Clapier, CR, Cairns, BR. The biology of chromatin remodeling complexes. Annu Rev Biochem 2009, 78:273–304.
Maeda, RK, Karch, F. The ABC of the BX‐C: the bithorax complex explained. Development 2006, 133:1413–1422.
Lanzuolo, C, Orlando, V. Memories from the Polycomb group proteins. Annu Rev Genet 2012, 46:561–589.
Struhl, G, White, RAH. Regulation of the Ultrabithorax gene of Drosophila by other bithorax complex genes. Cell 1985, 43:507–519.
Bridges, CB, Morgan, TH. The third‐chromosome group of mutant characters of Drosophila melanogaster. Carnegie Instit Wash 1923, 327:1–251.
Steffen, PA, Ringrose, L. What are memories made of? How Polycomb and Trithorax proteins mediate epigenetic memory. Nat Rev Mol Cell Biol 2014, 15:340–356.
Lewis, EB. A gene complex controlling segmentation in Drosophila. Nature 1978, 276:565–570.
Tiong, S, Bone, LM, Whittle, JRS. Recessive lethal mutations within the bithorax‐complex in Drosophila. MGG 1985, 200:335–342.
Sanchez‐Herrero, E, Casanova, J, Kerridge, S, Morata, G. Anatomy and function of the bithorax complex of Drosophila. Cold Spring Harb Symp Quant Biol 1985, 50:165–172.
Lewis, RA, Kaufman, TC, Denell, RE, Tallerico, P. Genetic analysis of the antennapedia gene complex (Ant‐C) and adjacent chromosomal regions of Drosophila melanogaster. I. Polytene chromosome segments 84b‐D. Genetics 1980, 95:367–381.
Lewis, RA, Wakimoto, BT, Denell, RE, Kaufman, TC. Genetic analysis of the antennapedia gene complex (Ant‐C) and adjacent chromosomal regions of Drosophila melanogaster. II. Polytene chromosome segments 84A‐84B1,2. Genetics 1980, 95:383–397.
Diederich, RJ, Merrill, VK, Pultz, MA, Kaufman, TC. Isolation, structure, and expression of labial, a homeotic gene of the antennapedia complex involved in Drosophila head development. Genes Dev 1989, 3:399–414.
Kaufman, TC, Lewis, R, Wakimoto, B. Cytogenetic analysis of chromosome 3 in Drosophila melanogaster: the homeotic gene complex in polytene chromosome interval 84A‐B. Genetics 1979, 94:115–133.
Merrill, VK, Diederich, RJ, Turner, FR, Kaufman, TC. A genetic and developmental analysis of mutations in labial, a gene necessary for proper head formation in Drosophila melanogaster. Dev Biol 1989, 135:376–391.
Frohnhöfer, HG, Nüsslein‐Volhard, C. Organization of anterior pattern in the Drosophila embryo by the maternal gene bicoid. Nature 1986, 324:120–125.
Wakimoto, BT, Turner, FR, Kaufman, TC. Defects in embryogenesis in mutants associated with the antennapedia gene complex of Drosophila melanogaster. Dev Biol 1984, 102:147–172.
Rushlow, C, Doyle, H, Hoey, T, Levine, M. Molecular characterization of the zerkt region of the Antennapedia gene complex in Drosophila. Genes Dev 1987, 1:1268–1279.
Denell, RE. Homoeosis in Drosophila. I. Complementation studies with revertants of nasobemia. Genetics 1973, 75:279–297.
Hannah‐Alava, A. Developmental genetics of the posterior legs in Drosophila melanogaster. Genetics 1958, 43:878–905.
Abbott, MK, Kaufman, TC. The relationship between the functional complexity and the molecular organization of the Antennapedia locus of Drosophila melanogaster. Genetics 1986, 114:919–942.
Laughon, A, Boulet, AM, Bermingham, JR, Laymon, RA, Scott, MP. Structure of transcripts from the homeotic antennapedia fene of Drosophila melanogaster: two promoters control the major protein‐coding region. Mol Cell Biol 1986, 6:4676–4689.
Boulet, AM, Scott, MP. Control elements of the P2 promoter of the Antennapedia gene. Genes Dev 1988, 2:1600–1614.
Jorgensen, EM, Garber, RL. Function and misfunction of the two promoters of the Drosophila Antennapedia gene. Genes Dev 1987, 1:544–555.
Ruddle, FH, Bartels, JL, Bentley, KL, Kappen, C, Murtha, MT, Pendleton, JW. Evolution of Hox genes. Annu Rev Genet 1994, 28:423–442.
Pick, L. Hox genes, evo‐devo, and the case of the ftz gene. Chromosoma 2016, 125:535–551.
Pearson, JC, Lemons, D, McGinnis, W. Modulating Hox gene functions during animal body patterning. Nat Rev Genet 2005, 6:893–904.
Slifer, EH. A mutant stock of Drosophila with extra sex‐combs. J Exp Zool 1942, 90:31–40.
Lewis, PH. Pc: Polycomb. Drosoph Inf Serv 1947, 21:69.
Duncan, IM. Polycomblike: a gene that appears to be required for the normal expression of the bithorax and antennapedia gene complexes of Drosophila Melanogaster. Genetics 1982, 102:49–70.
Ingham, PW. A gene that regulates the bithorax complex differentially in larval and adult cells of Drosophila. Cell 1984, 37:815–823.
Jürgens, G. A group of genes controlling the spatial expression of the bithorax complex in Drosophila. Nature 1985, 316:153–155.
Breen, TR, Duncan, IM. Maternal expression of genes that regulate the bithorax complex of Drosophila melanogaster. Dev Biol 1986, 118:442–456.
Dura, J‐M, Brock, HW, Santamaria, P. Polyhomeotic: a gene of Drosophila melanogaster required for correct expression of segmental identity. MGG 1985, 198:213–220.
Struhl, G. Role of the esc + gene product in ensuring the selective expression of segment‐specific homeotic genes in Drosophila. J Embryol Exp Morphol 1983, 76:297–331.
Struhl, G, Akam, M. Altered distributions of ultrabithorax transcripts in extra sex combs mutant embryos of Drosophila. EMBO J 1985, 4:3259–3264.
Wedeen, C, Harding, K, Levine, M. Spatial regulation of antennapedia and bithorax gene expression by the Polycomb locus in Drosophila. Cell 1986, 44:739–748.
Carroll, SB, Laymon, RA, McCutcheon, MA, Riley, PD, Scott, MP. The localization and regulation of Antennapedia protein expression in Drosophila embryos. Cell 1986, 47:113–122.
Dura, JM, Ingham, P. Tissue‐ and stage‐specific control of homeotic and segmentation gene expression in Drosophila embryos by the polyhomeotic gene. Development 1988, 103:733–741.
McKeon, J, Brock, HW. Interactions of the Polycomb group of genes with homeotic loci of Drosophila. Roux`s Arch Dev Biol 1991, 199:387–396.
Riley, PD, Carroll, SB, Scott, MP. The expression and regulation of Sex combs reduced protein in Drosophila embryos. Genes Dev 1987, 1:716–730.
Simon, J, Chiang, A, Bender, W. Ten different Polycomb group genes are required for spatial control of the abdA and AbdB homeotic products. Development 1992, 114:493–505.
Smouse, D, Goodman, C, Mahowald, A, Perrimon, N. Polyhomeotic: a gene required for the embryonic development of axon pathways in the central nervous system of Drosophila. Genes Dev 1988, 2:830–842.
