Eisenschitz, R,London, F. About the relationship of the van der Waals forces to the covalent bonding forces.Z Phys1930, 60:491–527.

Szalewicz, K,Jeziorski, B. Symmetry‐adapted double‐perturbation analysis of intramolecular correlation effects in weak intermolecular interactions.Mol Phys1979, 38:191–208.

Rybak, S, Jeziorski, B,Szalewicz, K. Many‐body symmetry‐adapted perturbation theory of intermolecular interactions ‐ H_{2}O and HF dimers.J Chem Phys1991, 95:6579–6601.

Jeziorski, B,Moszyński, R,Szalewicz, K.Perturbation theory approach to intermolecular potential energy surfaces of van der Waals complexes.Chem Rev1994, 94:1887–1930.

Jeziorski, B,Szalewicz, K.Symmetry‐adapted perturbation theory. In:Wilson, S, ed.Handbook of Molecular Physics and Quantum Chemistry. Vol. 3, Part 2.Chichester: John Wiley %26 Sons; 2003, 232–279.

Szalewicz, K,Patkowski, K,Jeziorski, B. Intermolecular interactions via perturbation theory: from diatoms to biomolecules.Structure and Bonding2005, 116:43–117.

Korona, T.Coupled cluster treatment of intramonomer correlation effects in intermolecular interactions. In:Carsky, P,Paldus, J,Pittner, J, eds.Recent Progress in Coupled Cluster Methods.Dordrecht: Springer; 2010, 267–298.

Arrighini, P.Intermolecular Forces and Their Evaluation by Perturbation Theory, vol. 25: of Lecture Notes in Chemistry(Springer, Berlin, 1981).

Kaplan, I.Theory of molecular interactions.Amsterdam: Elsevier; 1986.

Stone, AJ.The Theory of Intermolecular Forces.Oxford: Clarendon Press; 1996.

Przybytek, M,Cencek, W,Komasa, J, Łach, G,Jeziorski, B,Szalewicz, K.Relativistic and quantum electrodynamics effects in helium pair potential.Phys Rev Lett 2010, 104:183003.

Podeszwa, R,Rice, BM,Szalewicz, K.Predicting structure of molecular crystals from first principles.Phys Rev Lett2008, 101:115503.

Kolos, W,Roothaan, CCJ. Accurate electronic wave functions for the H_{2} molecule.Rev Mod Phys1960, 32:219–232.

Buckingham, AD,Fowler, PW,Hutson, JM. Theoretical‐studies of van der Waals molecules and intermolecular forces.Chem Rev1988, 88:963–988.

Chałasiński, G,Jeziorski, B,Szalewicz, K.On the convergence properties of the Rayleigh Schrödinger and Hirschfelder‐Silbey perturbation expansions for molecular interaction energies.Int J Quantum Chem1977, 11:247–257.

Jeziorski, B,Chałasiński, G,Szalewicz, K. Symmetry forcing and convergence properties of perturbation expansions for molecular interaction energies.Int J Quantum Chem1978, 14:271–287.

Jeziorski, B,Schwalm, WA,Szalewicz, K.Analytic continuation in exchange perturbation theory.J Chem Phys1980, 73:6215–6222.

Chałasiński, G,Szalewicz, K. Degenerate symmetry‐adapted perturbation theory. Convergence properties of perturbation expansions for excited states of *H*^{+}_{2} ion.Int J Quantum Chem1980, 18:1071–1089.

Adams, W.The problem of unphysical states in the theory of intermolecular interactions.J Math Chem1992, 10:1–23.

Ćwiok, T,Jeziorski, B,Kołos, W,Moszyński, R,Szalewicz, K. On the convergence of the symmetrized Rayleigh–Schrödinger perturbation theory for molecular interaction energies.J Chem Phys1992, 97:7555–7559.

Ćwiok, T,Jeziorski, B,Kołos, W,Moszyński, R,Rychlewski, J,Szalewicz, K.Convergence properties and large‐order behavior of the polarization expansion for the interaction energy of hydrogen atoms.Chem Phys Lett1992, 195:67–76.

