Berova, N,Nakanishi, K,Woody, RW.Circular Dichroism: Principles and Applications. New York: Wiley‐VCH;2000.

Carnell, M,Grimme, S,Peyerimhoff, S.Theoretical study of the circular dichroism and VUV spectra of trans‐2,3‐dimethyloxirane.Chem Phys1994,179:385–394.

Autschbach, J,Ziegler, T,van Gisbergen, SJA,Baerends, EJ.Chiroptical properties from time‐dependent density functional theory. I. Circular dichroism spectra of organic molecules.J Chem Phys2002,116:6930–6940.

Bijvoet, JM,Peerdeman, AF,van Bommel, AJ.Determination of the absolute configuration of optically active compounds by means of X‐rays.Nature1951,168:271–272.

Flack, H,Bernardinelli, G.The use of X‐ray crystallography to determine absolute configuration.Chirality2008,20:681–690.

Crawford, TD,Stephens, PJ.Comparison of time‐dependent density‐functional theory and coupled cluster theory for the calculation of the optical rotations of chiral molecules.J Chem Phys A2008,112:1339–1345.

Crawford, TD.Ab initio calculation of molecular chiroptical properties.Theor Chem Acc2006,115:227–245.

Polavarapu, PL.Optical rotation: recent advances in determining the absolute configuration.Chirality2002,14:768–781.

Polavarapu, PL.Renaissance in chiroptical spectroscopic methods for molecular structure determination.Chem Rec2007,7:125–136.

Polavarapu, PL.Why is it important to simultaneously use more than one chiroptical spectroscopic method for determining the structures of chiral molecules?Chirality2008,20:664–672.

Fasman, GD.Circular Dichroism and the Conformational Analysis of Biomolecules.New York: Plenum Press;1996.

Manavalan, P,Johnson, WC.Protein secondary structure from circular dichroism spectra.J Biosci1985,8:141–149.

Sreerama, N,Venyaminov, SY,Woody, RW.Estimation of protein secondary structure from circular dichroism spectra: inclusion of denatured proteins with native proteins in the analysis.Anal Biochem2000,287:243–251.

Barron, LD.Molecular Light Scattering and Optical Activity.New York: Cambridge University Press;2004.

Charney, E.The Molecular Basis of Optical Activity.New York: John Wiley %26 Sons;1979.

Lightner, DA,Gurst, JE.Organic Conformational Analysis and Stereochemistry from Circular Dichroism Spectroscopy.New York: Wiley‐VCH;2000.

Caldwell, DJ,Eyring, H.The Theory of Optical Activity.New York: John Wiley %26 Sons;1971.

Hansen, AE,Bouman, TD.Natural chiroptical spectroscopy: theory and computations.Adv Chem Phys1980,44:545–644.

Autschbach, J.Computing chiroptical properties with first‐principles theoretical methods: background and illustrative examples.Chirality2009,21:E116–E152.

Krykunov, M,Autschbach, J.Calculation of origin‐independent optical rotation tensor components in approximate time‐dependent density functional theory.J Chem Phys2006,125:034102 (10 pages).

Rosenfeld, L.Quantenmechanische Theorie der natürlichen optischen Aktivität von Flüssigkeiten und Gasen.Z Phys1929,52:161–174.

Jackson, JD.Classical Electrodynamics.New York: John Wiley %26 Sons;1962.

Condon, EU.Theories of optical rotatory power.Rev Mod Phys1937,9:432–457.

Grimme, S,Furche, F,Ahlrichs, R.An improved method for density functional calculations of the frequency‐dependent optical rotation.Chem Phys Lett2002,361:321–328.

Kronig, RDL.On the theory of dispersion of X‐rays.J Opt Soc Am1926,12:547–556.

Moffitt, W,Moscowitz, A.Optical activity in absorbing media.J Chem Phys1959,30:648–660.

Moscowitz, A.Some applications of the Kronig–Kramers theorem to optical activity.Tetrahedron1961,13:48–56.

Cotton FA, F.Chemical Applications of Group Theory.3rd ed.New York: Wiley;1990.

Hirata, S,Head‐Gordon, M.Time‐dependent density functional theory within the Tamm–Dancoff approximation.Chem Phys Lett1999,314:291–299.

London, F.Quantum theory of interatomic currents in aromatic compounds.Théorie quantique des courants interatomiques dans les combinaisons aromatiques.J Phys Rad1937,8:397–409.

