Tully, JC. Perspective on “Zur Quantentheorie der Molekeln”. Theor Chem Acc. 2000;103(3):173–176.

McKemmish, LK, McKenzie, RH, Hush, NS, Reimers, JR. Electron‐vibration entanglement in the born‐oppenheimer description of chemical reactions and spectroscopy. Phys Chem Chem Phys. 2015;17(38):24666–24682.

Reimers, JR, McKemmish, LK, McKenzie, RH, Hush, NS. Non‐adiabatic effects in thermochemistry, spectroscopy and kinetics: The general importance of all three Born‐Oppenheimer breakdown corrections. Phys Chem Chem Phys. 2015;17(38):24641–24665.

Xie, C, Malbon, CL, Yarkony, DR, Xie, D, Guo, H. Signatures of a conical intersection in adiabatic dissociation on the ground electronic state. J Am Chem Soc. 2018;140(6):1986–1989.

Shin, S, Metiu, H. Nonadiabatic effects on the charge transfer rate constant: A numerical study of a simple model system. J Chem Phys. 1995;102(23):9285–9295.

Born, M, Oppenheimer, R. Zur Quantentheorie der Molekeln. Ann Phys. 1927;389(20):457–484.

Eich, FG, Agostini, F. The adiabatic limit of the exact factorization of the electron‐nuclear wave function. J Chem Phys. 2016;145:054110.

Born, M, Huang, K. Dynamical theory of crystal lattices. Oxford, England: Clarendon, 1954.

Worth, GA, Cederbaum, LS. Beyond Born‐Oppenheimer: Molecular dynamics through a conical intersection. Annu Rev Phys Chem. 2004;55:127–158.

Agostini, F, Curchod, BFE, Vuilleumier, R, Tavernelli, I, Gross, EKU. TDDFT and quantum‐classical dynamics: A universal tool describing the dynamics of matter. In: Andreoni, W, Yip, S, editors. Handbook of materials modeling. the Netherlands: Springer, 2018; p. 1–47.

Abedi, A, Maitra, NT, Gross, EKU. Exact factorization of the time‐dependent electron‐nuclear wave function. Phys Rev Lett. 2010;105(12):123002.

Abedi, A, Maitra, NT, Gross, EKU. Correlated electron‐nuclear dynamics: Exact factorization of the molecular wave‐function. J Chem Phys. 2012;137(22):22A530.

Hunter, G. Conditional probability amplitude analysis of coupled harmonic oscillators. Int J Quantum Chem. 1974;8:413–420.

Hunter, G. Conditional probability amplitudes in wave mechanics. Int J Quantum Chem. 1975;9:237–242.

Hunter, G. Nodeless wave function quantum theory. Int J Quantum Chem. 1980;9:133.

Hunter, G. Nodeless wave functions and spiky potentials. Int J Quantum Chem. 1981;19:755–761.

Hunter, G, Tai, CC. Variational marginal amplitudes. Int J Quantum Chem. 1982;21:1041–1050.

Agostini, F, Tavernelli, I, Ciccotti, G. Nuclear quantum effects in electronic (non)adiabatic dynamics. Euro Phys J B. 2018;91(139).

Curchod, BFE, Agostini, F. On the dynamics through a conical intersection. J Phys Chem Lett. 2017;8:831–837.

Agostini, F, Curchod, BFE. When the exact factorization meets conical intersections. Euro Phys J B. 2018;91(141).

Min, SK, Abedi, A, Kim, KS, Gross, EKU. Is the molecular berry phase an artefact of the Born‐Oppenheimer approximation? Phys Rev Lett. 2014;113(26):263004.

Min, SK, Agostini, F, Gross, EKU. Coupled‐trajectory quantum‐classical approach to electronic decoherence in nonadiabatic processes. Phys Rev Lett. 2015;115(7):073001.