Zink, B, Paro, R. In vivo binding pattern of a trans‐regulator of homoeotic genes in Drosophila melanogaster. Nature 1989, 337:468–471.
Zink, B, Engstrom, Y, Gehring, WJ, Paro, R. Direct interaction of the Polycomb protein with Antennapedia regulatory sequences in polytene chromosomes of Drosophila melanogaster. EMBO J 1991, 10:153–162.
DeCamillis, M, Cheng, NS, Pierre, D, Brock, HW. The polyhomeotic gene of Drosophila encodes a chromatin protein that shares polytene chromosome‐binding sites with Polycomb. Genes Dev 1992, 6:223–232.
Franke, A, DeCamillis, M, Zink, D, Cheng, N, Brock, HW, Paro, R. Polycomb and polyhomeotic are constituents of a multimeric protein complex in chromatin of Drosophila melanogaster. EMBO J 1992, 11:2941–2950.
Martin, EC, Adler, PN. The Polycomb group gene posterior sex combs encodes a chromosomal protein. Development 1993, 117:641–655.
Peterson, AJ, Kyba, M, Bornemann, D, Morgan, K, Brock, HW, Simon, J. A domain shared by the Polycomb group proteins Scm and ph mediates heterotypic and homotypic interactions. Mol Cell Biol 1997, 17:6683–6692.
Locke, J, Kotarski, MA, Tartof, KD. Dosage‐dependent modifiers of position effect variegation in Drosophila and a mass action model that explains their effect. Genetics 1988, 120:181–198.
Shao, Z, Raible, F, Mollaaghababa, R, Guyon, JR, Wu, C‐t, Bender, W, Kingston, RE. Stabilization of chromatin structure by PRC1, a polycomb complex. Cell 1999, 98:37–46.
Saurin, AJ, Shao, Z, Erdjument‐Bromage, H, Tempst, P, Kingston, RE. A Drosophila Polycomb group complex includes Zeste and dTAFII proteins. Nature 2001, 412:655–660.
Czermin, B, Melfi, R, McCabe, D, Seitz, V, Imhof, A, Pirrotta, V. Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal polycomb sites. Cell 2002, 111:185–196.
Müller, J, Hart, CM, Francis, NJ, Vargas, ML, Sengupta, A, Wild, B, Miller, EL, O`Connor, MB, Kingston, RE, Simon, JA. Histone methyltransferase activity of a drosophila Polycomb group repressor complex. Cell 2002, 111:197–208.
Li, J, Xu, Y, Long, XD, Wang, W, Jiao, HK, Mei, Z, Yin, QQ, Ma, LN, Zhou, AW, Wang, LS, et al. Cbx4 governs HIF‐1α to potentiate angiogenesis of hepatocellular carcinoma by its SUMO E3 ligase activity. Cancer Cell 2014, 25:118–131.
Pallante, P, Federico, A, Berlingieri, MT, Bianco, M, Ferraro, A, Forzati, F, Iaccarino, A, Russo, M, Pierantoni, GM, Leone, V, et al. Loss of the CBX7 gene expression correlates with a highly malignant phenotype in thyroid cancer. Cancer Res 2008, 68:6770–6778.
Yap, KL, Li, S, Munoz‐Cabello, AM, Raguz, S, Zeng, L, Mujtaba, S, Gil, J, Walsh, MJ, Zhou, MM. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell 2010, 38:662–674.
Tan, J, Jones, M, Koseki, H, Nakayama, M, Muntean, AG, Maillard, I, Hess, JL. CBX8, a Polycomb group protein, is essential for MLL‐AF9‐induced leukemogenesis. Cancer Cell 2011, 20:563–575.
Cao, L, Bombard, J, Cintron, K, Sheedy, J, Weetall, ML, Davis, TW. BMI1 as a novel target for drug discovery in cancer. J Cell Biochem 2011, 112:2729–2741.
Bea, S, Tort, F, Pinyol, M, Puig, X, Hernandez, L, Hernandez, S, Fernandez, PL, van Lohuizen, M, Colomer, D, Campo, E. BMI‐1 gene amplification and overexpression in hematological malignancies occur mainly in mantle cell lymphomas. Cancer Res 2001, 61:2409–2412.
Kottakis, F, Foltopoulou, P, Sanidas, I, Keller, P, Wronski, A, Dake, BT, Ezell, SA, Shen, Z, Naber, SP, Hinds, PW, et al. NDY1/KDM2B functions as a master regulator of polycomb complexes and controls self‐renewal of breast cancer stem cells. Cancer Res 2014, 74:3935–3946.
De Raedt, T, Beert, E, Pasmant, E, Luscan, A, Brems, H, Ortonne, N, Helin, K, Hornick, JL, Mautner, V, Kehrer‐Sawatzki, H, et al. PRC2 loss amplifies Ras‐driven transcription and confers sensitivity to BRD4‐based therapies. Nature 2014, 514:247–251.
Lee, W, Teckie, S, Wiesner, T, Ran, L, Prieto Granada, CN, Lin, M, Zhu, S, Cao, Z, Liang, Y, Sboner, A, et al. PRC2 is recurrently inactivated through EED or SUZ12 loss in malignant peripheral nerve sheath tumors. Nat Genet 2014, 46:1227–1232.
Cao, R, Zhang, Y. SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED‐EZH2 complex. Mol Cell 2004, 15:57–67.
Paro, R, Hogness, DS. The Polycomb protein shares a homologous domain with a heterochromatin‐associated protein of Drosophila. Proc Natl Acad Sci USA 1991, 88:263–267.
Bannister, AJ, Zegerman, P, Partridge, JF, Miska, EA, Thomas, JO, Allshire, RC, Kouzarides, T. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 2001, 410:120–124.
Lachner, M, O`Carroll, D, Rea, S, Mechtler, K, Jenuwein, T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 2001, 410:116–120.
Cao, R, Wang, L, Wang, H, Xia, L, Erdjument‐Bromage, H, Tempst, P, Jones, RS, Zhang, Y. Role of histone H3 lysine 27 methylation in Polycomb‐group silencing. Science 2002, 298:1039–1043.
Ingham, P, Whittle, R. Trithorax: a new homoeotic mutation of drosophila melanogaster causing transformations of abdominal and thoracic imaginal segments. MGG 1980, 179:607–614.
Ingham, PW. Genetic control of the spatial pattern of selector gene expression in Drosophila. Cold Spring Harb Symp Quant Biol 1985, 50:201–208.
Sato, T. Genetic interaction between homoeotic sex combs reduced and regulator of bithorax (or trithorax) genes of Drosophila melanogaster. Rouxs Arch Dev Biol 1988, 197:435–440.
Ingham, PW. Differential expression of bithorax complex genes in the absence of the extra sex combs and trithorax genes. Nature 1983, 306:591–593.
Kennison, JA, Tamkun, JW. Dosage‐dependent modifiers of polycomb and antennapedia mutations in Drosophila. Proc Natl Acad Sci USA 1988, 85:8136–8140.
Tamkun, JW, Deuring, R, Scott, MP, Kissinger, M, Pattatucci, AM, Kaufman, TC, Kennison, JA. brahma: a regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2/SWI2. Cell 1992, 68:561–572.