Stephens, PJ.Theory of vibrational circular dichroism.J Phys Chem1985,89:748–752.

Cheeseman, JR,Frisch, MJ,Devlin, FJ,Stephens, PJ.Ab initio calculation of atomic axial tensors and vibrational rotational strengths using density functional theory.Chem Phys Lett1996,252:211–220.

Cheeseman, JR,Frisch, MJ,Devlin, FJ,Stephens, PJ.Hartree−Fock and density functional theory ab initio calculation of optical rotation using GIAOs: basis set dependence.J Chem Phys A2000,104:1039–1046.

Jusélius, J,Sundholm, D,Gauss, J.Calculation of current densities using gauge‐including atomic orbitals.J Chem Phys2004,121:3952–3963.

Pulay, P.%22Analytical derivative methods in quantum chemistry%22. In:Advance in Chemical Physics.New York: John Wiley %26 Sons, Inc.;1987,241–286.

Rappoport, D,Furche, F.%22Density functional methods for excited states: equilibrium sptructure and electronic spectra%22. In:Computational Photochemistry.Amsterdam: Elsevier;2005.

Marques, MAL,Ullrich, CA,Nogueira, F,Rubio, A,Burke, K,Gross, EKU.Time‐Dependent Density Functional Theory.Berlin: Springer;2006.

Elliott, P,Furche, F,Burke, K.%22Excited states from time‐dependent density functional theory%22. In:Reviews in Computational Chemistry.Hoboken, NJ: John Wiley %26 Sons;2009,91–165.

Runge, E,Gross, EKU.Density‐functional theory for time‐dependent systems.Phys Rev Lett1984,52:997–1000.

Gross, EKU,Kohn, W.Time‐dependent density‐functional theory.Adv Quant Chem1990,21:255–291.

Maitra, NT,Zhang, F,Cave, RJ,Burke, K.Double excitations within time‐dependent density functional theory linear response.J Chem Phys2004,120:5932–5937.

Langreth, D.Beyond the local‐density approximation in calculations of ground‐state electronic properties.Phys Rev B1983,28:1809–1834.

Becke, AD.Density‐functional exchange‐energy approximation with correct asymptotic behavior.Phys Rev A1988,38:3098–3100.

Perdew, J.Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation.Phys Rev B1992,46:6671–6687.

Perdew, J.Generalized gradient approximation made simple.Phys Rev Lett1996,77:3865–3868.

Perdew, JP,Ernzerhof, M,Burke, K.Rationale for mixing exact exchange with density functional approximations.J Chem Phys1996,105:9982–9985.

Becke, AD.Density‐functional thermochemistry. III. The role of exact exchange.J Chem Phys1993,98:5648–5652.

Ullrich, CA,Vignale, G.Time‐dependent current‐density‐functional theory for the linear response of weakly disordered systems.Phys Rev B2002,65:245102 (19 pages).

Vignale, G,Kohn, W.Current‐dependent exchange‐correlation potential for dynamical linear response theory.Phys Rev Lett1996,77:2037–2040.

van Faassen, M,de Boeij, PL.Excitation energies for a benchmark set of molecules obtained within time‐dependent current‐density functional theory using the Vignale–Kohn functional.J Chem Phys2004,120:8353–8363.

Furche, F.On the density matrix based approach to time‐dependent density functional response theory.J Chem Phys2001,114:5982–5992.

Casida, ME.Recent Developments and Applications in Density‐Functional Theory.Amsterdam: Elsevier;1996.

Bauernschmitt, R,Ahlrichs, R.Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory.Chem Phys Lett1996,256:454–464.

Perdew, J.Density‐functional approximation for the correlation energy of the inhomogeneous electron gas.Phys Rev B1986,33:8822–8824.

Perdew, J.Accurate and simple analytic representation of the electron‐gas correlation energy.Phys Rev B1992,45:13244–13249.

Lee, C,Yang, W,Parr, RG.Development of the Colle‐Salvetti correlation‐energy formula into a functional of the electron density.Phys Rev B1988,37:785–789.

Dreuw, A,Weisman, JL,Head‐Gordon, M.Long‐range charge‐transfer excited states in time‐dependent density functional theory require non‐local exchange.J Chem Phys2003,119:2943–2946.