Min, SK, Agostini, F, Tavernelli, I, Gross, EKU. Ab initio nonadiabatic dynamics with coupled trajectories: A rigorous approach to quantum (de)coherence. J Phys Chem Lett. 2017;8:3048–3055.

Curchod, BFE, Agostini, F, Tavernelli, I. CT‐MQC—A coupled‐trajectory mixed quantum/classical method including nonadiabatic quantum coherence effects. Euro Phys J B. 2018;91(168).

Requist, R, Gross, EKU. Exact factorization‐based density functional theory of electrons and nuclei. Phys Rev Lett. 2016;117:193001.

Li, C, Requist, R, Gross, EKU. Density functional theory of electron transfer beyond the Born‐Oppenheimer approximation: Case study of LiF. J Chem Phys. 2018;148:084110.

Agostini, F, Abedi, A, Suzuki, Y, Min, SK, Maitra, NT, Gross, EKU. The exact forces on classical nuclei in non‐adiabatic charge transfer. J Chem Phys. 2015;142(8):084303.

Agostini, F, Abedi, A, Suzuki, Y, Gross, EKU. Mixed quantum‐classical dynamics on the exact time‐dependent potential energy surfaces: A novel perspective on non‐adiabatic processes. Mol Phys. 2013;111(22‐23):3625–3640.

Domcke, W, Yarkony, D, Köppel, H, editors. Conical intersections: Electronic structure, dynamics %26 spectroscopy. Vol 15. Singapore: World Scientific Pub Co Inc, 2004.

Merchán, M, Serrano‐Andrés, L. II. ab initio methods for excited states. In: Olivucci, M, editor. Computational photochemistry. Theoretical and computational chemistry. Volume 16. Elsevier Science, 2005; p. 35–91.

González, L, Escudero, D, Serrano‐Andrés, L. Progress and challenges in the calculation of electronic excited states. Chemphyschem. 2012;13(1):28–51.

Lischka, H, Nachtigallová, D, Aquino, AJA, et al. Multireference approaches for excited states of molecules. Chem Rev. 2018;118:7293–7361.

Ullrich, CA. Time‐dependent density‐functional theory. Oxford: Oxford University Press, 2012.

Barbatti, M, Shepard, R, Lischka, H. Computational and methodological elements for nonadiabatic trajectory dynamics simulations of molecules. In: Domcke, W, Yarkony, DR, Koeppel, H, editors. Conical intersections: Theory, computation and experiment. Singapore: World Scientific, 2011; p. 415.

Szalay, PG, Müller, T, Gidofalvi, G, Lischka, H, Shepard, R. Multiconfiguration self‐consistent field and multireference configuration interaction methods and applications. Chem Rev. 2011;112(1):108–181.

Crespo‐Otero, R, Barbatti, M. Recent advances and perspectives on nonadiabatic mixed quantum–classical dynamics. Chem Rev. 2018;118:7026–7068.

Dreuw, A, Wormit, M. The algebraic diagrammatic construction scheme for the polarization propagator for the calculation of excited states. WIREs Comput Mol Sci. 2015;5(1):82–95.

Tully, JC. Perspective: Nonadiabatic dynamics theory. J Chem Phys. 2012;137(22):22A301.

Hagelberg, F. Electron dynamics in molecular interactions: Principles and applications. London: Imperial College Press, 2013.

Malhado, JP, Bearpark, MJ, Hynes, JT. Non‐adiabatic dynamics close to conical intersections and the surface hopping perspective. Front Chem. 2014;2(97).

Persico, M, Granucci, G. An overview of nonadiabatic dynamics simulations methods, with focus on the direct approach versus the fitting of potential energy surfaces. Theor Chem Acc. 2014;133(9):1–28.

Gatti, F. Molecular quantum dynamics: From theory to applications. Berlin and Heidelberg: Springer, 2014.

Gatti, F, Lasorne, B, Meyer, H‐D, Nauts, A. Applications of quantum dynamics in chemistry. Vol 98. Cham: Springer International Publishing, 2017.

