Parrish, RM, Burns, LA, Smith, DGA, et al. Psi4 1.1: An open‐source electronic structure program emphasizing automation, advanced libraries, and interoperability. J Chem Theory Comput. 2017;13(7):3185–3197. https://doi.org/10.1021/acs.jctc.7b00174.

Smith, DGA, Burns, LA, Sirianni, DA, et al. Psi4NumPy: An interactive quantum chemistry programming environment for reference implementations and rapid development. J Chem Theory Comput. 2018;14(7):3504–3511. https://doi.org/10.1021/acs.jctc.8b00286.

Sun, Q, Berkelbach, TC, Blunt, NS, et al. The python‐based simulations of chemistry framework (PySCF). WIREs Comput Mol Sci. 2017;8(1):e1340. https://doi.org/10.1002/wcms.1340.

Herbst, MF, Dreuw, A, Avery, JE. Towards quantum‐chemical method development for arbitrary basis functions. J Chem Phys. 2018;149(8):84106. https://doi.org/10.1063/1.5044765.

Verstraelen, T, Tecmer, P, Heidar‐Zadeh, F, González‐Espinoza, CE, Chan, M, Kim, TD, et al. HORTON 2.1.1. 2017 [cited 2019 Oct 15]. Available from: http://theochem.github.com/horton/

Muller, R. PyQuante: python quantum chemistry [cited 2019 Oct 15]. Available from: http://pyquante.sourceforge.net

Field, MJ. The pDynamo program for molecular simulations using hybrid quantum chemical and molecular mechanical potentials. J Chem Theory Comput. 2008;4(7):1151–1161. https://doi.org/10.1021/ct800092p.

Unsleber, JP, Dresselhaus, T, Klahr, K, et al. Serenity: A subsystem quantum chemistry program. J Comput Chem. 2018;39(13):788–798. https://doi.org/10.1002/jcc.25162.

Enkovaara, J, Romero, NA, Shende, S, Mortensen, JJ. GPAW—Massively parallel electronic structure calculations with python‐based software. Procedia Comput Sci. 2011;4:17–25. https://doi.org/10.1016/j.procs.2011.04.003.

Larsen, AH, Mortensen, JJ, Blomqvist, J, et al. The atomic simulation environment—A python library for working with atoms. J Phys Condens Matter. 2017;29(27):273002. https://doi.org/10.1088/1361-648X/aa680e.

Yang, C, Meza, JC, Lee, B, Wang, LW. KSSOLV—A MATLAB toolbox for solving the Kohn‐sham equations. ACM Trans Math Softw. 2009;3(36):1–35. https://doi.org/10.1145/1499096.1499099.

Garniron, Y, Applencourt, T, Gasperich, K, et al. Quantum package 2.0: An open‐source determinant‐driven suite of programs. J Chem Theory Comput. 2019;15(6):3591–3609. https://doi.org/10.1021/acs.jctc.9b00176.

Herbst, MF, Levitt, A. DFTK.jl: The density‐functional toolkit. 2019 [cited 2019 Dec 23]. Available from: https://doi.org/10.5281/zenodo.2590706

Di Remigio, R, Steindal, AH, Mozgawa, K, Weijo, V, Cao, H, Frediani, L. PCMSolver: An open‐source library for solvation modeling. Int J Quantum Chem. 2019;119(1):e25685. https://doi.org/10.1002/qua.25685.

Schirmer, J. Beyond the random‐phase approximation: A new approximation scheme for the polarization propagator. Phys Rev A. 1982;26:2395–2416. https://doi.org/10.1103/PhysRevA.26.2395.

Dreuw, A, Wormit, M. The algebraic diagrammatic construction scheme for the polarization propagator for the calculation of excited states. WIREs Comput Mol Sci. 2014;5(1):82–95. https://doi.org/10.1002/wcms.1206.

Rinkevicius, Z, Li, X, Vahtras, O, et al. VeloxChem: A python‐driven density‐functional theory program for spectroscopy simulations in high‐performance computing environments. WIREs Comput Mol Sci. 2019. https://doi.org/10.1002/wcms.1457.

Hehre, WJ, Stewart, RF, Pople, JA. Self‐consistent molecular‐orbital methods. I. Use of Gaussian expansions of slater‐type atomic orbitals. J Chem Phys. 1969;51(6):2657–2664. https://doi.org/10.1063/1.1672392.

Wormit, M, Rehn, DR, Harbach, PHP, et al. Investigating excited electronic states using the algebraic diagrammatic construction (ADC) approach of the polarisation propagator. Mol Phys. 2014;112(5–6):774–784. https://doi.org/10.1080/00268976.2013.859313.