Casida, ME,Jamorski, C,Casida, KC,Salahub, DR.Molecular excitation energies to high‐lying bound states from time‐dependent density‐functional response theory: characterization and correction of the time‐dependent local density approximation ionization threshold.J Chem Phys1998,108:4439–4449.

Casida, ME,Salahub, DR.Asymptotic correction approach to improving approximate exchange–correlation potentials: time‐dependent density‐functional theory calculations of molecular excitation spectra.J Chem Phys2000,113:8918.

Yanai, T.A new hybrid exchange‐correlation functional using the Coulomb‐attenuating method (CAM‐B3LYP).Chem Phys Lett2004,393:51–57.

Tawada, Y,Tsuneda, T,Yanagisawa, S,Yanai, T,Hirao, K.A long‐range‐corrected time‐dependent density functional theory.J Chem Phys2004,120:8425–8433.

Vydrov, OA,Scuseria, GE.Assessment of a long‐range corrected hybrid functional.J Chem Phys2006,125:234109 (9 pages).

Vydrov, OA,Heyd, J,Krukau, AV,Scuseria, GE.Importance of short‐range versus long‐range Hartree–Fock exchange for the performance of hybrid density functionals.J Chem Phys2006,125:074106 (9 pages).

Vydrov, OA,Scuseria, GE,Perdew, JP.Tests of functionals for systems with fractional electron number.J Chem Phys2007,126:154109 (9 pages).

Peach, MJG,Benfield, P,Helgaker, T,Tozer, DJ.Excitation energies in density functional theory: an evaluation and a diagnostic test.J Chem Phys2008,128:044118 (8 pages).

Grimme, S.Semiempirical hybrid density functional with perturbative second‐order correlation.J Chem Phys2006,124:034108 (16 pages).

Grimme, S,Neese, F.Double‐hybrid density functional theory for excited electronic states of molecules.J Chem Phys2007,127:154116 (18 pages).

Head‐Gordon, M,Rico, RJ,Oumi, M,Lee, TJ.A doubles correction to electronic excited states from configuration interaction in the space of single substitutions.Chem Phys Lett1994,219:21–29.

Pedersen, TB,Koch, H,Ruud, K.Coupled cluster response calculation of natural chiroptical spectra.J Chem Phys1999,110:2883.

Kongsted, J,Pedersen, TB,Osted, A,Hansen, AE,Mikkelsen, KV,Christiansen, O.Solvent effects on rotatory strength tensors. 1. Theory and application of the combined coupled cluster/dielectric continuum model.J Chem Phys A2004,108:3632–3641.

Crawford, TD,Allen, W.Optical activity in conformationally flexible molecules: a theoretical study of large‐amplitude vibrational averaging in (R)‐3‐chloro‐1‐butene.Mol Phys2009,107:1041–1057.

Ruud, K,Helgaker, T.Optical rotation studied by density‐functional and coupled‐cluster methods.Chem Phys Lett2002,352:533–539.

Hättig, C,Weigend, F.CC2 excitation energy calculations on large molecules using the resolution of the identity approximation.J Chem Phys2000,113:5154–5161.

Hättig, C,Kohn, A.Transition moments and excited‐state first‐order properties in the coupled‐cluster model CC2 using the resolution‐of‐the‐identity approximation.J Chem Phys2002,117:6939–6951.

Hättig, C,Hald, K.Implementation of RI‐CC2 triplet excitation energies with an application to trans‐azobenzene.Phys Chem Chem Phys2002,4:2111–2118.

Pedersen, TB,Fernández, B,Koch, H.Gauge invariant coupled cluster response theory using optimized nonorthogonal orbitals.J Chem Phys2001,114:6983–6993.

Hansen, AE,Bouman, TD.Optical activity of monoolefins: RPA calculations and extraction of the mechanisms in Kirkwood`s theory. Application to (‐)‐trans‐cyclooctene and 3(3R)‐3‐methylcyclo‐pentene.J Am Chem Soc1985,107:4828–4839.

Pople, JA,Santry, DP,Segal, GA.Approximate self‐consistent molecular orbital theory. I. Invariant procedures.J Chem Phys1965,43:S129‐S135.

Bringmann, G.Circular dichroism of naphthyltetrahydroisoquinoline alkaloids: calculation of CD spectra by semiempirical methods.Tetrahedron1993,49:3305–3312.