Huo, P, Coker, DF. Consistent schemes for non‐adiabatic dynamics derived from partial linearized density matrix propagation. J Chem Phys. 2012;137:22A535.

Dunkel, ER, Bonella, S, Coker, DF. Iterative linearized approach to nonadiabatic dynamics. J Chem Phys. 2008;129:114106.

Kapral, R, Ciccotti, G. Mixed quantum‐classical dynamics. J Chem Phys. 1999;110:8919–8929.

Jang, S. Nonadiabatic quantum Liouville and master equations in the adiabatic basis. J Chem Phys. 2012;137:22A536.

Kapral, R. Progress in the theory of mixed quantum‐classical dynamics. Annu Rev Phys Chem. 2006;57:129–157.

Bonella, S, Ciccotti, G, Kapral, R. Linearization approximations and liouville quantum‐classical dynamics. Chem Phys Lett. 2010;484(4‐6):399–404.

Pfalzgraff, WC, Kelly, A, Markland, TE. Nonadiabatic dynamics in atomistic environments: Harnessing quantum‐classical theory with generalized quantum master equations. J Phys Chem Lett. 2015;6(23):4743–4748.

Tannor, DJ. Introduction to quantum mechanics, a time‐dependent perspective. Sausalito, CA: University Science Books, 2007.

Kosloff, R. Time‐dependent quantum‐mechanical methods for molecular dynamics. J Phys Chem. 1988;92(8):2087–2100.

Kosloff, R. Propagation methods for quantum molecular dynamics. Annu Rev Phys Chem. 1994;45(1):145–178.

Beck, MH, Jäckle, A, Worth, GA, Meyer, HD. The multiconfiguration time‐dependent hartree (MCTDH) method: A highly efficient algorithm for propagating wavepackets. Phys Rep. 2000;324(1):1–105.

Meyer, H‐D, Gatti, F, Worth, GA. Multidimensional quantum dynamics. Weinheim: John Wiley %26 Sons, 2009.

Wang, H, Thoss, M. Multilayer formulation of the multiconfiguration time‐dependent hartree theory. J Chem Phys. 2003;119(3):1289–1299.

Worth, GA, Robb, MA, Burghardt, I. A novel algorithm for non‐adiabatic direct dynamics using variational Gaussian wavepackets. Faraday Discuss. 2004;127:307–323.

Richings, GW, Polyak, I, Spinlove, KE, Worth, GA, Burghardt, I, Lasorne, B. Quantum dynamics simulations using gaussian wavepackets: The vmcg method. Int Rev Phys Chem. 2015;34(2):269–308.

Shalashilin, DV. Quantum mechanics with the basis set guided by Ehrenfest trajectories: Theory and application to spin‐boson model. J Chem Phys. 2009;130:244101.

Makhov, D, Symonds, C, Fernandez‐Alberti, S, Shalashilin, D. Ab initio quantum direct dynamics simulations of ultrafast photochemistry with multiconfigurational ehrenfest approach. Chem Phys 2017;493:200–218.

Heller, EJ. Time‐dependent approach to semiclassical dynamics. J Chem Phys. 1975;62:1544–1555.

Heller, EJ. The semiclassical way to molecular spectroscopy. Acc Chem Res. 1981;14(12):368–375.

Heller, EJ. Frozen gaussians: A very simple semiclassical approximation. J Chem Phys. 1981;75(6):2923–2931.

Martínez, TJ, Ben‐Nun, M, Levine, RD. Multi‐electronic‐state molecular dynamics: A wave function approach with applications. J Phys Chem. 1996;100(19):7884–7895.

Martínez, TJ, Levine, RD. Non‐adiabatic molecular dynamics: Split‐operator multiple spawning with applications to photodissociation. J Chem Soc Faraday Trans. 1997;93(5):941–947.