Davidson, ER. The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real‐symmetric matrices. J Comp Phys. 1975;17(1):87–94. https://doi.org/10.1016/0021-9991(75)90065-0.

Epifanovsky, E, Wormit, M, Kuś, T, et al. New implementation of high‐level correlated methods using a general block tensor library for high‐performance electronic structure calculations. J Comput Chem. 2013;34(26):2293–2309. https://doi.org/10.1002/jcc.23377.

van der Walt, S, Colbert, SC, Varoquaux, G. The NumPy Array: A structure for efficient numerical computation. Comp Sci Eng. 2011;13(2):22–30. https://doi.org/10.1109/MCSE.2011.37.

Hunter, JD. Matplotlib: A 2D graphics environment. Comp Sci Eng. 2007;9(3):90–95. https://doi.org/10.1109/MCSE.2007.55.

Pérez, F, Granger, BE. IPython: A system for interactive scientific computing. Comput Sci Eng. 2007;9(3):21–29. https://doi.org/10.1109/MCSE.2007.53.

Kluyver, T, Ragan‐Kelley, B, Pérez, F, Granger, B, Bussonnier, M, Frederic, J, et al. Jupyter Notebooks—A publishing format for reproducible computational workflows; 2016. https://doi.org/10.3233/978-1-61499-649-1-87.

Wormit, M. Development and application of reliable methods for the calculation of excited states: From light‐harvesting complexes to medium‐sized molecules [PhD thesis]. Goethe‐Universität Frankfurt (Main); 2009.

Herbst, MF. Development of a modular quantum‐chemistry framework for the investigation of novel basis functions [PhD thesis]. Ruprecht‐Karls‐Universität Heidelberg; 2018. doi:https://doi.org/10.11588/heidok.00024519.

Hughes, J. Why functional programming matters. In: Turner, D, editor. Research topics in functional programming. Boston, MA: Addison‐Wesley, 1990; p. 17–42.

Krishnan, R, Binkley, JS, Seeger, R, Pople, JA. Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys. 1980;72:650–654. https://doi.org/10.1063/1.438955.

Shao, Y, Gan, Z, Epifanovsky, E, et al. Advances in molecular quantum chemistry contained in the Q‐Chem 4 program package. Mol Phys. 2015;113(2):184–215. https://doi.org/10.1080/00268976.2014.952696.

Herbst, MF. ctx: Key‐value C++ datastructures for organised hierarchical storage; 2019. https://doi.org/10.5281/zenodo.2590706.

Jakob, W, Rhinelander, J, Moldovan, D. pybind11—Seamless operability between C++11 and python; 2017, https://github.com/pybind/pybind11. Accessed December 23, 2019.

Jones, E, Oliphant, T, Peterson, P, et al. SciPy: Open source scientific tools for Python; 2001 [cited 2019 Sept 9]. Available from: http://www.scipy.org/

HDF5 Reference Manual; 2011. Release 1.8.8.

Dunning, TH. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys. 1989;90(2):1007–1023. https://doi.org/10.1063/1.456153.

Barth, A, Schirmer, J. Theoretical core‐level excitation spectra of N_{2} and CO by a new polarisation propagator method. J Phys B: At Mol Phys. 1985;18:867–885. https://doi.org/10.1088/0022-3700/18/5/008.

Trofimov, AB, Moskovskaya, TÉ, Gromov, EV, Vitkovskaya, NM, Schirmer, J. Core‐level electronic spectra in ADC(2) approximation for polarization propagator: Carbon monoxide and nitrogen molecules. J Struct Chem. 2000;41:483–494. https://doi.org/10.1007/BF02742009.

Wenzel, J, Wormit, M, Dreuw, A. Calculating core‐level excitations and X‐ray absorption spectra of medium‐sized closed‐shell molecules with the algebraic‐diagrammatic construction scheme for the polarization propagator. J Comput Chem. 2014;35:1900–1915. https://doi.org/10.1002/jcc.23703.

Vidal, ML, Feng, X, Epifanovsky AI E anf Krylov, Coriani, S. New and efficient equation‐of‐motion coupled‐cluster framework for core‐excited and core‐ionized states. J Chem Theory Comput. 2019;15:3117–3133. https://doi.org/10.1021/acs.jctc.9b00039.

Peng, R, Copan, AV, Sokolov, AY. Simulating X‐ray absorption spectra with linear‐response density cumulant theory. J Phys Chem A. 2019;123:1840–1850. https://doi.org/10.1021/acs.jpca.8b12259.

McLaren, R, Clark, SAC, Ishii, I, Hitchcock, AP. Absolute oscillator strengths from *K*‐shell electron‐energy‐loss spectra of the fluoroethenes and 1,3‐perfluorobutadiene. Phys Rev A. 1987;36:1683–1701. https://doi.org/10.1088/0022-3700/10/12/028.