Peterson, KA,Dunning, TH.Accurate correlation consistent basis sets for molecular core–valence correlation effects: the second row atoms Al–Ar, and the first row atoms B–Ne revisited.J Chem Phys2002,117:10548–10560.

Hehre, WJ.Self‐consistent molecular orbital methods. XII. Further extensions of gaussian‐type basis sets for use in molecular orbital studies of organic molecules.J Chem Phys1972,56:2257–2261.

Dill, JD.Self‐consistent molecular orbital methods. XV. Extended Gaussian‐type basis sets for lithium, beryllium, and boron.J Chem Phys1975,62:2921–2923.

Francl, MM.Self‐consistent molecular orbital methods. XXIII. A polarization‐type basis set for second‐row elements.J Chem Phys1982,77:3654–3665.

Sadlej, AJ.Molecular electric polarizabilities. Electronic‐field‐variant (EFV) Gaussian basis set for polarizability calculations.Chem Phys Lett1977,47:50–54.

Sadlej, AJ.Medium‐size polarized basis sets for high‐level‐correlated calculations of molecular electric properties.Theor Chim Acta1991,81:45–63.

Rappoport, D,Furche, F.Property‐optimized Gaussian basis sets for molecular response calculations.J Chem Phys2010,133:134105 (10 pages).

Furche, F,Ahlrichs, R,Wachsmann, C,Weber, E,Sobanski, A,Vogtle, F,Grimme, S.Circular dichroism of helicenes investigated by time‐dependent density functional theory.J Am Chem Soc2000,122:1717–1724.

Schäfer, A,Horn, H,Ahlrichs, R.Fully optimized contracted Gaussian‐basis sets for atoms Li to Kr.J Chem Phys1992,97:2571–2577.

Schäfer, A,Huber, C,Ahlrichs, R.Fully optimized contracted Gaussian‐basis sets of triple zeta valence quality for atoms Li to Kr.J Chem Phys1994,100:5829–5835.

Weigend, F,Ahlrichs, R.Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy.Phys Chem Chem Phys2005,7:3297–3305.

Kundrat, MD,Autschbach, J.Modeling of the chiroptical response of chiral amino acids in solution using explicit solvation and molecular dynamics.J Chem Theory Comput2009,5:1051–1060.

Autschbach, J,Patchkovskii, S,Ziegler, T,van Gisbergen, SJA,Jan Baerends, E.Chiroptical properties from time‐dependent density functional theory. II. Optical rotations of small to medium sized organic molecules.J Chem Phys2002,117:581–592.

Diedrich, C,Grimme, S.Systematic investigation of modern quantum chemical methods to predict electronic circular dichroism spectra.J Phys Chem A2003,107:2524–2539.

Pecul, M,Ruud, K,Helgaker, T.Density functional theory calculation of electronic circular dichroism using London orbitals.Chem Phys Lett2004,388:110–119.

Pecul, M,Ruud, K,Rizzo, A,Helgaker, T.Conformational effects on the optical rotation of alanine and proline.J Chem Phys A2004,108:4269–4276.

Frelek, J,Kowalska, P,Masnyk, M,Kazimierski, A,Korda, A,Woznica, M,Chmielewski, M,Furche, F.Circular dichroism and conformational dynamics of cephams and their carba and oxa analogues.Chemistry2007,13:6732–6744.

Grimme, S,Mück‐Lichtenfeld, C.Calculation of conformational energies and optical rotation of the most simple chiral alkane.Chirality2008,20:1009–1015.

Wiberg, KB,Wang, Y,Wilson, SM,Vaccaro, PH,Jorgensen, WL,Crawford, TD,Abrams, ML,Cheeseman, JR,Luderer, M.Optical rotatory dispersion of 2,3‐hexadiene and 2,3‐pentadiene.J Chem Phys A2008,112:2415–2422.

Tam, MC,Crawford, TD.Ab initio determination of optical rotatory dispersion in the conformationally flexible molecule (R)‐epichlorohydrin.J Chem Phys A2006,110:2290–2298.

Mori, T,Inoue, Y,Grimme, S.Time dependent density functional theory calculations for electronic circular dichroism spectra and optical rotations of conformationally flexible chiral donor−acceptor dyad.J Org Chem2006,71:9797–9806.

Mori, T,Grimme, S,Inoue, Y.A combined experimental and theoretical study on the conformation of multiarmed chiral aryl ethers.J Org Chem2007,72:6998–7010.

Kondru, RK,Wipf, P,Beratan, DN.Theory‐assisted determination of absolute stereochemistry for complex natural products via computation of molar rotation angles.J Am Chem Soc1998,120:2204–2205.

Kondru, RK,Wipf, P,Beratan, DN.Structural and conformational dependence of optical rotation angles.J Chem Phys A1999,103:6603–6611.

Mort, BC,Autschbach, J.Temperature dependence of the optical rotation of fenchone calculated by vibrational averaging.J Chem Phys A2006,110:11381–11383.

Woznica, M,Kowalska, P,Lysek, R,Masnyk, M,Gorecki, M,Kwit, M,Furche, F,Frelek, J.Stereochemical assingment of β ‐lactam antibiotics and their analogues by electronic circular dichroism spectroscopy.Curr Org Chem2010,14:1022–1036.

Neugebauer, J,Jan Baerends, E,Nooijen, M,Autschbach, J.Importance of vibronic effects on the circular dichroism spectrum of dimethyloxirane.J Chem Phys2005,122:234305 (7 pages).

Nooijen, M.Investigation of Herzberg–Teller Franck–Condon approaches and classical simulations to include effects due to vibronic coupling in circular dichroism spectra: the case of dimethyloxirane continued.Int J Quant Chem2006,106:2489–2510.

Ruud, K,Taylor, PR,Åstrand, P.Zero‐point vibrational effects on optical rotation.Chem Phys Lett2001,337:217–223.

Mort, BC,Autschbach, J.Magnitude of zero‐point vibrational corrections to optical rotation in rigid organic molecules: a time‐dependent density functional study.J Chem Phys A2005,109:8617–8623.

Köppel, H,Domcke, W,Cederbaum, LS.Theoretical investigation of Jahn‐Teller and pseudo‐Jahn‐Teller interactions in the ammonia cation.Adv Chem Phys1984,57:59–246.

Dierksen, M,Grimme, S.A theoretical study of the chiroptical properties of molecules with isotopically engendered chirality.J Chem Phys2006,124:174301 (12 pages).

Demachy, I,Ridard, J,Laguitton‐Pasquier, H,Durnerin, E,Vallverdu, G,Archirel, P,Lévy, B.Cyan fluorescent protein: molecular dynamics, simulations, and electronic absorption spectrum.J Phys Chem B2005,109:24121–24133.

Bringmann, G,Mühlbacher, J,Repges, C,Fleischhauer, J.MD‐based CD calculations for the assignment of the absolute axial configuration of the naphthylisoquinoline alkaloid dioncophylline A.J Comput Chem2001,22:1273–1278.

Brown, A,Kemp, CM,Mason, SF.Electronic absorption, polarised excitation, and circular dichroism spectra of [5]‐helicene (dibenzo[c,g]phenanthrene).J Chem Soc A: Inorg Phys Theor1971:751–755.

Müller, T,Wiberg, KB,Vaccaro, PH.Cavity ring‐down polarimetry (CRDP): a new scheme for probing circular birefringence and circular dichroism in the gas phase.J Chem Phys A2000,104:5959–5968.

Kumata, Y,Furukawa, J,Fueno, T.The effect of solvents on the optical rotation of propylene oxide.Bull Chem Soc Jpn1970,43:3920–3921.

Mukhopadhyay, P,Zuber, G,Goldsmith, M,Wipf, P,Beratan, DN.Solvent effect on optical rotation: a case study of methyloxirane in water.Chem Phys Chem2006,7:2483–2486.

Warnke, I,Ay, S,Bräse, S,Furche, F.Chiral cooperativity and solvent‐induced tautomerism effects in electronic circular dichroism spectra of [2.2]paracyclophane ketimines.J Chem Phys A2009,113:6987–6993.

Klamt, A,Schüürmann, G.COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient.J Chem Soc Perkin Trans1993,2:799–805.

Klamt, A,Jonas, V.Treatment of the outlying charge in continuum solvation models.J Chem Phys1996,105:9972–9981.

Klamt, A.The COSMO and COSMO‐RS solvation models.WIREs Comput Mol Sci 2011, doi: 10.1002/wcms.56.

Cammi, R,Tomasi, J.Remarks on the use of the apparent surface charges (ASC) methods in solvation problems: iterative versus matrix‐inversion procedures and the renormalization of the apparent charges.J Comput Chem1995,16:1449–1458.