Ben‐Nun, M, Martínez, TJ. Ab initio quantum molecular dynamics. Adv Chem Phys. 2002;121:439–512.

Curchod, BFE, Martínez, TJ. Ab initio nonadiabatic quantum molecular dynamics. Chem Rev. 2018;118(7):3305–3336.

Lasorne, B, Bearpark, MJ, Robb, MA, Worth, GA. Direct quantum dynamics using variational multi‐configuration gaussian wavepackets. Chem Phys Lett. 2006;432(4):604–609.

Saita, K, Shalashilin, DV. On‐the‐fly ab initio molecular dynamics with multiconfigurational ehrenfest method. J Chem Phys. 2012;137(22):22A506.

Ben‐Nun, M, Martínez, TJ. Nonadiabatic molecular dynamics: Validation of the multiple spawning method for a multidimensional problem. J Chem Phys. 1998;108:7244–7257.

Ben‐Nun, M, Quenneville, J, Martínez, TJ. Ab initio multiple spawning: Photochemistry from first principles quantum molecular dynamics. J Phys Chem A. 2000;104:5161–5175.

Marx, D, Hutter, J. Ab initio molecular dynamics: Basic theory and advanced methods. Cambridge: Cambridge University Press, 2009.

Tully, JC. Nonadiabatic dynamics. In: Thompson, DL, editor. Modern methods for multidimensional dynamics computations in chemistry. Singapore: World Scientific, 1998.

Tully, JC. Mixed quantum classical dynamics. Faraday Discuss. 1998;110:407–419.

Hack, MD, Truhlar, DG. Nonadiabatic trajectories at an exhibition. J Phys Chem A. 2000;104:7917–7926.

Delos, JB, Thorson, WR, Knudson, SK. Semiclassical theory of inelastic collisions. i. classical picture and semiclassical formulation. Phys Rev A. 1972;6(2):709–720.

Tully, JC. In: Berne, BJ, Ciccotti, G, Coker, DF, editors. Classical and quantum dynamics in condensed phase simulations. Singapore: World Scientific, 1998.

Li, X, Tully, JC, Schlegel, HB, Frisch, MJ. Ab initio Ehrenfest dynamics. J Chem Phys. 2005;123(8):084106.

Yonehara, T, Hanasaki, K, Takatsuka, K. Fundamental approaches to nonadiabaticity: Toward a chemical theory beyond the Born‐Oppenheimer paradigm. Chem Rev. 2012;112(1):499–542.

Agostini, F, Gross, EKU, Curchod, BFE. Electron‐nuclear entanglement in the time‐dependent molecular wavefunction. Comput Theor Chem. 2019;1151:99–106. https://doi.org/10.1016/j.comptc.2019.01.021.

Andrade, X, Castro, A, Zueco, D, et al. Modified Ehrenfest formalism for efficient large‐scale ab initio molecular dynamics. J Chem Theory Comput. 2009;5(4):728–742.

Bjerre, A, Nikitin, EE. Energy transfer in collisions of an excited sodium atom with a nitrogen molecule. Chem Phys Lett. 1967;1(5):179–181.

Tully, JC, Preston, RK. Trajectory surface hopping approach to nonadiabatic molecular collisions: The reaction of H^{+} with D_{2}. J Chem Phys. 1971;55(2):562–572.

Tully, JC. Molecular dynamics with electronic transitions. J Chem Phys. 1990;93:1061–1071.

Barbatti, M, Sen, K. Effects of different initial condition samplings on photodynamics and spectrum of pyrrole. Int J Quantum Chem. 2016;116(10):762–771.

Suchan, J, Hollas, D, Curchod, BFE, Slavicek, P. On the importance of initial conditions for excited‐state dynamics. Faraday Discuss. 2018;212:307–330.

Mai, S, Gattuso, H, Monari, A, González, L. Novel molecular‐dynamics‐based protocols for phase space sampling in complex systems. Front Chem. 2018;6(495).