Haynes, SR, Dollard, C, Winston, F, Beck, S, Trowsdale, J, Dawid, IB. The bromodomain: a conserved sequence found in human, Drosophila and yeast proteins. Nucleic Acids Res 1992, 20:2603.
Elfring, LK, Deuring, R, McCallum, CM, Peterson, CL, Tamkun, JW. Identification and characterization of Drosophila relatives of the yeast transcriptional activator SNF2/SWI2. Mol Cell Biol 1994, 14:2225–2234.
Winston, F, Carlson, M. Yeast SNF/SWI transcriptional activators and the SPT/SIN chromatin connection. Trends Genet 1992, 8:387–391.
Stern, M, Jensen, R, Herskowitz, I. Five SWI genes are required for expression of the HO gene in yeast. J Mol Biol 1984, 178:853–868.
Nasmyth, K. Molecular analysis of a cell lineage. Nature 1983, 302:670–676.
Neigeborn, L, Carlson, M. Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae. Genetics 1984, 108:845–858.
Girard, L, Zochbauer‐Muller, S, Virmani, AK, Gazdar, AF, Minna, JD. Genome‐wide allelotyping of lung cancer identifies new regions of allelic loss, differences between small cell lung cancer and non‐small cell lung cancer, and loci clustering. Cancer Res 2000, 60:4894–4906.
Jones, S, Wang, TL, Shih Ie, M, Mao, TL, Nakayama, K, Roden, R, Glas, R, Slamon, D, Diaz, LA Jr, Vogelstein, B, et al. Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science 2010, 330:228–231.
Wang, K, Kan, J, Yuen, ST, Shi, ST, Chu, KM, Law, S, Chan, TL, Kan, Z, Chan, AS, Tsui, WY, et al. Exome sequencing identifies frequent mutation of ARID1A in molecular subtypes of gastric cancer. Nat Genet 2011, 43:1219–1223.
Sausen, M, Leary, RJ, Jones, S, Wu, J, Reynolds, CP, Liu, X, Blackford, A, Parmigiani, G, Diaz, LA Jr, Papadopoulos, N, et al. Integrated genomic analyses identify ARID1A and ARID1B alterations in the childhood cancer neuroblastoma. Nat Genet 2013, 45:12–17.
Varela, I, Tarpey, P, Raine, K, Huang, D, Ong, CK, Stephens, P, Davies, H, Jones, D, Lin, ML, Teague, J, et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 2011, 469:539–542.
Smith, MJ, O`Sullivan, J, Bhaskar, SS, Hadfield, KD, Poke, G, Caird, J, Sharif, S, Eccles, D, Fitzpatrick, D, Rawluk, D, et al. Loss‐of‐function mutations in SMARCE1 cause an inherited disorder of multiple spinal meningiomas. Nat Genet 2013, 45:295–298.
Versteege, I, Sevenet, N, Lange, J, Rousseau‐Merck, MF, Ambros, P, Handgretinger, R, Aurias, A, Delattre, O. Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature 1998, 394:203–206.
Roberts, CWM, Leroux, MM, Fleming, MD, Orkin, SH. Highly penetrant, rapid tumorigenesis through conditional inversion of the tumor suppressor gene Snf5. Cancer Cell 2002, 2:415–425.
Modena, P, Lualdi, E, Facchinetti, F, Galli, L, Teixeira, MR, Pilotti, S, Sozzi, G. SMARCB1/INI1 tumor suppressor gene is frequently inactivated in epithelioid sarcomas. Cancer Res 2005, 65:4012–4019.
Clark, J, Rocques, PJ, Crew, AJ, Gill, S, Shipley, J, Chan, AM, Gusterson, BA, Cooper, CS. Identification of novel genes, SYT and SSX, involved in the t(X;18)(p11.2;q11.2) translocation found in human synovial sarcoma. Nat Genet 1994, 7:502–508.
Skytting, B, Nilsson, G, Brodin, B, Xie, Y, Lundeberg, J, Uhlen, M, Larsson, O. A novel fusion gene, SYT‐SSX4, in synovial sarcoma. J Natl Cancer Inst 1999, 91:974–975.
de Leeuw, B, Balemans, M, Olde Weghuis, D. Geurts van Kessel A. Identification of two alternative fusion genes, SYT‐SSX1 and SYT‐SSX2, in t(X;18)(p11.2;q11.2)‐positive synovial sarcomas. Hum Mol Genet 1995, 4:1097–1099.
Kadoch, C, Crabtree, GR. Reversible disruption of mSWI/SNF (BAF) complexes by the SS18‐SSX oncogenic fusion in synovial sarcoma. Cell 2013, 153:71–85.
Drost, J, Mantovani, F, Tocco, F, Elkon, R, Comel, A, Holstege, H, Kerkhoven, R, Jonkers, J, Voorhoeve, PM, Agami, R, et al. BRD7 is a candidate tumour suppressor gene required for p53 function. Nat Cell Biol 2010, 12:380–389.
Bartholomew, B. ISWI chromatin remodeling: one primary actor or a coordinated effort? Curr Opin Struct Biol 2014, 24:150–155.
Marfella, CG, Imbalzano, AN. The Chd family of chromatin remodelers. Mutat Res 2007, 618:30–40.
Morrison, AJ, Shen, X. Chromatin remodelling beyond transcription: the INO80 and SWR1 complexes. Nat Rev Mol Cell Biol 2009, 10:373–384.
Peterson, CL, Herskowitz, I. Characterization of the yeast SWI1, SWI2, and SWI3 genes, which encode a global activator of transcription. Cell 1992, 68:573–583.
Cote, J, Quinn, J, Workman, J, Peterson, C. Stimulation of GAL4 derivative binding to nucleosomal DNA by the yeast SWI/SNF complex. Science 1994, 265:53–60.
Smith, CL, Horowitz‐Scherer, R, Flanagan, JF, Woodcock, CL, Peterson, CL. Structural analysis of the yeast SWI/SNF chromatin remodeling complex. Nat Struct Biol 2003, 10:141–145.
Hirschhorn, JN, Brown, SA, Clark, CD, Winston, F. Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure. Genes Dev 1992, 6:2288–2298.
Cairns, BR, Kim, YJ, Sayre, MH, Laurent, BC, Kornberg, RD. A multisubunit complex containing the SWI1/ADR6, SWI2/SNF2, SWI3, SNF5, and SNF6 gene products isolated from yeast. Proc Natl Acad Sci USA 1994, 91:1950–1954.
Dingwall, AK, Beek, SJ, McCallum, CM, Tamkun, JW, Kalpana, GV, Goff, SP, Scott, MP. The Drosophila snr1 and brm proteins are related to yeast SWI/SNF proteins and are components of a large protein complex. Mol Biol Cell 1995, 6:777–791.
Papoulas, O, Beek, SJ, Moseley, SL, McCallum, CM, Sarte, M, Shearn, A, Tamkun, JW. The Drosophila trithorax group proteins BRM, ASH1 and ASH2 are subunits of distinct protein complexes. Development 1998, 125:3955–3966.
Collins, RT, Furukawa, T, Tanese, N, Treisman, JE. Osa associates with the Brahma chromatin remodeling complex and promotes the activation of some target genes. EMBO J 1999, 18:7029–7040.
Vazquez, M, Moore, L, Kennison, JA. The trithorax group gene osa encodes an ARID‐domain protein that genetically interacts with the Brahma chromatin‐remodeling factor to regulate transcription. Development 1999, 126:733–742.
Mohrmann, L, Langenberg, K, Krijgsveld, J, Kal, AJ, Heck, AJR, Verrijzer, CP. Differential targeting of two distinct SWI/SNF‐related drosophila chromatin‐remodeling complexes. Mol Cell Biol 2004, 24:3077–3088.
Delmas, V, Stokes, DG, Perry, RP. A mammalian DNA‐binding protein that contains a chromodomain and an SNF2/SWI2‐like helicase domain. Proc Natl Acad Sci USA 1993, 90:2414–2418.
Hall, JA, Georgel, PT. CHD proteins: a diverse family with strong ties. Biochem Cell Biol 2007, 85:463–476.
Xue, Y, Wong, J, Moreno, GT, Young, MK, Côté, J, Wang, W. NURD, a novel complex with both ATP‐dependent chromatin‐remodeling and histone deacetylase activities. Mol Cell 1998, 2:851–861.
Tsukiyama, T, Daniel, C, Tamkun, J, Wu, C. ISWI, a member of the SWI2/SNF2 ATPase family, encodes the 140 kDa subunit of the nucleosome remodeling factor. Cell 1995, 83:1021–1026.
Ito, T, Bulger, M, Pazin, MJ, Kobayashi, R, Kadonaga, JT. ACF, an ISWI‐containing and ATP‐utilizing chromatin assembly and remodeling factor. Cell 1997, 90:145–155.
Tsukiyama, T, Wu, C. Purification and properties of an ATP‐dependent nucleosome remodeling factor. Cell 1995, 83:1011–1020.
Varga‐Weisz, PD, Wilm, M, Bonte, E, Dumas, K, Mann, M, Becker, PB. Chromatin‐remodelling factor CHRAC contains the ATPases ISWI and topoisomerase II. Nature 1997, 388:598–602.
Ebbert, R, Birkmann, A, Schuller, H‐J. The product of the SNF2/SWI2 paralogue INO80 of Saccharomyces cerevisiae required for efficient expression of various yeast structural genes is part of a high‐molecular‐weight protein complex. Mol Microbiol 1999, 32:741–751.
Shen, X, Mizuguchi, G, Hamiche, A, Wu, C. A chromatin remodelling complex involved in transcription and DNA processing. Nature 2000, 406:541–544.
Kanemaki, M, Kurokawa, Y, Matsu‐ura, T, Makino, Y, Masani, A, Okazaki, K, Morishita, T, Tamura, T. TIP49b, a new RuvB‐like DNA helicase, is included in a complex together with another RuvB‐like DNA helicase, TIP49a. J Biol Chem 1999, 274:22437–22444.
Salz, T, Deng, C, Pampo, C, Siemann, D, Qiu, Y, Brown, K, Huang, S. Histone methyltransferase hSETD1A is a novel regulator of metastasis in breast cancer. Mol Cancer Res 2015, 13:461–469.
Salz, T, Li, G, Kaye, F, Zhou, L, Qiu, Y, Huang, S. hSETD1A regulates Wnt target genes and controls tumor growth of colorectal cancer cells. Cancer Res 2014, 74:775–786.
Shilatifard, A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu Rev Biochem 2012, 81:65–95.
Miller, T, Krogan, NJ, Dover, J, Erdjument‐Bromage, H, Tempst, P, Johnston, M, Greenblatt, JF, Shilatifard, A. COMPASS: a complex of proteins associated with a trithorax‐related SET domain protein. Proc Natl Acad Sci USA 2001, 98:12902–12907.
Roguev, A, Schaft, D, Shevchenko, A, Pijnappel, WW, Wilm, M, Aasland, R, Stewart, AF. The Saccharomyces cerevisiae Set1 complex includes an Ash2 homologue and methylates histone 3 lysine 4. EMBO J 2001, 20:7137–7148.
Krogan, NJ, Dover, J, Khorrami, S, Greenblatt, JF, Schneider, J, Johnston, M, Shilatifard, A. COMPASS, a histone H3 (Lysine 4) methyltransferase required for telomeric silencing of gene expression. J Biol Chem 2002, 277:10753–10755.
Schneider, J, Wood, A, Lee, JS, Schuster, R, Dueker, J, Maguire, C, Swanson, SK, Florens, L, Washburn, MP, Shilatifard, A. Molecular regulation of histone H3 trimethylation by COMPASS and the regulation of gene expression. Mol Cell 2005, 19:849–856.
Ardehali, MB, Mei, A, Zobeck, KL, Caron, M, Lis, JT, Kusch, T. Drosophila Set1 is the major histone H3 lysine 4 trimethyltransferase with role in transcription. EMBO J 2011, 30:2817–2828.
Mohan, M, Herz, HM, Smith, ER, Zhang, Y, Jackson, J, Washburn, MP, Florens, L, Eissenberg, JC, Shilatifard, A. The COMPASS family of H3K4 methylases in Drosophila. Mol Cell Biol 2011, 31:4310–4318.
Petruk, S, Sedkov, Y, Smith, S, Tillib, S, Kraevski, V, Nakamura, T, Canaani, E, Croce, CM, Mazo, A. Trithorax and dCBP acting in a complex to maintain expression of a homeotic gene. Science 2001, 294:1331–1334.
Schuettengruber, B, Martinez, AM, Iovino, N, Cavalli, G. Trithorax group proteins: switching genes on and keeping them active. Nat Rev Mol Cell Biol 2011, 12:799–814.
Haupt, Y, Alexander, WS, Barri, G, Peter Klinken, S, Adams, JM. Novel zinc finger gene implicated as myc collaborator by retrovirally accelerated lymphomagenesis in Eμ‐myc transgenic mice. Cell 1991, 65:753–763.
van Lohuizen, M, Verbeek, S, Scheljen, B, Wientjens, E, van der Guidon, H, Berns, A. Identification of cooperating oncogenes in Eμ‐myc transgenic mice by provirus tagging. Cell 1991, 65:737–752.
Jacobs, JJL, Kieboom, K, Marino, S, DePinho, RA, van Lohuizen, M. The oncogene and Polycomb‐group gene bmi‐1 regulates cell proliferation and senescence through the ink4a locus. Nature 1999, 397:164–168.
Jacobs, JJL, Scheijen, B, Voncken, JW, Kieboom, K, Berns, A, van Lohuizen, M. Bmi‐1 collaborates with c‐Myc in tumorigenesis by inhibiting c‐Myc‐induced apoptosis via INK4a/ARF. Genes Dev 1999, 13:2678–2690.
Cao, R, Tsukada, Y, Zhang, Y. Role of Bmi‐1 and Ring1A in H2A ubiquitylation and Hox gene silencing. Mol Cell 2005, 20:845–854.
Tavares, L, Dimitrova, E, Oxley, D, Webster, J, Poot, R, Demmers, J, Bezstarosti, K, Taylor, S, Ura, H, Koide, H, et al. RYBP‐PRC1 complexes mediate H2A ubiquitylation at polycomb target sites independently of PRC2 and H3K27me3. Cell 2012, 148:664–678.
Pengelly, AR, Kalb, R, Finkl, K, Muller, J. Transcriptional repression by PRC1 in the absence of H2A monoubiquitylation. Genes Dev 2015, 29:1487–1492.
Schoenfelder, S, Sugar, R, Dimond, A, Javierre, BM, Armstrong, H, Mifsud, B, Dimitrova, E, Matheson, L, Tavares‐Cadete, F, Furlan‐Magaril, M, et al. Polycomb repressive complex PRC1 spatially constrains the mouse embryonic stem cell genome. Nat Genet 2015, 47:1179–1186.