Patkowski, K,Jeziorski, B,Szalewicz, K.Symmetry‐adapted perturbation theory with regularized Coulomb potential.J Mol Struct (Theochem)2001, 547:293–307.

Patkowski, K,Jeziorski, B,Korona, T,Szalewicz, K.Symmetry‐forcing procedure and convergence behavior of perturbation expansions for molecular interaction energies.J Chem Phys2002, 117:5124–5134.

Przybytek, M,Patkowski, K,Jeziorski, B.Convergence behavior of symmetry‐adapted perturbation expansions for excited states. A model study of interactions involving a triplet helium atom.Collect Czech Chem Commun2004, 69:141–176.

Patkowski, K,Jeziorski, B,Szalewicz, K.Unified treatment of chemical and van der Waals forces via symmetry‐adapted perturbation expansion.J Chem Phys2004, 120:6849–6862.

Adams, WH.Convergence radii of the polarization expansion of intermolecular potentials.Int J Quantum Chem2009, 109:3844–3857.

Bartlett, RJ.Coupled‐cluster approach to molecular structure and spectra‐a step toward predictive quantum chemistry.J Phys Chem1989, 93:1697–1708.

Jankowski, P,Jeziorski, B,Rybak, S,Szalewicz, K.Perturbation analysis of the first‐order exchange energy for the helium dimer.J Chem Phys1990, 92:7441–7447.

Moszyński, R,Jeziorski, B,Ratkiewicz, A,Rybak, S.Many‐body perturbation theory of electrostatic interactions between molecules‐comparison with full configuration‐interaction for 4‐electron dimers.J Chem Phys 1993, 99:8856‐8869.

Moszyński, R,Jeziorski, B,Rybak, S,Szalewicz, K,Williams, HL.Many‐body theory of exchange effects in intermolecular interactions‐density‐matrix approach and applications to He‐F^{−}, He‐HF, H_{2}‐HF, and Ar‐H_{2} dimers.J Chem Phys 1994, 100:5080‐5092.

Moszyński, R,Cybulski, SM,Chałasiński, G.Many‐body theory of intermolecular induction interactions.J Chem Phys1994, 100:4998–5010.

Moszyński, R,Jeziorski, B,Szalewicz, K.Many‐body theory of exchange effects in intermolecular interactions. Second‐quantization approach and comparison with full CI results.J Chem Phys1994, 100:1312–1325.

Patkowski, K,Szalewicz, K,Jeziorski, B.Third‐order interactions in symmetry‐adapted perturbation theory.J Chem Phys2006, 125:154107.

Patkowski, K,Szalewicz, K.Frozen core and effective core potentials in symmetry‐adapted perturbation theory.J Chem Phys2007, 127:164103.

Pernal, K,Szalewicz, K.Third‐order dispersion energy from response functions.J Chem Phys2009, 130:034103.

Patkowski, K,Szalewicz, K,Jeziorski, B.Orbital relaxation and the third‐order induction energy in symmetry‐adapted perturbation theory.Theor Chem Acc2010, 127:211–221.

Rybak, S,Szalewicz, K,Jeziorski, B,Jaszunski, M.Intraatomic correlation effects for the He‐He dispersion and exchange dispersion energies using explicitly correlated Gaussian geminals.J Chem Phys1987, 86:5652–5659.

Moszyński, R,Jeziorski, B,Szalewicz, K.Møller‐Plesset expansion of the dispersion energy in the ring approximation.Int J Quantum Chem1993, 45:409–432.

Williams, HL,Szalewicz, K,Moszyński, R,Jeziorski, B.Dispersion energy in the coupled pair approximation with noniterative inclusion of single and triple excitations.J Chem Phys1995, 103:4586–4599.

Korona, T,Moszyński, R.,Jeziorski, B.Electrostatic interactions between molecules from relaxed one‐electron density matrices of the coupled cluster singles and doubles model.Mol Phys2002, 100:1723–1734.

Korona, T,Jeziorski, B.One‐electron properties and electrostatic interaction energies from the expectation value expression and wave function of singles and doubles coupled cluster theory.J Chem Phys2006, 129:184109.

Korona, T,Jeziorski, B.Dispersion energy from density‐fitted density susceptibilities of singles and doubles coupled cluster theory.J Chem Phys2008, 128:144107.

Korona, T.Korona First‐order exchange energy of intermolecular interactions from coupled cluster density matrices and their cumulants.J Chem Phys2008, 128:224104.

Korona, T.Second‐order exchange‐induction energy of intermolecular interactions from coupled cluster density matrices and their cumulants.Phys Chem Chem Phys2008, 10:6509–6519.

Korona, T.Exchange‐dispersion energy: A formulation in terms of monomer properties and coupled cluster treatment of intramonomer correlationJ Chem Theory Comptu 2009, 5:2663–2678.

Boys, SF,Bernardi, F.The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors.Mol Phys1970, 19:553–566.

Szalewicz, K,Jeziorski, B.Comment on ‘on the importance of the fragment relaxation energy terms in the estimation of the basis set superposition error correction to the intermolecular interaction energy.’J Chem Phys 1998, 109:1198–1200.

van Duijneveldt, FB,van Duijneveldt‐van de Rijdt, JGCM,van Lenthe, JH.State‐of‐the‐art in counterpoise theory.Chem Rev1994, 94:1873–1885.

Korona, T,Williams, HL,Bukowski, R,Jeziorski, B,Szalewicz, K.Symmetry‐adapted perturbation theory calculation of He–He interaction energy.J Chem Phys1997, 106:5109–5122.

Korona, T,Moszyński, R.,Jeziorski, B.Convergence of symmetry‐adapted perturbation theory for the interaction between helium atoms and between a hydrogen molecule and a helium atom.Adv Quantum Chem1997, 28:171–188.

Raghavachari, K,Trucks, GW,Pople, JA,Head‐Gordon M. A 5th‐order perturbation comparison of electron correlation theories.Chem Phys Lett1989, 157:479–483.

Patkowski, K,Podeszwa, R,Szalewicz, K.Interactions in diatomic dimers involving closed‐shell metals.J Phys Chem A2007, 111:12822–12838.

Bukowski, R,Cencek, W,Jankowski, P,Jeziorska, M,Jeziorski, B,Kucharski, SA,Korona, T,Lotrich, VF,Misquitta, AJ,Moszyński, R., et al.*SAPT2011: An* ab initio *program for many‐body symmetry‐adapted perturbation theory calculations of intermolecular interaction energies*, University of Delaware and University of Warsaw (2011]),URL http://www.physics.udel.edu/∼szalewic/SAPT/SAPT.html.

Cencek, W,Jeziorska, M,Bukowski, R,Jaszuń ski, M,Jeziorski, B,Szalewicz, K.Helium dimer interaction energies from Gaussian geminal and orbital calculations.J Phys Chem A2004, 108:3211–3224.

Patkowski, K,Cencek, W,Jeziorska, M,Jeziorski, B,Szalewicz, K.Accurate pair interaction energies for helium from supermolecular Gaussian geminal calculations.J Phys Chem A2007, 111:7611–7623.

Patkowski, K,Szalewicz, K.Argon pair potential at basis and excitation limits.J Chem Phys2010, 133:094304.

Williams, HL,Mas, EM,Szalewicz, K,Jeziorski, B.On the effectiveness of monomer‐, dimer‐, and bond‐centered basis functions in calculations of intermolecular interaction energies.J Chem Phys1995, 103:7374–7391.

Bukowski, R,Szalewicz, K,Chabalowski, C.*Ab initio* interaction potentials for simulations of dimethylnitramine solutions in supercritical carbon dioxide with cosolvents.J Phys Chem A1999, 103:7322–7340.

Szalewicz, K,Jeziorski, B.Explicitly‐correlated Gaussian geminals in electronic structure calculations.Mol Phys2010, 108:3091–3103.

Chalasinski, G,Jeziorski, B,Andzelm, J,Szalewicz, K.On the multipole structure of exchange dispersion energy in the interaction of two helium atoms.Mol Phys1977, 33:971–977.

Rybak, S,Szalewicz, K,Jeziorski, B.An accurate calculation of the first‐order interaction energy for helium dimer.J Chem Phys1989, 91:4779–4784.

Williams, HL,Korona, T,Bukowski, R,Jeziorski, B,Szalewicz, K.Helium dimer potential from symmetry‐adapted perturbation theory.Chem Phys Lett1996, 262:431–436.

Jeziorska, M,Cencek, W,Patkowski, K,Jeziorski, B,Szalewicz, K.Pair potential for helium from symmetry‐adapted perturbation theory calculations and from supermolecular data.J Chem Phys2007, 127:124303.

Alexander, SA,Monkhorst, HJ,Szalewicz, K.Random tempering of gaussian type geminals. I. atomic systems.J Chem Phys1986, 85:5821–5825.

Alexander, SA,Monkhorst, HJ,Roeland, RD,Szalewicz, K.Obtaining micro‐ hartree accuracy in variational calculations for two‐electron systems with random‐tempered Gaussian‐type geminals.J Chem Phys1990, 93:4230–4235.

May, AJ,Manby, FR.An explicitly correlated second order Møller‐Plesset theory using a frozen Gaussian geminal.J Chem Phys2004, 121:4479–4485.

Patkowski, K,Pernal, K,Podeszwa, R,Szalewicz, K.Intermolecular interaction energies from density‐functional theory (2011), in preparation.

Jensen, F.Introduction to Computational Chemistry. 2nd ed.Chichester, UK: John Wiley %26 Sons; 2007.

Podeszwa, R.Podeszwa Interactions of graphene sheets deduced from properties of polycyclic aromatic hydrocarbons.J Chem Phys2010, 132:044704.

Williams, HL,Chabalowski, CF.Using Kohn‐Sham orbitals in symmetry‐adapted perturbation theory to investigate intermolecular interactions.J Phys Chem A2001, 105:646–659.

Misquitta, AJ,Szalewicz, K.Intermolecular forces from asymptotically corrected density functional description of monomers.Chem Phys Lett2002, 357:301–306.

Hesselmann, A,Jansen, G.First‐order intermolecular interaction energies from Kohn‐Sham orbitals.Chem Phys Lett2002, 357:464–470.

Hesselmann, A,Jansen, G.Intermolecular induction and exchange‐induction energies from coupled‐perturbed Kohn‐Sham density functional theory.Chem Phys Lett2002, 362:319–325.

Misquitta, AJ,Jeziorski, B,Szalewicz, K.Dispersion energy from density‐functional theory description of monomers.Phys Rev Lett2003, 91:033201.

Hesselmann, A,Jansen, G.Intermolecular dispersion energies from time‐dependent density functional theory.Chem Phys Lett2003, 367:778–784.

Misquitta, AJ,Szalewicz, K.Symmetry‐adapted perturbation theory calculations of intermolecular forces employing density functional description of monomers.J Chem Phys2005, 122:214109.

Misquitta, AJ,Podeszwa, R,Jeziorski, B,Szalewicz, K.Intermolecular potentials based on symmetry‐adapted perturbation theory including dispersion energies from time‐dependent density functional calculations.J Chem Phys2005, 123:214103.

Hesselmann, A,Jansen, G,Schütz, M.Density‐functional theory‐symmetry‐adapted intermolecular perturbation theory with density fitting: a new efficient method to study intermolecular interaction energies.J Chem Phys2005, 122:014103.

Bukowski, R,Podeszwa, R,Szalewicz, K.Efficient calculations of coupled Kohn‐Sham dynamic susceptibility functions and dispersion energies with density fitting.Chem Phys Lett2005, 414:111–116.

Podeszwa, R,Bukowski, R,Szalewicz, K.Density fitting methods in symmetry‐adapted perturbation theory based on Kohn‐Sham description of monomers.J Chem Theory Comput2006, 2:400–412.

Hesselmann, A,Jansen, G.The helium dimer potential from a combined density functional theory and symmetry‐adapted perturbation theory approach using an exact exchange‐correlation potential.Phys Chem Chem Phys2003, 5:5010–5014.

Bukowski, R,Szalewicz, K,Groenenboom, GC,van der Avoird, A.Interaction potential for water dimer from symmetry‐adapted perturbation theory based on density functional description of monomers.J Chem Phys2006, 125:044301.

Podeszwa, R,Bukowski, R,Szalewicz, K.Potential energy surface for the benzene dimer and perturbational analysis of π–π interactions.J Phys Chem A2006, 110:10345.

Podeszwa, R,Szalewicz, K.Accurate interaction energies for argon, krypton, and benzene dimers from perturbation theory based on Kohn‐Sham model.Chem Phys Lett2005, 412:488–493.

Aziz, RA.A highly accurate interatomic potential for argon.J Chem Phys1993, 99:4518–4525.

Dion, M,Rydberg, H,Schröder, E.,Langreth, DC,Lundqvist, BI.Van der Waals density functional for general geometries.Phys Rev Lett2004, 92:246401.

Lee, K,Murray, ED,Kong, L,Lundqvist, BI,Langreth, DC.Higher‐accuracy van der Waals density functional.Phys Rev B2010, 82:081101.

Vydrov, OA,Van Voorhis, T.Nonlocal van der Waals density functional made simple.Phys Rev Lett2009, 103:063004.

Żuchowski, PS,Podeszwa, R,Moszyński, R,Jeziorski, B,Szalewicz, K.Symmetry‐adapted perturbation theory utilizing density functional description of monomers for high‐spin open‐shell complexes.J Chem Phys2008, 129:084101.

Korona, T,Hesselmann, A,Dodziuk, H.Symmetry‐adapted perturbation theory applied to endohedral fullerene complexes: a stability study of H‐2@C‐60 and 2H(2)@C‐60.J Chem Theory Comput2009, 5:1585–1596.

Rob, F,Podeszwa, R,Szalewicz, K.Electrostatic interaction energies with overlap effects from a localized approach.Chem Phys Lett2007, 445:315–320.

Szalewicz, K,Bukowski, R,Jeziorski, B.On the importance of many‐body forces in clusters and condensed phase. In:Dykstra, CE,Frenking, G,Kim, KS,Scuseria, GE, eds.Theory and Applications of Computational Chemistry: The First 40 Years. A Volume of Technical and Historical Perspectives(Elsevier, Amsterdam, 2005), chap. 33, pp. 919–962.

Szalewicz, K,Leforestier, C,van der Avoird, A.Towards complete understanding of water by first‐principle computational approach.Chem Phys Lett2009, 482:1–14.

Lotrich, VF,Szalewicz, K.Symmetry‐adapted perturbation theory of three‐body nonadditivity in Ar trimer.J Phys Chem1997, 106:9688–9702.

Lotrich, VF,Szalewicz, K.Three‐body contribution to binding energy of solid argon and analysis of crystal structure.Phys Rev Lett1997, 79:1301–1304.

Bukowski, R,Szalewicz, K.Complete *ab initio* three‐body nonadditive potential in monte carlo simulations of vapor‐liquid equilibria and pure phases of argon.J Chem Phys2001, 114:9518–9531.

Lotrich, VF,Szalewicz, K.Symmetry‐adapted perturbation theory of three‐body nonadditivity of intermolecular interaction energy.J Chem Phys1997, 106:9668–9687.

Lotrich, VF,Szalewicz, K.Perturbation theory of three‐body exchange nonadditivity and application to helium trimerJ Chem Phys 2000, 112:112–121.

Moszynski, R,Wormer, PES,Jeziorski, B,van der Avoird, A.Symmetry‐adapted perturbation‐theory of nonadditive 3‐body interactions in van‐der‐Waals molecules .1. General theory.J Chem Phys1995, 103:8058–8074, erratum: 1997, 107:672.

Wormer, PES,Moszynski, R,van der Avoird, A.Intramonomer correlation contributions to first‐order exchange nonadditivity in trimers.J Chem Phys2000, 112:3159–3169.

Podeszwa, R,Szalewicz, K.Three‐body symmetry‐adapted perturbation theory based on Kohn‐Sham description of the monomers.J Chem Phys2007, 126:194101.

Bukowski, R,Cencek, W,Patkowski, K,Jankowski, P,Jeziorska, M,Kolaski, M,Szalewicz, K.Portable parallel implementation of symmetry‐adapted perturbation theory code.Mol Phys2006, 104:2241–2262.

Cybulski, SM,TRURL package, Oxford, OH, 1998.

Werner, H‐J,Knowles, PJ,Lindh, R,Schütz, M,Celani, P,Korona, T,Manby, FR,Rauhut, G,Amos, RD,Bernhardsson, A, et al.Molpro, version 2009.1, a package of ab initio programs (2009), seehttp://www.molpro.net.

Misquitta, AJ,Stone, AJ.CamCASP: a program for studying intermolecular interactions and for calculations of molecular properies in distributed form,University of Cambridge, UK (2010).

Hohenstein, EG,Sherrill, CD.Density fitting and Cholesky decomposition approximations in symmetry‐adapted perturbation theory: implementation and application to probe the nature of pi‐pi interactions in linear acenes.J Chem Phys2010, 132:184111.

Hohenstein, EG,Sherrill, CD.Density fitting of intramonomer correlation effects in symmetry‐adapted perturbation theory.J Chem Phys2010, 133:041101.

Hohenstein, EG,Sherrill, CD.Efficient evaluation of triple excitations in symmetry‐adapted perturbation theory via second‐order Moller‐Plesset perturbation theory natural orbitals.J Chem Phys2010, 133:104107.

Crawford, TD,Sherrill, CD,Valeev, EF,Fermann, JT,King, RA,Leininger, ML,Brown, ST,Janssen, CL,Seidl, ET,Kenny, JP,et, al.PSI3: an open‐source ab initio electronic structure package.J Comp Chem2007, 28:1610–1616.

Zhao, Y,Schultz, NE,Truhlar, DG.Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions.J Chem Theory Comput2006, 2:364–382.

Pernal, K,Podeszwa, R,Patkowski, K,Szalewicz, K.Dispersionless density functional theory.Phys Rev Lett2009, 103:263201.

Zhao, Y,Truhlar, DG.Benchmark databases for nonbonded interactions and their use to test density functional theory.J Chem Theory Comput2005, 1:415–432.

Podeszwa, R,Pernal, K,Patkowski, K,Szalewicz, K.An extension of the Hartree‐Fock plus dispersion method for calculations of intermolecular interaction energies.J Phys Chem Lett2010, 1:550–555.

Becke, AD.Density‐functional thermochemistry. 3. The role of exact exchange.J Chem Phys1993, 98:5648–5652.

Zhao, Y,Truhlar, DG.The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06‐class functionals and 12 other functionals.Theor Chem Acc2008, 120:215–241.

Grimme, S.Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction.J Comput Chem2006, 27:1787–1799.

Hepburn, J,Scoles, G,Penco, R.Simple but reliable method for prediction of intermolecular potentials.Chem Phys Lett1975, 36:451–456.

Rajchel, L,Zuchowski, PS,Szczesniak, MM,Chalasinski, G.Density functional theory approach to noncovalent interactions via monomer polarization and Pauli blockade.Phys Rev Lett2010, 104:163001.

Rajchel, L,Zuchowski, PS,Szczesniak, MM,Chalasinski, G.Derivation of the super‐molecular interaction energy from the monomer densities in the density functional theory.Chem Phys Lett2010, 486:160–165.

Rajchel, L,Zuchowski, PS,Hapka, M,Modrzejewski, M,Szczesniak, MM,Chalasinski, G.A density functional theory approach to noncovalent interactions via interacting monomer densities.Phys Chem Chem Phys2010, 12:14686–14692.

Harl, J,Kresse, G.Cohesive energy curves for noble gas solids calculated by adiabatic connection fluctuation‐dissipation theory.Phys Rev B2008, 77:045136.

Toulouse, J,Gerber, IC,Jansen, G,Savin, A,Angyan, JG.Adiabatic‐connection fluctuation‐dissipation density‐functional theory based on range separation.Phys Rev Lett2009, 102:096404.

Janesko, BG,Henderson, TM,Scuseria, GE.Long‐range‐corrected hybrids including random phase approximation correlation.J Chem Phys2009, 130:081105.

Janesko, BG,Henderson, TM,Scuseria, GE.Long‐range‐corrected hybrid density functionals including random phase approximation correlation: application to noncovalent interactions.J Chem Phys2009, 131:034110.