Jasper, AW, Nangia, S, Zhu, C, Truhlar, DG. Non‐Born‐Oppenheimer molecular dynamics. Acc Chem Res. 2006;39:101–108.

Granucci, G, Persico, M. Critical appraisal of the fewest switches algorithm for surface hopping. J Chem Phys. 2007;126:134114.

Jaeger, HM, Fischer, S, Prezhdo, OV. Decoherence‐induced surface hopping. J Chem Phys. 2012;137:22A545.

Curchod, BFE, Tavernelli, I. On trajectory‐based nonadiabatic dynamics: Bohmian dynamics versus trajectory surface hopping. J Chem Phys. 2013;138:184112.

Subotnik, JE, Ouyang, W, Landry, BR. Can we derive Tully`s surface‐hopping algorithm from the semiclassical quantum Liouville equation? Almost, but only with decoherence. J Chem Phys. 2013;139:214107.

Gao, X, Thiel, W. Non‐hermitian surface hopping. Phys Rev E. 2017;95:013308.

Schwartz, BJ, Bittner, ER, Prezhdo, OV, Rossky, PJ. Quantum decoherence and the isotope effect in condensed phase nonadiabatic molecular dynamics simulations. J Chem Phys. 1996;104:5942–5955.

Fang, J‐Y, Hammes‐Schiffer, S. Improvement of the internal consistency in trajectory surface hopping. J Phys Chem A. 1999;103:9399–9407.

Jasper, AW, Truhlar, DG. Electronic decoherence time for non‐Born‐Oppenheimer trajectories. J Chem Phys. 2007;127:194306.

Granucci, G, Persico, M, Zoccante, A. Including quantum decoherence in surface hopping. J Chem Phys. 2010;133:134111.

Shenvi, N, Subotnik, JE, Yang, W. Simultaneous‐trajectory surface hopping: A parameter‐free algorithm for implementing decoherence in nonadiabatic dynamics. J Chem Phys. 2011;134:144102.

Shenvi, N, Subotnik, JE, Yang, W. Phase‐corrected surface hopping: Correcting the phase evolution of the electronic wavefunction. J Chem Phys. 2011;135:024101.

Shenvi, N, Yang, W. Achieving partial decoherence in surface hopping through phase correction. J Chem Phys. 2012;137:22A528.

Subotnik, JE, Shenvi, N. A new approach to decoherence and momentum rescaling in the surface hopping algorithm. J Chem Phys. 2011;134:024105.

Subotnik, JE, Shenvi, N. Decoherence and surface hopping: When can averaging over initial conditions help capture the effects of wave packet separation? J Chem Phys. 2011;134:244114.

Horenko, I, Salzmann, C, Schmidt, B, Schutte, C. Quantum‐classical Liouville approach to molecular dynamics: Surface hopping Gaussian phase‐space packets. J Chem Phys. 2002;117(24):11075–11088.

Jasper, AW, Stechmann, SN, Truhlar, DG. Fewest‐switches with time uncertainty: A modified trajectory surface‐hopping algorithm with better accuracy for classically forbidden electronic transitions. J Chem Phys. 2002;116(13):5424–5431.

Nielsen, S, Kapral, R, Ciccotti, G. Mixed quantum‐classical surface hopping dynamics. J Chem Phys. 2000;112:6543–6553.

Martens, CC. Surface hopping by consensus. J Phys Chem Lett. 2016;7(13):2610–2615.

Agostini, F, Min, SK, Gross, EKU. Semiclassical analysis of the electron‐nuclear coupling in electronic non‐adiabatic processes. Ann Phys. 2015;527(9‐10):546–555.

Suzuki, Y, Abedi, A, Maitra, NT, Gross, EKU. Laser‐induced electron localization in $H2+$: Mixed quantum‐classical dynamics based on the exact time‐dependent potential energy surface. Phys Chem Chem Phys. 2015;17:29271–29280.