Lecona, E, Narendra, V, Reinberg, D. USP7 cooperates with SCML2 to regulate the activity of PRC1. Mol Cell Biol 2015, 35:1157–1168.
Weake, VM, Workman, JL. Histone ubiquitination: triggering gene activity. Mol Cell 2008, 29:653–663.
Komander, D, Clague, MJ, Urbe, S. Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol 2009, 10:550–563.
Komander, D, Rape, M. The ubiquitin code. Annu Rev Biochem 2012, 81:203–229.
Gao, Z, Zhang, J, Bonasio, R, Strino, F, Sawai, A, Parisi, F, Kluger, Y, Reinberg, D. PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes. Mol Cell 2012, 45:344–356.
Guo, BH, Zhang, X, Zhang, HZ, Lin, HL, Feng, Y, Shao, JY, Huang, WL, Kung, HF, Zeng, MS. Low expression of Mel‐18 predicts poor prognosis in patients with breast cancer. Ann Oncol 2010, 21:2361–2369.
Kanno, M, Hasegawa, M, Ishida, A, Isono, K, Taniguchi, M. mel‐18, a Polycomb group‐related mammalian gene, encodes a transcriptional negative regulator with tumor suppressive activity. EMBO J 1995, 14:5672–5678.
Lu, YW, Li, J, Guo, WJ. Expression and clinicopathological significance of Mel‐18 and Bmi‐1 mRNA in gastric carcinoma. J Exp Clin Cancer Res 2010, 29:143.
Wiederschain, D, Chen, L, Johnson, B, Bettano, K, Jackson, D, Taraszka, J, Wang, YK, Jones, MD, Morrissey, M, Deeds, J, et al. Contribution of polycomb homologues Bmi‐1 and Mel‐18 to medulloblastoma pathogenesis. Mol Cell Biol 2007, 27:4968–4979.
Akasaka, T, Takahashi, N, Suzuki, M, Koseki, H, Bodmer, R, Koga, H. MBLR, a new RING finger protein resembling mammalian Polycomb gene products, is regulated by cell cycle‐dependent phosphorylation. Genes Cells 2002, 7:835–850.
Ogawa, H, Ishiguro, K, Gaubatz, S, Livingston, DM, Nakatani, Y. A complex with chromatin modifiers that occupies E2F‐ and Myc‐responsive genes in G0 cells. Science 2002, 296:1132–1136.
Lee, MG, Norman, J, Shilatifard, A, Shiekhattar, R. Physical and functional association of a trimethyl H3K4 demethylase and Ring6a/MBLR, a polycomb‐like protein. Cell 2007, 128:877–887.
Gagliardi, A, Mullin, NP, Ying Tan, Z, Colby, D, Kousa, AI, Halbritter, F, Weiss, JT, Felker, A, Bezstarosti, K, Favaro, R, et al. A direct physical interaction between Nanog and Sox2 regulates embryonic stem cell self‐renewal. EMBO J 2013, 32:2231–2247.
Qin, J, Whyte, WA, Anderssen, E, Apostolou, E, Chen, HH, Akbarian, S, Bronson, RT, Hochedlinger, K, Ramaswamy, S, Young, RA, et al. The Polycomb group protein L3mbtl2 assembles an atypical PRC1‐family complex that is essential in pluripotent stem cells and early development. Cell Stem Cell 2012, 11:319–332.
Gearhart, MD, Corcoran, CM, Wamstad, JA, Bardwell, VJ. Polycomb group and SCF ubiquitin ligases are found in a novel BCOR complex that is recruited to BCL6 targets. Mol Cell Biol 2006, 26:6880–6889.
Gao, Z, Lee, P, Stafford, JM, von Schimmelmann, M, Schaefer, A, Reinberg, D. An AUTS2‐Polycomb complex activates gene expression in the CNS. Nature 2014, 516:349–354.
Bernstein, E, Duncan, EM, Masui, O, Gil, J, Heard, E, Allis, CD. Mouse polycomb proteins bind differentially to methylated histone H3 and RNA and are enriched in facultative heterochromatin. Mol Cell Biol 2006, 26:2560–2569.
Garcia, E, Marcos‐Gutierrez, C, del Mar, LM, Moreno, JC, Vidal, M. RYBP, a new repressor protein that interacts with components of the mammalian Polycomb complex, and with the transcription factor YY1. EMBO J 1999, 18:3404–3418.
Bonasio, R, Lecona, E, Narendra, V, Voigt, P, Parisi, F, Kluger, Y, Reinberg, D. Interactions with RNA direct the Polycomb group protein SCML2 to chromatin where it represses target genes. Elife 2014, 3:e02637.
Kim, CA, Bowie, JU. SAM domains: uniform structure, diversity of function. Trends Biochem Sci 2003, 28:625–628.
Kaneko, S, Bonasio, R, Saldana‐Meyer, R, Yoshida, T, Son, J, Nishino, K, Umezawa, A, Reinberg, D. Interactions between JARID2 and noncoding RNAs regulate PRC2 recruitment to chromatin. Mol Cell 2014, 53:290–300.
Nekrasov, M, Klymenko, T, Fraterman, S, Papp, B, Oktaba, K, Kocher, T, Cohen, A, Stunnenberg, HG, Wilm, M, Muller, J. Pcl‐PRC2 is needed to generate high levels of H3‐K27 trimethylation at Polycomb target genes. EMBO J 2007, 26:4078–4088.
Kang, H, McElroy, KA, Jung, YL, Alekseyenko, AA, Zee, BM, Park, PJ, Kuroda, MI. Sex comb on midleg (Scm) is a functional link between PcG‐repressive complexes in Drosophila. Genes Dev 2015, 29:1136–1150.
Kalb, R, Latwiel, S, Baymaz, HI, Jansen, PW, Muller, CW, Vermeulen, M, Muller, J. Histone H2A monoubiquitination promotes histone H3 methylation in Polycomb repression. Nat Struct Mol Biol 2014, 21:569–571.
Blackledge, NP, Farcas, AM, Kondo, T, King, HW, McGouran, JF, Hanssen, LL, Ito, S, Cooper, S, Kondo, K, Koseki, Y, et al. Variant PRC1 complex‐dependent H2A ubiquitylation drives PRC2 recruitment and polycomb domain formation. Cell 2014, 157:1445–1459.
Cooper, S, Dienstbier, M, Hassan, R, Schermelleh, L, Sharif, J, Blackledge, NP, De Marco, V, Elderkin, S, Koseki, H, Klose, R, et al. Targeting polycomb to pericentric heterochromatin in embryonic stem cells reveals a role for H2AK119u1 in PRC2 recruitment. Cell Rep 2014, 7:1456–1470.
Dillon, SC, Zhang, X, Trievel, RC, Cheng, X. The SET‐domain protein superfamily: protein lysine methyltransferases. Genome Biol 2005, 6:227.
Margueron, R, Li, G, Sarma, K, Blais, A, Zavadil, J, Woodcock, CL, Dynlacht, BD, Reinberg, D. Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms. Mol Cell 2008, 32:503–518.
Hidalgo, I, Herrera‐Merchan, A, Ligos, JM, Carramolino, L, Nunez, J, Martinez, F, Dominguez, O, Torres, M, Gonzalez, S. Ezh1 is required for hematopoietic stem cell maintenance and prevents senescence‐like cell cycle arrest. Cell Stem Cell 2012, 11:649–662.