Fransson, T, Coriani, S, Christiansen, O, Norman, P. Carbon X‐ray absorption spectra of fluoroethenes and acetone: A study at the coupled cluster, density functional, and static‐exchange levels of theory. J Chem Phys. 2013;138:124311. https://doi.org/10.1063/1.4795835.

Wenzel, J, Holzer, A, Wormit, M, Dreuw, A. Analysis and comparison of CVS‐ADC approaches up to third order for the calculation of core‐excited states. J Chem Phys. 2015;142:214104. https://doi.org/10.1063/1.4921841.

Scheurer, M, Herbst, MF, Reinholdt, P, Olsen, JMH, Dreuw, A, Kongsted, J. Polarizable embedding combined with the algebraic diagrammatic construction: Tackling excited states in biomolecular systems. J Chem Theory Comput. 2018;14(9):4870–4883. https://doi.org/10.1021/acs.jctc.8b00576.

Scheurer, M, Reinholdt, P, Kjellgren, ER, Olsen, JMH, Dreuw, A, Kongsted, J. CPPE: An open‐source C++ and python library for polarizable embedding. J Chem Theory Comput. 2019;15:6154–6163. https://doi.org/10.1021/acs.jctc.9b00758.

Humphrey, W, Dalke, A, Schulten, K. VMD: Visual molecular dynamics. J Mol Graph. 1996;14(1):33–38. https://doi.org/10.1016/0263-7855(96)00018-5.

Plasser, F, Wormit, M, Dreuw, A. New tools for the systematic analysis and visualization of electronic excitations. I Formalism J Chem Phys. 2014;141(2):024106. https://doi.org/10.1063/1.4885819.

Trofimov, AB, Stelter, G, Schirmer, J. A consistent third‐order propagator method for electronic excitation. J Chem Phys. 1999;111(22):9982–9999. https://doi.org/10.1063/1.480352.

Wenzel, J, Wormit, M, Dreuw, A. Calculating X‐ray absorption spectra of open‐shell molecules with the unrestricted algebraic‐diagrammatic construction scheme for the polarization propagator. J Chem Theory Comput. 2014;10:4583–4598. https://doi.org/10.1021/ct5006888.

Lefrancois, D, Wormit, M, Dreuw, A. Adapting algebraic diagrammatic construction schemes for the polarization propagator to problems with multi‐reference electronic ground states exploiting the spin‐flip ansatz. J Chem Phys. 2015;143(12):124107. https://doi.org/10.1063/1.4931653.

Yang, C, Dreuw, A. Evaluation of the restricted virtual space approximation in the algebraic‐diagrammatic construction scheme for the polarization propagator to speed‐up excited‐state calculations. J Comput Chem. 2017;6(38):1528–1537. https://doi.org/10.1002/jcc.24794.

Rehn, DR, Rinkevicius, Z, Herbst, MF, et al. Gator: A python‐driven program for spectroscopy simulations using correlated wave functions. WIREs Comput Mol Sci. 2019. Submitted.

Schirmer, J, Cederbaum, LS, Walter, O. New approach to the one‐particle Green`s function for finite Fermi systems. Phys Rev A. 1983;28:1237–1259. https://doi.org/10.1103/physreva.28.1237.

von Niessen, W, Schirmer, J, Cederbaum, LS. Computational methods for the one‐particle green`s function. Comput Phys Rep. 1984;4(1):57–125. https://doi.org/10.1016/0167-7977(84)90002-9.

Schirmer, J, Angonoa, G. On Green`s function calculations of the static self‐energy part, the ground state energy and expectation values. J Chem Phys. 1989;91:1754–1761. https://doi.org/10.1063/1.457081.

Dempwolff, AL, Schneider, M, Hodecker, M, Dreuw, A. Efficient implementation of the non‐Dyson third‐order algebraic diagrammatic construction approximation for the electron propagator for closed‐ and open‐shell molecules. J Chem Phys. 2019;150:064108. https://doi.org/10.1063/1.5081674.

Beebe, NHF, Linderberg, J. Simplifications in the generation and transformation of two‐electron integrals in molecular calculations. Int J Quant Chem. 1977;10(12):683–705. https://doi.org/10.1002/qua.560120408.

Pedersen, TB, Aquilante, F, Lindh, R. Density fitting with auxiliary basis sets from Cholesky decompositions. Theor Chem Accounts. 2009;9(124):1–10. https://doi.org/10.1007/s00214-009-0608-y.

Aquilante, F, Boman, L, Boström, J, et al. Cholesky decomposition techniques in electronic structure theory. Netherlands: Springer, 2011;p. 301–343. https://doi.org/10.1007/978-90-481-2853-2_13.