Thurstone, LL. Multiple Factor Analysis. Chicago, IL: University of Chicago Press; 1947.

Lê, S., Pagès, J. DMFA: dual hierarchical multiple factor analysis. Commun Stat: Theory Methods 2010, 39:483–492.

Abdi, H, Williams, LJ, Valentin, D, Bennani‐Dosse, M. STATIS and DISTATIS: optimum multi‐table principal component analysis and three way metric multidimensional scaling. Wiley Interdiscip Rev: Comput Stat 2012, 4:124–167.

Abdi, H, Williams, LJ, Connolly, AC, Gobbini, MI, Dunlop, JP, Haxby, JV. Multiple Subject Barycentric Discriminant Analysis (MUSUBADA): how to assign scans to categories without using spatial normalization. Comput Math Methods Med 2012, 2012:1–15. doi:10.1155/2012/634165.

Abdi, H, Williams, LJ, Beaton, D, Posamentier, M, Harris, TS, Krishnan, A, Devous, MD. Analysis of regional cerebral blood flow data to discriminate among Alzheimer`s disease, fronto‐temporal dementia, and elderly controls: a multi‐block barycentric discriminant analysis (MUBADA) methodology. J Alzheimer`s Dis 2012, 31:s189–s201.

Abdi, H. Multivariate analysis. In: Lewis‐Beck, M, Bryman, A, Futing, T, eds. Encyclopedia for Research Methods for the Social Sciences. Thousand Oaks, CA: Sage; 2003, 699–702.

Acar, E, Yener, B. Unsupervised multiway data analyis: a literature survey. IEEE Trans Knowl Data Eng 2009, 21:6–19.

Arcidiacono, C, Sarnacchiaro, P, Velleman, R. Testing fidelity to a new psychological intervention for family members of substance misuers during implementation in Italy. J Subst Abuse 2008, 13:361–381.

Stanimirova, I, Boucon, C, Walczak, B. Relating gas chromatographic profiles to sensory measurements describing the end products of the Maillard reaction. Talanta 2011, 83:1239–1246.

Williams, LJ, Abdi, H, French, R, Orange, JB. A tutorial on multi‐block discriminant correspondence analysis (MUDICA): a new method for analyzing discourse data from clinical populations. J Speech Lang Hear Res 2010, 53:1372–1393.

Daszykowski, M, Walczak, B. Methods for the exploratory analysis of two‐dimensional chromatographics data. Talanta 2011, 83:1088–1097.

Carlier, A, Lavit, C, Pagès, M, Pernin, M, Turlot, J. A comparative review of methods which handle a set of indexed data tables. In: Coppi, R, Bollasco, S, eds. Multiway Data Analysis. Amsterdam, the Netherlands: North Holland; 1989, 85–101.

Derks, EPPA, Westerhuis, JA, Smilde, AK, King, BM. An introduction to multi‐blocks component analysis by means of a flavor language case study. Food Qual Prefer 2003, 14:497–506.

Escofier, B, Pagès, J. Multiple factor analysis. Comput Stat Data Anal 1990, 18:121–140.

Guebel, DV, Cánovas, M, Torres, N. Model Identification in presence of incomplete information by generalized principal component analysis: application to the common and differential responses of *Escherichia coli* to multiple pulse perturbation in continuous high‐biomass density culture. Biotechnol Bioeng 2009, 104:785–795.

Hassani, S, Martens, M, Qannari, EM, Hanafi, M. Analysis of ‐omic data: graphical interpretation and validation tools in multi‐block methods. Chemometr Intell Lab Syst 2010, 104:140–153.

Meyners, M, Kunert, J, Qannari, EM. Comparing generalized Procrustes analysis and STATIS. Food Qual Prefer 2000, 11:77–83.

Qannari, EM, Wakeling, I, MacFie, JH. A hierarchy of models for analyzing sensory data. Food Qual Prefer 1995, 6:309–314.

Smilde, AK, Westerhuis, JA, de Jong, S. A framework for sequential multiblock component methods. J Chemometr 2003, 17:323–337.

Van Deun, K, Smilde, AK, van der Werf, MJ, Kiers, HAL, Van Mechelen, IV. A structured overview of simultaneous component based data integration. BMC‐Bioinf 2009, 10:246–261.

Escofier, B, Pagès, J. Méthode pour l`analyse de plusieurs groupes de variables: application à la caractérisation des vins rouges du Val de Loire. Revue de Statistique Appliquée 1983, 31:43–59.

Escofier, B, Pagès, J. Analyses Factorielles Simples et Multiples: Objectifs, Méthodes, Interprétation. Dunod, Paris: 1988.

Abdi, H, Valentin, D. Multiple factor analysis. In: Salkind, NJ, ed. Encyclopedia of Measurement and Statistics. Thousand Oaks, CA: Sage; 2007, 657–663.

