Arrhenius, S.Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren.Z Phys Chem (Leipzig)1889, 4:226–248.

Eyring, H.The activated complex in chemical reactions.J Chem Phys1935, 3:107–115.

Evans, MG,Polanyi, M.Some applications of the transition state method to the calculation of reaction velocities, especially in solution.Trans Faraday Soc1935, 31:875–894.

Chandler, D.Statistical mechanics of isomerization dynamics in liquids and the transition state approximation.J Chem Phys1978, 68:2959–2970.

Kollman, P.Free energy calculations: Applications to chemical and biochemical phenomena.Chem Rev1993, 93:2395–2417.

Beveridge, DL,DiCapua, FM.Free energy via molecular simulation: Applications to chemical and biomolecular systems.Annu Rev Biophys Biophys Chem1989, 18:431–492.

Christ, CD,Mark, AE,van Gunsteren, WF.Basic ingredients of free energy calculations: A review.J Comput Chem2010, 31:1569–1582.

Rosta, E,Woodcock, HL,Brooks, BR,Hummer, G.Artificial reaction coordinate “tunneling” in free‐energy calculations: The catalytic reaction of RNase H.J Comput Chem2009, 30:1634–1641.

Knight, JL,Brooks, III CL.λ‐Dynamics free energy simulation methods.J Comput Chem2009, 30:1692–1700.

Kong, X,Brooks, CL III.λ‐Dynamics: A new approach to free energy calculations.J Chem Phys1996, 105:2414–2423.

Liu, Z,Berne, BJ.Method for accelerating chain folding and mixing.J Chem Phys1993, 99:6071–6077.

Tidor, B.Simulated annealing on free energy surfaces by a combined molecular dynamics and Monte Carlo approach.J Phys Chem1993, 97:1069–1073.

Laio, A,Parrinello, M.Escaping free‐energy minima.Proc Natl Acad Sci U S A2002, 99:12562–12566.

Torrie, GM,Valleau, JP.Monte Carlo free energy estimates using non‐Boltzmann sampling: Application to the sub‐critical Lennard‐Jones fluid.Chem Phys Lett1974, 28:578–581.

Torrie, GM,Valleau, JP.Nonphysical sampling distributions in Monte Carlo free‐energy estimation: Umbrella sampling.J Comput Phys1977, 23:187–199.

Born, M.Volumen und Hydratationswärme der Ionen.Z Phys1920, 1:45–48.

Kirkwood, JG.Statistical mechanics of fluid mixtures.J Chem Phys1935, 3:300–313.

Carter, EA,Ciccotti, G,Hynes, JT,Kapral, R.Constrained reaction coordinate dynamics for the simulation of rare events.Chem Phys Lett1989, 156:472–477.

van Gunsteren, WF.Methods for calculation of free energies and binding constants: successes and problems. In:van Gunsteren, WF,Weiner, PK, eds.Computer Simulation of Biomolecular Systems. Vol. 1Leiden: ESCOM;1989, 27.

Straatsma, TP,McCammon, JA.Multiconfiguration thermodynamic integration.J Chem Phys1991, 95:1175–1188.

Sprik, M,Ciccotti, G.Free energy from constrained molecular dynamics.J Chem Phys1998, 109:7737–7744.

Ciccotti, G,Ferrario, M.Blue moon approach to rare events.Mol Sim2004, 30:787–793.

Ryckaert, JP,Ciccotti, G,Berendsen, HJC.Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of n‐alkanes.J Comput Phys1977, 23:327–341.

Mülders, T,Krüger, P,Swegat, W,Schlitter, J.Free energy as the potential of mean constraint force.J Chem Phys1996, 104:4869–4870.

Jain, A.Compensating mass matrix potential for constrained molecular dynamics.J Comput Phys1997, 136:289–297.

den Otter, WK,Briels, WJ.The calculation of free‐energy differences by constrained molecular‐dynamics simulations.J Chem Phys1998, 109:4139–4146.

den Otter, WK.Thermodynamic integration of the free energy along a reaction coordinate in cartesian coordinates.J Chem Phys2000, 112:7283–7292.

Darve, E,Pohorille, A.Calculating free energies using average force.J Chem Phys2001, 115:9169–9183.

Schlitter, J,Klähn, M.A new concise expression for the free energy of a reaction coordinate.J Chem Phys2003, 118:2057–2060.

Schlitter, J,Klähn, M.The free energy of a reaction coordinate at multiple constraints: A concise formulation.Mol Phys,2003, 101:3439–3443.

Hénin, J,Chipot, C.Overcoming free energy barriers using unconstrained molecular dynamics simulations.J Chem Phys2004, 121:2904–2914.

Straatsma, TP,Berendsen, HJC,Postma, JPM.Free energy of hydrophobic hydration: A molecular dynamics study of noble gases in water.J Chem Phys1986, 85:6720–6727.

Beveridge, DL,DiCapua, FM.Free energy via molecular simulatin: a primer. In:van Gunsteren, WF,Weiner, PK, eds.Computer Simulation of Biomolecular Systems. Vol. 1.Leiden, The Netherlands: ESCOM;1989,1–26.

Hermans, J.Simple analysis of noise and hysteresis in (slow‐growth) free energy simulations.J Phys Chem1991, 95:9029–9032.

Kumar, S,Rosenberg, JM,Bouzida, D,Swendsen, RH,Kollman, PA.The weighted histogram analysis method for free‐energy calculations on biomolecules. I. The method.J Comput Chem1992, 13:1011–1021.

Souaille, M,Roux, B.Extension to the weighted histogram analysis method: Combining umbrella sampling with free energy calculations.Comput Phys Commun,2001135:40–57.

Kästner, J,Thiel, W.Bridging the gap between thermodynamic integration and umbrella sampling provides a novel analysis method: “Umbrella integration”.J Chem Phys2005, 123:144104(1–5).

Grubmüller, H,Heymann, B,Tavan, P.Ligand binding and molecular mechanics calculation of the streptavidin‐biotin rupture force.Science1996, 271:997–999.

Izrailev, S,Stepaniants, S,Balsera, M,Oono, Y,Schulten, K.Molecular dynamics study of unbinding of the avidin‐biotin complex.Biophys J1997, 72:1568–1581.

Evans, E,Ritchie, K.Dynamic strength of molecular adhesion bonds.Biophys J1997, 72:1541–1555.

Balsera, M,Stepaniants, S,Izrailev, S,Oono, Y,Schulten, K.Reconstructing potential energy functions from simulated force‐induced unbinding processes.Biophys J,1997, 73:1281–1287.

Jarzynski, C.Nonequilibrium equality for free energy differences.Phys Rev Lett1997, 78:2690–2693.

Hummer, G.Fast‐growth thermodynamic integration: Error and efficiency analysis.J Chem Phys2001, 114:7330–7337.

Zuckerman, DM,Woolf, TB.Theory of a systematic computational error in free energy differences.Phys Rev Lett2002, 89:180602–180606.

Bennett, CH.Efficient estimation of free energy differences from Monte Carlo data.J Comput Phys1976, 22:245–268.

Zwanzig, RW.High‐temperature equation of state by a perturbation method. I. Nonpolar gases.J Chem Phys1954, 22:1420–1426.

Hu, H,Yang, W.Free energies of chemical reactions in solution and in enzymes with *ab initio* quantum mechanics/molecular mechanics methods.Annu Rev Phys Chem2008, 59:573–601.

Zhang, Y,Liu, H,Yang, W.Free energy calculation on enzyme reactions with an efficient iterative procedure to determine minimum energy paths on a combined *ab initio* QM/MM potential energy surface.J Chem Phys2000, 112:3483–3493.

Kästner, J,Senn, HM,Thiel, S,Otte, N,Thiel, W.QM/MM free‐energy perturbation compared to thermodynamic integration and umbrella sampling: Application to an enzymatic reaction.J Chem Theory Comput2006, 2:452–461.

Senn, HM,Kästner, J,Breidung, J,Thiel, W.Finite‐temperature effects in enzymatic reactions—Insights from QM/MM free‐energy simulations.Can J Chem2009, 87:1322–1337.

McDonald, IR,Singer, K.Machine calculation of thermodynamic properties of a simple fluid at supercritical temperatures.J Chem Phys1967, 47:4766–4772.

McDonald, IR,Singer, K.Examination of the adequacy of the 12–6 potential for liquid argon by means of Monte Carlo calculations.J Chem Phys1969, 50:2308–2315.

Frenkel, D,Smit, B.Understanding Molecular Simulation: From Algorithms to Applications.2nd ed.San Diego, CA: Academic Press;2002.

Kästner, J,Thiel, W.Analysis of the statistical error in umbrella sampling simulations by umbrella integration.J Chem Phys2006, 124:234106(1–7).

Grossfield, A,Woolf, TB.Interaction of tryptophan analogs with POPC lipid bilayers investigated by molecular dynamics calculations.Langmuir2002, 18:198–210.

Mills, M,Andricioaei, I.An experimentally guided umbrella sampling protocol for biomolecules.J Chem Phys2008, 129:114101(1–13).

Mezei, M.Adaptive umbrella sampling: Self‐consistent determination of the non‐Boltzmann bias.J Comput Phys1987, 68:237–248.

Hooft, RWW,van Eijck, BP,Kroon, J.An adaptive umbrella sampling procedure in conformational analysis using molecular dynamics and its application to glycol.J Chem Phys1992, 97:6690–6694.

Bartels, C,Karplus, M.Multidimensional adaptive umbrella sampling: Applications to main chain and side chain peptide conformations.J Comput Chem1997, 18:1450–1462.

Bartels, C,Karplus, M.Probability distributions for complex systems: Adaptive umbrella sampling of the potential energy.J Phys Chem B1998, 102:865–880.

Huber, T,Torda, AE,van Gunsteren, WF.Local elevation: A method for improving the searching properties of molecular dynamics simulation.J Comput Aided Mol Design1994, 8:695–708.

Hansen, HS,Hünenberger, PH.Using the local elevation method to construct optimized umbrella sampling potentials: Calculation of the relative free energies and interconversion barriers of glucopyranose ring conformers in water.J Comput Chem2010, 31:1–23.

Hansen, HS,Hünenberger, PH.Ball‐and‐stick local elevation umbrella sampling: Molecular simulations involving enhanced sampling within conformational or alchemical subspaces of low internal dimensionalities, minimal irrelevant volumes, and problem‐adapted geometries.J Chem Theory Comput2010, 6:2622–2646.

Wu, D.An efficient umbrella potential for the accurate calculation of free energies by molecular simulation.J Chem Phys2010, 133:044115(1–9).

Sugita, Y,Okamoto, Y.Replica‐exchange molecular dynamics method for protein folding.Chem Phys Lett1999, 314:141–151.

Sugita, Y,Kitao, A,Okamoto, Y.Multidimensional replica‐exchange method for free‐energy calculations.J Chem Phys2000, 113:6042–6051.

Curuksu, J,Zacharias, M.Enhanced conformational sampling of nucleic acids by a new hamiltonian replica exchange molecular dynamics approach.J Chem Phys2009, 130:104110(1–8).

Ferrenberg, AM,Swendsen, RH.New Monte Carlo technique for studying phase transitions.Phys Rev Lett1988, 61:2635–2638.

Ferrenberg, AM,Swendsen, RH.Optimized Monte Carlo data analysis.Phys Rev Lett1989, 63:1195–1198.

Roux, B.The calculation of the potential of mean force using computer simulations.Comput Phys Commun1995, 91:275–282.

Chakravorty, DK,Kumarasiri, M,Soudackov, AV,Hammes‐Schiffer, S.Implementation of umbrella integration within the framework of the empirical valence bond approach.J Chem Theory Comput2008, 4:1974–1980.

Van Eerden, J,Briels, WJ,Harkema, S,Feil, D.Potential of mean force by thermodynamic integration: Molecular‐dynamics simulation of decomplexation.Chem Phys Lett1989, 164:370–376.

Billeter, SR,van Gunsteren, WF.Computer simulation of proton transfers of small acids in water.J Phys Chem A2000, 104:3276–3286.

Maragliano, L,Fischer, A,Vanden‐Eijnden, E,Ciccotti, G.String method in collective variables: Minimum free energy paths and isocommittor surfaces.J Chem Phys2006, 125:024106(1–15).

Maragliano, L,Vanden‐Eijnden, E.Single‐sweep methods for free energy calculations.J Chem Phys2008, 128:184110(1–10).

Kästner, J.Umbrella integration in two or more reaction coordinates.J Chem Phys2009, 131:034109(1–8).

Kästner, J,Sherwood, P.The ribosome catalyses peptide bond formation by providing high ionic strength.Mol Phys2010, 108:293–306.

Schiferl, SK,Wallace, DC.Statistical errors in molecular dynamics averages.J Chem Phys1985, 83:5203–5209.

Beutler, TC,van Gunsteren, WF.The computation of a potential of mean force: Choice of the biasing potential in the umbrella sampling technique.J Chem Phys1994, 100:1492–1497.

Czaplewski, C,Rodziewicz‐Motowidlo, S,Liwo, A,Ripoll, DR,Wawak, RJ,Scheraga, HA.Molecular simulation study of cooperativity in hydrophobic association.Protein Sci2000, 9:1235–1245.

Shirts, MR,Pande, VS.Comparison of efficiency and bias of free energies computed by exponential averaging, the Bennett acceptance ratio, and thermodynamic integration.J Chem Phys2005, 122:144107(1–15).

Trzesniak, D,Kunz, APE,van Gunsteren, WF.A comparison of methods to compute the potential of mean force.Chem Phys Chem2007, 8:162–169.