Mochizuki‐Kashio, M, Mishima, Y, Miyagi, S, Negishi, M, Saraya, A, Konuma, T, Shinga, J, Koseki, H, Iwama, A. Dependency on the polycomb gene Ezh2 distinguishes fetal from adult hematopoietic stem cells. Blood 2011, 118:6553–6561.
Xu, J, Shao, Z, Li, D, Xie, H, Kim, W, Huang, J, Taylor, JE, Pinello, L, Glass, K, Jaffe, JD, et al. Developmental control of polycomb subunit composition by GATA factors mediates a switch to non‐canonical functions. Mol Cell 2015, 57:304–316.
Margueron, R, Justin, N, Ohno, K, Sharpe, ML, Son, J, Drury, WJ 3rd, Voigt, P, Martin, SR, Taylor, WR, De Marco, V, et al. Role of the polycomb protein EED in the propagation of repressive histone marks. Nature 2009, 461:762–767.
Obier, N, Lin, Q, Cauchy, P, Hornich, V, Zenke, M, Becker, M, Muller, AM. Polycomb protein EED is required for silencing of pluripotency genes upon ESC differentiation. Stem Cell Rev 2015, 11:50–61.
Boyer, LA, Plath, K, Zeitlinger, J, Brambrink, T, Medeiros, LA, Lee, TI, Levine, SS, Wernig, M, Tajonar, A, Ray, MK, et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 2006, 441:349–353.
Schmitges, FW, Prusty, AB, Faty, M, Stutzer, A, Lingaraju, GM, Aiwazian, J, Sack, R, Hess, D, Li, L, Zhou, S, et al. Histone methylation by PRC2 is inhibited by active chromatin marks. Mol Cell 2011, 42:330–341.
Pasini, D, Bracken, AP, Hansen, JB, Capillo, M, Helin, K. The Polycomb group protein Suz12 is required for embryonic stem cell differentiation. Mol Cell Biol 2007, 27:3769–3779.
Kim, H, Kang, K, Kim, J. AEBP2 as a potential targeting protein for polycomb repression complex PRC2. Nucleic Acids Res 2009, 37:2940–2950.
Pasini, D, Cloos, PA, Walfridsson, J, Olsson, L, Bukowski, JP, Johansen, JV, Bak, M, Tommerup, N, Rappsilber, J, Helin, K. JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells. Nature 2010, 464:306–310.
Simon, JA, Kingston, RE. Occupying chromatin: Polycomb mechanisms for getting to genomic targets, stopping transcriptional traffic, and staying put. Mol Cell 2013, 49:808–824.
He, GP, Kim, S, Ro, HS. Cloning and characterization of a novel zinc finger transcriptional repressor. A direct role of the zinc finger motif in repression. J Biol Chem 1999, 274:14678–14684.
Margueron, R, Reinberg, D. The polycomb complex PRC2 and its mark in life. Nature 2011, 469:343–349.
Kadoch, C, Hargreaves, DC, Hodges, C, Elias, L, Ho, L, Ranish, J, Crabtree, GR. Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat Genet 2013, 45:592–601.
Wang, W, Cote, J, Xue, Y, Zhou, S, Khavari, PA, Biggar, SR, Muchardt, C, Kalpana, GV, Goff, SP, Yaniv, M, et al. Purification and biochemical heterogeneity of the mammalian SWI‐SNF complex. EMBO J 1996, 15:5370–5382.
Phelan, ML, Sif, S, Narlikar, GJ, Kingston, RE. Reconstitution of a core chromatin remodeling complex from SWI/SNF subunits. Mol Cell 1999, 3:247–253.
Ho, L, Ronan, JL, Wu, J, Staahl, BT, Chen, L, Kuo, A, Lessard, J, Nesvizhskii, AI, Ranish, J, Crabtree, GR. An embryonic stem cell chromatin remodeling complex, esBAF, is essential for embryonic stem cell self‐renewal and pluripotency. Proc Natl Acad Sci USA 2009, 106:5181–5186.
Son, EY, Crabtree, GR. The role of BAF (mSWI/SNF) complexes in mammalian neural development. Am J Med Genet C Semin Med Genet 2014, 166C:333–349.
Bultman, S, Gebuhr, T, Yee, D, La Mantia, C, Nicholson, J, Gilliam, A, Randazzo, F, Metzger, D, Chambon, P, Crabtree, G, et al. A Brg1 mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes. Mol Cell 2000, 6:1287–1295.
Reyes, JC, Barra, J, Muchardt, C, Camus, A, Babinet, C, Yaniv, M. Altered control of cellular proliferation in the absence of mammalian brahma (SNF2α). EMBO J 1998, 17:6979–6991.
Thompson, K, Marquez, SB, Lu, L, Reisman, D. Induction of functional Brm protein from Brm knockout mice. Oncoscience 2015, 2:349.
Vangamudi, B, Paul, TA, Shah, PK, Kost‐Alimova, M, Nottebaum, L, Shi, X, Zhan, Y, Leo, E, Mahadeshwar, HS, Protopopov, A, et al. The SMARCA2/4 ATPase domain surpasses the bromodomain as a drug target in SWI/SNF‐mutant cancers: insights from cDNA rescue and PFI‐3 inhibitor studies. Cancer Res 2015, 75:3865–3878.
Lessard, J, Wu, JI, Ranish, JA, Wan, M, Winslow, MM, Staahl, BT, Wu, H, Aebersold, R, Graef, IA, Crabtree, GR. An essential switch in subunit composition of a chromatin remodeling complex during neural development. Neuron 2007, 55:201–215.
Wu, JI, Lessard, J, Olave, IA, Qiu, Z, Ghosh, A, Graef, IA, Crabtree, GR. Regulation of dendritic development by neuron‐specific chromatin remodeling complexes. Neuron 2007, 56:94–108.
Staahl, BT, Tang, J, Wu, W, Sun, A, Gitler, AD, Yoo, AS, Crabtree, GR. Kinetic analysis of npBAF to nBAF switching reveals exchange of SS18 with CREST and integration with neural developmental pathways. J Neurosci 2013, 33:10348–10361.
Puri, PL, Mercola, M. BAF60 A, B, and Cs of muscle determination and renewal. Genes Dev 2012, 26:2673–2683.
Kakarougkas, A, Ismail, A, Chambers, AL, Riballo, E, Herbert, AD, Kunzel, J, Lobrich, M, Jeggo, PA, Downs, JA. Requirement for PBAF in transcriptional repression and repair at DNA breaks in actively transcribed regions of chromatin. Mol Cell 2014, 55:723–732.
Hughes, CM, Rozenblatt‐Rosen, O, Milne, TA, Copeland, TD, Levine, SS, Lee, JC, Hayes, DN, Shanmugam, KS, Bhattacharjee, A, Biondi, CA, et al. Menin associates with a trithorax family histone methylatransferase complex and with the Hoxc8 Locus. Mol Cell 2004, 13:587–597.
Goo, YH, Sohn, YC, Kim, DH, Kim, SW, Kang, MJ, Jung, DJ, Kwak, E, Barlev, NA, Berger, SL, Chow, VT, et al. Activating signal cointegrator 2 belongs to a novel steady‐state complex that contains a subset of trithorax group proteins. Mol Cell Biol 2003, 23:140–149.