Miertus, S,Scrocco, E,Tomasi, J.Electrostatic interaction of a solute with a continuum. A direct utilizaion of ab‐initio molecular potentials for the prevision of solvent effects.Chem Phys1981,55:117–129.

Tomasi, J,Mennucci, B,Cammi, R.Quantum mechanicalcontinuum solvation models.Chem Rev2005,105:2999–3094.

Pecul, M,Marchesan, D,Ruud, K,Coriani, S.Polarizable continuum model study of solvent effects on electronic circular dichroism parameters.J Chem Phys2005,122:024106 (9 pages).

Guillaume, M,Ruud, K,Rizzo, A,Monti, S,Lin, Z,Xu, X.Computational study of the one‐ and two‐photon absorption and circular dichroism of l‐tryptophan.J Phys Chem B2010,114:6500–6512.

Bernasconi, L,Blumberger, J,Sprik, M,Vuilleumier, R.Density functional calculation of the electronic absorption spectrum of Cu[sup +] and Ag[sup +] aqua ions.J Chem Phys2004,121:11885–11899.

Brickell, WS,Brown, A,Kemp, CM,Mason, SF.π‐electron absorption and circular dichroism spectra of [6]‐ and [7]‐helicene.J Chem Soc A1971,756–760.

Crassous, J,Rivera, J,Fender, NS,Shu, L,Echegoyen, L,Thilgen, C,Herrmann, A,Diederich, F.Chemistry of C84: separation of three constitutional isomers and optical resolution of D2‐C84 by using the “Bingel‐Retro‐Bingel” strategy.Angew Chem Int Ed1999,38:1613–1617.

Fanti, M,Orlandi, G,Poggi, G,Zerbetto, F.Semiempirical quantum‐chemical assignment of the circular dichroism spectra of small chiral fullerenes.Chem Phys1997,223:159–168.

Furche, F,Ahlrichs, R.Absolute configuration of D2‐symmetric fullerene C84.J Am Chem Soc2002,124:3804–3805.

Nomenclature and terminology of fullerenes: a preliminary survey.Pure Appl Chem1997,69:1411–1434.

Stephens, PJ,Pan, J,Devlin, FJ,Urbanová, M,Julínek, O,Hájícek, J.Determination of the absolute configurations of natural products via density functional theory calculations of vibrational circular dichroism, electronic circular dichroism, and optical rotation: the iso‐schizozygane alkaloids isoschizogaline and isoschizogamine.Chirality2008,20:454–470.

Turbomole V6.2, Turbomole GmbH, Karlsruhe,2011,www.turbomole.com

Łysek, R,Borsuk, K,Chmielewski, M,Kałuża, Z,Urbańczyk‐Lipkowska, Z,Klimek, A,Frelek, J.5‐dethia‐5‐oxacephams: toward correlation of absolute configuration and chiroptical properties.J Org Chem2002,67:1472–1479.

Furche, F,Perdew, JP.The performance of semilocal and hybrid density functionals in 3d transition‐metal chemistry.J Chem Phys2006,124:044103–27.

Wang, Y,Fleischhauer, J,Bausch, S,Sebastian, M,Laur, P.Conformational analysis and TDDFT calculations of the chiroptical properties of tris[1,2‐propaneiolato(2‐)‐κ O,κ O`]‐selenium/tellurium and related compounds.Enantiomer2002,7:343–374.

Jorge, FE,Autschbach, J,Ziegler, T.On the origin of the optical activity in the d−d transition region of tris‐bidentate Co(III) and Rh(III) complexes.J Am Chem Soc2005,127:975–985.

Stiefel, EI,Brown, GF.Detailed nature of the six‐coordinate polyhedra in tris(bidentate ligand) complexes.Inorg Chem1972,11:434–436.

Mason, SF.%22Optical activity and molecular dissymmetry in coordination compounds%22. In:Fundamental Aspects and Recent Developments in Optical Rotatory Dispersion and Circular Dichroism.London: Heyden and Son Ltd;1973.

Hearson, JA,Mason, SF,Wood, JW.The tris‐(R)‐(—)‐propylenediamine complexes of rhodium(III).Inorg Chim Acta1977,23:95–96.

Jorge, FE,Autschbach, J,Ziegler, T.On the origin of the optical activity in the d−d transition region of tris‐bidentate Co(III) and Rh(III) complexes.Inorg Chem2003,42:8902–8910.