Pagès, J. Mulitple Factor Analysis by Example Using R. Boca Raton, IL: CRC Press, 2014. To appear.

Ares, G, Giménez, A, Barreiro, C, Gámbaro, A. Use of an open‐ended question to identify drivers of liking of milk desserts. Comparison with preference mapping techniques. Food Qual Prefer 2010b, 21:286–294.

Bécue‐Bertaut, M, Lê, S. Analysis of multilingual labeled sorting tasks: application to a cross‐cultural study in wine industry. J Sens Stud 2011, 26:299–310.

Bécue‐Bertaut, M, Álvarez‐Esteban, R, Pagès, J. Rating of products through scores and free‐text assertions: comparing and combining both. Food Qual Prefer 2008, 19:122–134.

Causse, M, Friguet, C, Coiret, C, Lépicier, M, Navez, B, Lee, M, Holthuysen, N, Sinesio, F, Moneta, E, Grandillo, S. Consumer preferences for fresh tomato at the European scale: a common segmentation on taste and firmness. J Food Sci 2010, 75: S531–S541.

Cadoret, M, Lê, S, Pagès, J. A factorial approach for sorting task data (FAST). Food Qual Prefer 2009, 20:410–417.

Cadoret, M, Lê, S, Pagès, J. Statistical analysis of hierarchical sorting data (FAST). J Sens Stud 2009, 26:96–105.

Dehlholm, C, Brockhoff, PB, Meinert, L, Wender, A, Bredie, WLP. Rapid descriptive sensory methods: comparison of free multiple sorting, partial napping, napping, flash profiling and conventional profiling. Food Qual Prefer 2012, 26:267–277.

Dooley, L, Lee, Y, Meullenet, JF. The application of check‐all‐that‐apply (CATA) consumer profiling to preference mapping of vanilla ice cream and its comparison to classical external preference mapping. Food Qual Prefer 2010, 21:394–401.

Gómez, AT, Hernandez Cervantes, M, Lopez Velazquez, J, Cabrera, RS, Ramon Canul, LG, Juarez Barrientos, JM, Ramirez Rivera, EdJ. Caracterización sensorial del queso fresco “cuajada” en tres localidades de Oaxaca, México: diferencias en la percepción sensorial[Sensory characterization of “cuajada style” fresh cheese in three locations in Oaxaca, Mexico: differences in sensory perception]. Revista Venezolana de Ciencia y Tecnología de Alimentos 2010, 1:127–140.

Hopfer, H, Heymann, H. A summary of projective mapping observations: the effect of replicates and shape, and individual performance measurements. Food Qual Preference 2013, 26:164–181.

Mestres, C, Ribeyre, F, Pons, B, Fallet, V, Matencio, F. Sensory texture of cooked rice is rather linked to chemical than to physical characteristics of raw grain. J Cereal Sci 2011, 53:81–89.

Morand, E, Pagès, J. Procrustes multiple factor analysis to analyse the overall perception of food products. Food Qual Prefer 2006, 17:36–42.

Pagès, J. Collection and analysis of perceived product inter‐distances using multiple factor analysis: application to the study of 10 white wines from the Loire Valley. Food Qual Prefer 2005, 16:642–649.

Le Quéré, J‐M, Husson, F, Renard, CMGC, Primault, J. French cider characterization by sensory, technological and chemical evaluations. LWT ‐ Food Sci Technol 2006, 39:1033–1044.

Pagès, J, Tenenhaus, M. Multiple factor analysis combined with PLS path modeling. Application to the analysis of relationship between physicochemical variables, sensory rpofiles and hedonic judgements. Chemometr Intell Lab Syst 2001, 58:261–273.

Tu, VP, Valentin, D, Husson, F, Dacremont, C. Cultural differences in food description and preference: contrasting Vietnamese and French panellists on soy yogurts. Food Qual Prefer 2010, 21:602–610.

Kvalheim, OM. Interpretation of direct latent‐variable projection methods and their aims and use in the analysis of multicomponent spectroscopic and chromatographic data. Chemometr Intell Lab Syst 1988, 4:11–25.

Stanimirova, I, Daszykowski, M, Van Gyseghem, E, Bensaid, FF, Lees, M, Smeyers‐Verbeke, J, Massart, DL, Vander Heyden, Y. Chemometrical exploration of an isotopic ratio data set of acetylsalicylic acid. Analytica Chimica Acta 2005, 552:1–12.

Stanimirova, I, Walczak, B, Massart, DL. Multiple factor analysis in environmental chemistry. Analytica Chimica Acta 2005, 545:1–12.

Bertrand, F, Maumy, M, Fussler, L, Kobes, N, Savary, S, Grossman, J. Using factor analyses to explore data generated by the National Grapevine Wood Diseases survey. Case Stud Bus Ind Gov Stat 2007, 1:183–202.

Bocard, DF, Gillet, F, Legendre, P.Numerical Ecology with R. New York: Springer; 2011.

Carlson, ML, