular quantum chemistry contained in the Q‐Chem 4 program package. Mol Phys. 2015;113:184.

Gibbs, JW. Elementary principles in statistical mechanics. New Haven, CT: Yale University Press, 1902.

Barone, V, Biczysko, M, Brancato, G. Extending the range of computational spectroscopy: accuracy and interpretation. Adv Quantum Chem. 2010;59:17.

van der Kamp, MW, Mulholland, AJ. Combined quantum mechanics/molecular mechanics (QM/MM) methods in computational enzymology. Biochemistry (Mosc.). 2013;52(2):708.

Sabin, JR, Brandas, E, Canuto, S. Combining *quantum mechanics and molecular mechanics. Some recent progresses in QM/MM methods*. Advances in quantum chemistry. Volume 59. Amsterdam, The Netherlands: Academic Press, 2010.

Huang, C, Carter, EA. Potential‐functional embedding theory for molecules and materials. J Chem Phys. 2011;135:194104.

Lan, TN, Kananenka, AA, Zgid, D. Communication: Towards ab initio self‐energy embedding theory in quantum chemistry. J Chem Phys. 2015;143:241102.

Ghosh, D, Kosenkov, D, Vanovschi, V, et al. Non‐covalent interactions in extended systems described by the effective fragment potential method: Theory and application to nucleobase oligomers. J Phys Chem A. 2010;114:12,739.

Elliott, P, Burke, K, Cohen, MH, Wasserman, A. Partition density‐functional theory. Phys Rev A. 2010;82:024501.

Cho, AE, Guallar, V, Berne, BJ, Friesner, R. Importance of accurate charges in molecular docking: Quantum mechanical/molecular mechanical (QM/MM) approach. J Comput Chem. 2005;26:915.

Svozil, D, Jungwirth, P. Valence‐ and dipole‐bound anions of the thymine‐water complex: Ab initio characterization of the potential energy surfaces. J Phys Chem A. 2006;110:2916–2923.

Lin, H, Truhlar, DG. QM/MM: what have we learned, where are we, and where do we go from here? Theor Chem Acc. 2007;117:185.

Sharir‐Ivry, A, Crown, HA, Wu, W, Shurki, A. Density Embedded VB/MM: A Hybrid ab Initio VB/MM with Electrostatic Embedding. J Phys Chem A. 2008;112:2489.

Neuhauser, D, Baer, R, Zgid, D. Stochastic self‐consistent second‐order green`s function method for correlation energies of large electronic systems. J Chem Theory Comput. 2017;13:5,396.