Suzuki, Y, Watanabe, K. Bohmian mechanics in the exact factorization of electron‐nuclear wave functions. Phys Rev A. 2016;94:032517.

Curchod, BFE, Agostini, F, Gross, EKU. An exact factorization perspective on quantum interferences in nonadiabatic dynamics. J Chem Phys. 2016;145:034103.

Gossel, GH, Lacombe, L, Maitra, NT. On the numerical solution of the exact factorization equations. arXiv preprint arXiv. 2019;1901:11216.

Agostini, F, Min, SK, Abedi, A, Gross, EKU. Quantum‐classical non‐adiabatic dynamics: Coupled‐ vs. independent‐trajectory methods. J Chem Theory Comput. 2016;12(5):2127–2143.

Ha, J‐K, Lee, IS, Min, SK. Surface hopping dynamics beyond nonadiabatic couplings for quantum coherence. J Phys Chem Lett. 2018;9:1097–1104.

Gu, B, Franco, I. Partial hydrodynamic representation of quantum molecular dynamics. J Chem Phys. 2017;146:194104.

Agostini, F, Abedi, A, Gross, EKU. Classical nuclear motion coupled to electronic non‐adiabatic transitions. J Chem Phys. 2014;141(21):214101.

Abedi, A, Agostini, F, Gross, EKU. Mixed quantum‐classical dynamics from the exact decomposition of electron‐nuclear motion. Europhys Lett. 2014;106(3):33001.

Agostini, F. An exact‐factorization perspective on quantum‐classical approaches to excited‐state dynamics. Euro Phys J B. 2018;91(143).

Gossel, G, Agostini, F, Maitra, NT. Coupled‐trajectory mixed quantum‐classical algorithm: A deconstruction. J Chem Theory Comput. 2018;14:4513–4529.

Schwinger, J. Quantum theory of angular momentum. New York, NY, l. c. biedenharn and h. v. dam edition: Academic Press, 1965.

McCurdy, CW, Meyer, HD, Miller, WH. Classical model for electronic degrees of freedom in nonadiabatic collision processes: Pseudopotential analysis and calculations for F(^{2}*P*_{1/2} + *H*^{+}), Xe→F(^{2}*P*_{3/2} + *H*^{+}),Xe. J Chem Phys. 1979;70:3177–3187.

Stock, G, Thoss, M. Semiclassical description of nonadiabatic quantum dynamics. Phys Rev Lett. 1997;78:578–581.

Sun, X, Miller, WH. Semiclassical initial value representation for electronically nonadiabatic molecular dynamics. J Chem Phys. 1997;106:6346–6353.

Thoss, M, Stock, G. Mapping approach to the semiclassical description of nonadiabatic quantum dynamics. Phys Rev A. 1999;59:64–79.

Thoss, M, Miller, WH, Stock, G. Semiclassical description of nonadiabatic quantum dynamics: Application to the S1‐S2 conical intersection in pyrazine. J Chem Phys. 2000;112:10282–10292.

Miller, WH. Electronically nonadiabatic dynamics via semiclassical initial value methods. J Phys Chem A. 2009;113:1405–1415.

Thoss, M, Wang, H. Semiclassical description of molecular dynamics based on initial‐value representation methods. Annu Rev Phys Chem. 2004;55:299–332.

Wyatt, RE, Lopreore, CL, Parlant, G. Electronic transitions with quantum trajectories. J Chem Phys. 2001;114(12):5113–5116.

Poirier, B, Parlant, G. Reconciling semiclassical and Bohmian mechanics: IV. Multisurface dynamics. J Phys Chem A. 2007;111(41):10400–10408.

Rassolov, VA, Garashchuk, S. Semiclassical nonadiabatic dynamics with quantum trajectories. Phys Rev A. 2005;71(3):032511.

Albareda, G, Appel, H, Franco, I, Abedi, A, Rubio, A. Correlated electron‐nuclear dynamics with conditional wave functions. Phys Rev Lett. 2014;113(8):083003.

Albareda, G, Bofill, JM, Tavernelli, I, Huarte‐Larrañaga, F, Illas, F, Rubio, A. Conditional Born‐Oppenheimer dynamics: Quantum dynamics simulations for the model Porphine. J. Phys. Chem. Lett. 2015;6:1529–1535.

Albareda, G, Kelly, A, Rubio, A. Nonadiabatic quantum dynamics without potential energy surfaces. Phys Rev Materials. 2019;3:023803.

Lasorne, B, Worth, GA, Robb, MA. Excited‐state dynamics. WIREs Comput. Mol. Sci. 2011;1(3):460–475. ISSN 1759‐0884.

Barbatti, M. Nonadiabatic dynamics with trajectory surface hopping method. WIREs Comput Mol Sci. 2011;1:620–633.

Curchod, BFE, Rothlisberger, U, Tavernelli, I. Trajectory‐based nonadiabatic dynamics with time‐dependent density functional theory. Chemphyschem. 2013;14(7):1314–1340.

Daniel, C, González, L, Lupulescu, C, et al. Deciphering the reaction dynamics underlying optimal control laser fields. Science. 2003;299(5606):536–539.

Taylor, MP, Worth, GA. Vibronic coupling model to calculate the photoelectron spectrum of phenol. Chem Phys. 2018;515:719–727.

Tao, H, Allison, TK, Wright, TW, et al. Ultrafast internal conversion in ethylene. i. the excited state lifetime. J Chem Phys. 2011;134(24):244306.

Glover, WJ, Mori, T, Schuurman, MS, et al. Excited state non‐adiabatic dynamics of the smallest polyene, trans 1, 3‐butadiene. ii. ab initio multiple spawning simulations. J Chem Phys. 2018;148(16):164303.

Mori, T, Glover, WJ, Schuurman, MS, Martinez, TJ. Role of rydberg states in the photochemical dynamics of ethylene. Chem A Eur J. 2012;116(11):2808–2818.

Kobayashi, T, Horio, T, Suzuki, T. Ultrafast deactivation of the *ππ**(v) state of ethylene studied using sub‐20 fs time‐resolved photoelectron imaging. J Phys Chem A. 2015;119(36):9518–9523.

Fernandez‐Alberti, S, Makhov, DV, Tretiak, S, Shalashilin, DV. Non‐adiabatic excited state molecular dynamics of phenylene ethynylene dendrimer using a multiconfigurational ehrenfest approach. Phys Chem Chem Phys. 2016;18(15):10028–10040.

Vacher, M, Bearpark, MJ, Robb, MA, Malhado, JP. Electron dynamics upon ionization of polyatomic molecules: Coupling to quantum nuclear motion and decoherence. Phys Rev Lett. 2017;118(8):083001.

Atkins, AJ, González, L. Trajectory surface‐hopping dynamics including intersystem crossing in [Ru(bpy)_{3}]^{2+}. J Phys Chem Lett. 2017;8(16):3840–3845.

Tavernelli, I, Curchod, BFE, Rothlisberger, U. Nonadiabatic molecular dynamics with solvent effects: A LR‐TDDFT QM/MM study of ruthenium (II) tris (bipyridine) in water. Chem Phys. 2011;391:101–109.

Lopez‐Tarifa, P, Herve du Penhoat, M‐A, Vuilleumier, R, et al. Ultrafast nonadiabatic fragmentation dynamics of doubly charged uracil in a gas phase. Phys Rev Lett. 2011;107:023202.

Lara‐Astiaso, M, Galli, M, Trabattoni, A, et al. Attosecond pump‐probe spectroscopy of charge dynamics in tryptophan. J Phys Chem Lett. 2018;9(16):4570–4577.