Cho, YW, Hong, T, Hong, S, Guo, H, Yu, H, Kim, D, Guszczynski, T, Dressler, GR, Copeland, TD, Kalkum, M, et al. PTIP associates with MLL3‐ and MLL4‐containing histone H3 lysine 4 methyltransferase complex. J Biol Chem 2007, 282:20395–20406.
Issaeva, I, Zonis, Y, Rozovskaia, T, Orlovsky, K, Croce, CM, Nakamura, T, Mazo, A, Eisenbach, L, Canaani, E. Knockdown of ALR (MLL2) reveals ALR target genes and leads to alterations in cell adhesion and growth. Mol Cell Biol 2007, 27:1889–1903.
Yokoyama, A, Wang, Z, Wysocka, J, Sanyal, M, Aufiero, DJ, Kitabayashi, I, Herr, W, Cleary, ML. Leukemia proto‐oncoprotein MLL forms a SET1‐like histone methyltransferase complex with menin to regulate Hox gene expression. Mol Cell Biol 2004, 24:5639–5649.
Patel, SR, Kim, D, Levitan, I, Dressler, GR. The BRCT‐domain containing protein PTIP links PAX2 to a histone H3, lysine 4 methyltransferase complex. Dev Cell 2007, 13:580–592.
Wu, M, Wang, PF, Lee, JS, Martin‐Brown, S, Florens, L, Washburn, M, Shilatifard, A. Molecular regulation of H3K4 trimethylation by Wdr82, a component of human Set1/COMPASS. Mol Cell Biol 2008, 28:7337–7344.
Dou, Y, Milne, TA, Tackett, AJ, Smith, ER, Fukuda, A, Wysocka, J, Allis, CD, Chait, BT, Hess, JL, Roeder, RG. Physical association and coordinate function of the H3 K4 methyltransferase MLL1 and the H4 K16 acetyltransferase MOF. Cell 2005, 121:873–885.
Wysocka, J, Myers, MP, Laherty, CD, Eisenman, RN, Herr, W. Human Sin3 deacetylase and trithorax‐related Set1/Ash2 histone H3‐K4 methylatransferase are tethered together selectively by the cell‐proliferation factor HCF‐1. Genes Dev 2003, 17:896–911.
Lee, JH, Skalnik, DG. Wdr82 is a C‐terminal domain‐binding protein that recruits the Setd1A Histone H3‐Lys4 methyltransferase complex to transcription start sites of transcribed human genes. Mol Cell Biol 2008, 28:609–618.
Wang, P, Lin, C, Smith, ER, Guo, H, Sanderson, BW, Wu, M, Gogol, M, Alexander, T, Seidel, C, Wiedemann, LM, et al. Global analysis of H3K4 methylation defines MLL family member targets and points to a role for MLL1‐mediated H3K4 methylation in the regulation of transcriptional initiation by RNA polymerase II. Mol Cell Biol 2009, 29:6074–6085.
Gibson, WT, Hood, RL, Zhan, SH, Bulman, DE, Fejes, AP, Moore, R, Mungall, AJ, Eydoux, P, Babul‐Hirji, R, An, J, et al. Mutations in EZH2 cause Weaver syndrome. Am J Hum Genet 2012, 90:110–118.
Tatton‐Brown, K, Hanks, S, Ruark, E, Zachariou, A, Duarte Sdel, V, Ramsay, E, Snape, K, Murray, A, Perdeaux, ER, Seal, S, et al. Germline mutations in the oncogene EZH2 cause Weaver syndrome and increased human height. Oncotarget 2011, 2:1127–1133.
Tatton‐Brown, K, Murray, A, Hanks, S, Douglas, J, Armstrong, R, Banka, S, Bird, LM, Clericuzio, CL, Cormier‐Daire, V, Cushing, T, et al. Weaver syndrome and EZH2 mutations: clarifying the clinical phenotype. Am J Med Genet A 2013, 161A:2972–2980.
Ernst, T, Chase, AJ, Score, J, Hidalgo‐Curtis, CE, Bryant, C, Jones, AV, Waghorn, K, Zoi, K, Ross, FM, Reiter, A, et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet 2010, 42:722–726.
Cohen, AS, Tuysuz, B, Shen, Y, Bhalla, SK, Jones, SJ, Gibson, WT. A novel mutation in EED associated with overgrowth. J Hum Genet 2015, 60:339–342.
Biton, S, Barzilai, A, Shiloh, Y. The neurological phenotype of ataxia‐telangiectasia: solving a persistent puzzle. DNA Repair (Amst) 2008, 7:1028–1038.
Li, J, Hart, RP, Mallimo, EM, Swerdel, MR, Kusnecov, AW, Herrup, K. EZH2‐mediated H3K27 trimethylation mediates neurodegeneration in ataxia‐telangiectasia. Nat Neurosci 2013, 16:1745–1753.
Bakkenist, CJ, Kastan, MB. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 2003, 421:499–506.
Li, J, Chen, J, Ricupero, CL, Hart, RP, Schwartz, MS, Kusnecov, A, Herrup, K. Nuclear accumulation of HDAC4 in ATM deficiency promotes neurodegeneration in ataxia telangiectasia. Nat Med 2012, 18:783–790.
Oksenberg, N, Ahituv, N. The role of AUTS2 in neurodevelopment and human evolution. Trends Genet 2013, 29:600–608.
Neale, BM, Kou, Y, Liu, L, Ma`ayan, A, Samocha, KE, Sabo, A, Lin, CF, Stevens, C, Wang, LS, Makarov, V, et al. Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 2012, 485:242–245.
O`Roak, BJ, Vives, L, Girirajan, S, Karakoc, E, Krumm, N, Coe, BP, Levy, R, Ko, A, Lee, C, Smith, JD, et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 2012, 485:246–250.
Vissers, LE, van Ravenswaaij, CM, Admiraal, R, Hurst, JA, de Vries, BB, Janssen, IM, van der Vliet, WA, Huys, EH, de Jong, PJ, Hamel, BC, et al. Mutations in a new member of the chromodomain gene family cause CHARGE syndrome. Nat Genet 2004, 36:955–957.
Sugathan, A, Biagioli, M, Golzio, C, Erdin, S, Blumenthal, I, Manavalan, P, Ragavendran, A, Brand, H, Lucente, D, Miles, J, et al. CHD8 regulates neurodevelopmental pathways associated with autism spectrum disorder in neural progenitors. Proc Natl Acad Sci USA 2014, 111:E4468–4477.
Tsurusaki, Y, Okamoto, N, Ohashi, H, Kosho, T, Imai, Y, Hibi‐Ko, Y, Kaname, T, Naritomi, K, Kawame, H, Wakui, K, et al. Mutations affecting components of the SWI/SNF complex cause Coffin‐Siris syndrome. Nat Genet 2012, 44:376–378.
Santen, GW, Aten, E, Sun, Y, Almomani, R, Gilissen, C, Nielsen, M, Kant, SG, Snoeck, IN, Peeters, EA, Hilhorst‐Hofstee, Y, et al. Mutations in SWI/SNF chromatin remodeling complex gene ARID1B cause Coffin‐Siris syndrome. Nat Genet 2012, 44:379–380.
Mari, F, Marozza, A, Mencarelli, MA, Lo Rizzo, C, Fallerini, C, Dosa, L, Di Marco, C, Carignani, G, Baldassarri, M, Cianci, P, et al. Coffin‐Siris and Nicolaides‐Baraitser syndromes are a common well recognizable cause of intellectual disability. Brain Dev 2015, 37:527–536.