Tang, KT,Toennies, JP.An improved simple‐model for the van der Waals potential based on universal damping functions for the dispersion coefficients.J Chem Phys1984, 80:3726–3741.

Grimme, S,Antony, J,Elrich, S,Krieg, H.A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT‐D) for the 94 elements H‐Pu.J Chem Phys2010, 132:154104.

Steinmann, SN,Csonka, G,Corminboeuf, C.Unified inter‐ and intramolecular dispersion correction formula for generalized gradient approximation density functional theory.J Chem Theory Comput2009, 5:2950–2968.

Podeszwa, R,Bukowski, R,Rice, BM,Szalewicz, K.Potential energy surface for cyclotrimethylene trinitramine dimer from symmetry‐adapted perturbation theory.Phys Chem Chem Phys2007, 9:5561–5569.

Sorescu, DC,Rice, BM,Thompson, DL.Intermolecular potential for the hexahydro‐ l,3,5‐trinitro‐l,3,5‐s‐triazine crystal (RDX): a crystal packing, Monte Carlo, and molecular dynamics study.J Phys Chem B1997, 101:798–808.

Kitaura, K,Morokuma, K.A new energy decomposition scheme for molecular interactions within the Hartree‐Fock approximation.Int J Quantum Chem1976, 10:325–340.

Jeziorski, B,van Hemert, M.Variation‐perturbation treatment of hydrogen‐bond between water molecules.Mol Phys1976, 31:713–729.

Jeziorski, B,Bulski, M,Piela, L.First‐order perturbation treatment of the short‐range repulsion in a system of many closed‐shell atoms or molecules.Int J Quantum Chem1976, 10:281–297.

Chałasiński, G,Szczȩśniak, MM.Origins of structure and energetics of van der Waals clusters from ab‐initio calculations.Chem Rev1994, 94:1723–1765.

Cencek, W,Szalewicz, K,Leforestier, C,van Harrevelt, R,van der Avoird, A.An accurate analytic representation of the water pair potential.Phys Chem Chem Phys2008, 10:4716–4731.

van der Avoird, A,Podeszwa, R,Szalewicz, K,Leforestier, C,van Harrevelt, R,Bunker, PR,Schnell, M,vonHelden, G,Meijer, G.Vibration‐rotation‐tunneling states of the benzene dimer: an *ab initio* study.Phys Chem Chem Phys2010, 12:8219–8240.

Jeziorska, M,Jankowski, P,Szalewicz, K,Jeziorski, B.On the optimal choice of monomer geometry in calculations of intermolecular potentials. Rovibrational spectrum of Ar—HF generated from two‐ and three‐dimensional SAPT potentials.J Chem Phys2000, 113:2957–2968.

Groenenboom, GC,Mas, EM,Bukowski, R,Szalewicz, K,Wormer, PES,van der Avoird, A.The pair and three‐body potential of water.Phys Rev Lett2000, 84:4072–4075.

Patkowski, K,Spirko, V,Szalewicz, K.On the elusive twelfth vibrational state of beryllium dimer.Science2009, 326:1382–1384.

Bukowski, R,Sadlej, J,Jeziorski, B,Jankowski, P,Szalewicz, K,Kucharski, SA,Williams, HL,Rice, BM.Intermolecular potential of carbon dioxide dimer from symmetry‐adapted perturbation theory.J Chem Phys1999, 110:3785–3803.

Desiraju, GR.Cryptic crystallography.Nature Materials2002, 1:77–79.

Podeszwa, R,Rice, BM,Szalewicz, K.Crystal structure prediction for cyclotrimethylene trinitramme (RDX) from first principles.Phys Chem Chem Phys2009, 11:5512–5518.

Misquitta, AJ,Welch, GWA,Stone, AJ,Price, SL.A first principles prediction of the crystal structure of C_{6}Br_{2}ClFH_{2}Chem Phys Lett 2008, 456:105–109.

Li, X,Volkov, A,Coppens, P,Szalewicz, K.Interactions between glycopeptide antibiotics and substrates in complexes determined by X‐ray crystalography: application of a theoretical databank of aspherical atoms and a symmetry‐adapted perturbation theory‐based set of interatomic potentials.Acta Cryst D2006, 62:639–647.