Yang, J, Guehr, M, Shen, X, et al. Diffractive imaging of coherent nuclear motion in isolated molecules. Phys Rev Lett. 2016;117(15):153002.

Yang, J, Zhu, X, Wolf, TJA, et al. Imaging CF_{3}I conical intersection and photodissociation dynamics with ultrafast electron diffraction. Science. 2018;361(6397):64–67.

Wolf, TJA, Sanchez, DM, Yang, J, et al. Imaging the photochemical ring‐opening of 1, 3‐cyclohexadiene by ultrafast electron diffraction. arXiv preprint arXiv:1810.02900. 2018.

Miller, WH, Cotton, SJ. Classical molecular dynamics simulation of electronically non‐adiabatic processes. Faraday Discuss. 2016;195:9–30.

Meyer, H‐D, Miller, WH. A classical analog for electronic degrees of freedom in nonadiabatic collision processes. J Chem Phys. 1979;70(7):3214–3223.

Cotton, SJ, Miller, WH. Symmetrical windowing for quantum states in quasi‐classical trajectory simulations. J Phys Chem A. 2013;117(32):7190–7194.

Cotton, SJ, Miller, WH. Symmetrical windowing for quantum states in quasi‐classical trajectory simulations: Application to electronically non‐adiabatic processes. J Chem Phys. 2013;139(23):234112.

Jenkins, AJ, Spinlove, KE, Vacher, M, Worth, GA, Robb, MA. The Ehrenfest method with fully quantum nuclear motion (qu‐eh): Application to charge migration in radical cations. J Chem Phys. 2018;149(9):094108.

Makhov, DV, Glover, WJ, Martinez, RJ, Shalashilin, DV. Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics. J Chem Phys. 2014;141(5):054110.

Meek, GA, Levine, BG. The best of both reps—Diabatized Gaussians on adiabatic surfaces. J Chem Phys. 2016;145(18):184103.

Joubert‐Doriol, L, Sivasubramanium, J, Ryabinkin, IG, Izmaylov, AF. Topologically correct quantum nonadiabatic formalism for on‐the‐fly dynamics. J Phys Chem Lett. 2017;8(2):452–456.

Joubert‐Doriol, L, Izmaylov, AF. Variational nonadiabatic dynamics in the moving crude adiabatic representation: Further merging of nuclear dynamics and electronic structure. J Chem Phys. 2018;148(11):114102.

Richings, GW, Habershon, S. MCTDH on‐the‐fly: Efficient grid‐based quantum dynamics without pre‐computed potential energy surfaces. J Chem Phys. 2018;148(13):134116.

Dral, PO, Barbatti, M, Thiel, W. Nonadiabatic excited‐state dynamics with machine learning. J Phys Chem Lett. 2018;9:5660–5663.

Chen, W‐K, Liu, X‐Y, Fang, W, Dral, PO, Cui, G. Deep learning for nonadiabatic excited‐state dynamics. J Phys Chem Lett. 2018;9:6702–6708.

Polyak, I, Richings, GW, Habershon, S, Knowles, PJ. Direct quantum dynamics using variational gaussian wavepackets and gaussian process regression. J Chem Phys. 2019;150(4):041101.

Kowalewski, M, Bennett, K, Mukamel, S. Cavity femtochemistry: Manipulating nonadiabatic dynamics at avoided crossings. J Phys Chem Lett. 2016;7(11):2050–2054.

Luk, HL, Feist, J, Toppari, JJ, Groenhof, G. Multiscale molecular dynamics simulations of polaritonic chemistry. J Chem Theory Comput. 2017;13(9):4324–4335.

Li, TE, Nitzan, A, Sukharev, M, Martinez, T, Chen, H‐T, Subotnik, JE. Mixed quantum‐classical electrodynamics: Understanding spontaneous decay and zero‐point energy. Phys Rev A. 2018;97(3):032105.