Sousa, SB, Abdul‐Rahman, OA, Bottani, A, Cormier‐Daire, V, Fryer, A, Gillessen‐Kaesbach, G, Horn, D, Josifova, D, Kuechler, A, Lees, M, et al. Nicolaides‐Baraitser syndrome: delineation of the phenotype. Am J Med Genet A 2009, 149A:1628–1640.
Van Houdt, JK, Nowakowska, BA, Sousa, SB, van Schaik, BD, Seuntjens, E, Avonce, N, Sifrim, A, Abdul‐Rahman, OA, van den Boogaard, MJ, Bottani, A, et al. Heterozygous missense mutations in SMARCA2 cause Nicolaides‐Baraitser syndrome. Nat Genet 2012, 44:445–449, S441.
Gil, J, Bernard, D, Martinez, D, Beach, D. Polycomb CBX7 has a unifying role in cellular lifespan. Nat Cell Biol 2004, 6:67–72.
Scott, CL, Gil, J, Hernando, E, Teruya‐Feldstein, J, Narita, M, Martinez, D, Visakorpi, T, Mu, D, Cordon‐Cardo, C, Peters, G, et al. Role of the chromobox protein CBX7 in lymphomagenesis. Proc Natl Acad Sci USA 2007, 104:5389–5394.
Dietrich, N, Bracken, AP, Trinh, E, Schjerling, CK, Koseki, H, Rappsilber, J, Helin, K, Hansen, KH. Bypass of senescence by the Polycomb group protein CBX8 through direct binding to the INK4A‐ARF locus. EMBO J 2007, 26:1637–1648.
Simon, JA, Lange, CA. Roles of the EZH2 histone methyltransferase in cancer epigenetics. Mutat Res 2008, 647:21–29.
Morin, RD, Johnson, NA, Severson, TM, Mungall, AJ, An, J, Goya, R, Paul, JE, Boyle, M, Woolcock, BW, Kuchenbauer, F, et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B‐cell lymphomas of germinal‐center origin. Nat Genet 2010, 42:181–185.
Sneeringer, CJ, Scott, MP, Kuntz, KW, Knutson, SK, Pollock, RM, Richon, VM, Copeland, RA. Coordinated activities of wild‐type plus mutant EZH2 drive tumor‐associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B‐cell lymphomas. Proc Natl Acad Sci USA 2010, 107:20980–20985.
Yap, DB, Chu, J, Berg, T, Schapira, M, Cheng, SWG, Moradian, A, Morin, RD, Mungall, AJ, Meissner, B, Boyle, M, et al. Somatic mutations at EZH2 Y641 act dominantly through a mechanism of selectively altered PRC2 catalytic activity, to increase H3K27 trimethylation. Blood 2011, 117:2451–2459.
McCabe, MT, Graves, AP, Ganji, G, Diaz, E, Halsey, WS, Jiang, Y, Smitheman, KN, Ott, HM, Pappalardi, MB, Allen, KE, et al. Mutation of A677 in histone methyltransferase EZH2 in human B‐cell lymphoma promotes hypertrimethylation of histone H3 on lysine 27 (H3K27). Proc Natl Acad Sci USA 2012, 109:2989–2994.
Wilson, BG, Wang, X, Shen, X, McKenna, ES, Lemieux, ME, Cho, YJ, Koellhoffer, EC, Pomeroy, SL, Orkin, SH, Roberts, CW. Epigenetic antagonism between polycomb and SWI/SNF complexes during oncogenic transformation. Cancer Cell 2010, 18:316–328.
Knutson, SK, Warholic, NM, Wigle, TJ, Klaus, CR, Allain, CJ, Raimondi, A, Porter Scott, M, Chesworth, R, Moyer, MP, Copeland, RA, et al. Durable tumor regression in genetically altered malignant rhabdoid tumors by inhibition of methyltransferase EZH2. Proc Natl Acad Sci USA 2013, 110:7922–7927.
Bitler, BG, Aird, KM, Garipov, A, Li, H, Amatangelo, M, Kossenkov, AV, Schultz, DC, Liu, Q, Shih Ie, M, Conejo‐Garcia, JR, et al. Synthetic lethality by targeting EZH2 methyltransferase activity in ARID1A‐mutated cancers. Nat Med 2015, 21:231–238.
Kim, KH, Kim, W, Howard, TP, Vazquez, F, Tsherniak, A, Wu, JN, Wang, W, Haswell, JR, Walensky, LD, Hahn, WC, et al. SWI/SNF‐mutant cancers depend on catalytic and non‐catalytic activity of EZH2. Nat Med 2015, 21:1491–1496.
Kadoch, C, Crabtree, GR. Mammalian SWI/SNF chromatin remodeling complexes and cancer: mechanistic insights gained from human genomics. Sci Adv 2015, 1:e1500447.
Bracken, AP, Kleine‐Kohlbrecher, D, Dietrich, N, Pasini, D, Gargiulo, G, Beekman, C, Theilgaard‐Monch, K, Minucci, S, Porse, BT, Marine, JC, et al. The Polycomb group proteins bind throughout the INK4A‐ARF locus and are disassociated in senescent cells. Genes Dev 2007, 21:525–530.
Betz, BL, Strobeck, MW, Reisman, DN, Knudsen, ES, Weissman, BE. Re‐expression of hSNF5/INI1/BAF47 in pediatric tumor cells leads to G1 arrest associated with induction of p16ink4a and activation of RB. Oncogene 2002, 21:5193–5203.
Ruijtenberg, S, van den Heuvel, S. G1/S inhibitors and the SWI/SNF complex control cell‐cycle exit during muscle differentiation. Cell 2015, 162:300–313.
Kandoth, C, McLellan, MD, Vandin, F, Ye, K, Niu, B, Lu, C, Xie, M, Zhang, Q, McMichael, JF, Wyczalkowski, MA, et al. Mutational landscape and significance across 12 major cancer types. Nature 2013, 502:333–339.
Jude, CD, Climer, L, Xu, D, Artinger, E, Fisher, JK, Ernst, P. Unique and independent roles for MLL in adult hematopoietic stem cells and progenitors. Cell Stem Cell 2007, 1:324–337.
Mueller, D, Bach, C, Zeisig, D, Garcia‐Cuellar, MP, Monroe, S, Sreekumar, A, Zhou, R, Nesvizhskii, A, Chinnaiyan, A, Hess, JL, et al. A role for the MLL fusion partner ENL in transcriptional elongation and chromatin modification. Blood 2007, 110:4445–4454.
Zeisig, BB, Milne, T, Garcia‐Cuellar, MP, Schreiner, S, Martin, ME, Fuchs, U, Borkhardt, A, Chanda, SK, Walker, J, Soden, R, et al. Hoxa9 and Meis1 are key targets for MLL‐ENL‐mediated cellular immortalization. Mol Cell Biol 2003, 24:617–628.
Rao, RC, Dou, Y. Hijacked in cancer: the KMT2 (MLL) family of methyltransferases. Nat Rev Cancer 2015, 15:334–346.
Yu, BD, Hess, JL, Horning, SE, Brown, GA, Korsmeyer, SJ. Altered Hox expression and segmental identity in Mll‐mutant mice. Nature 1995, 378:505–508.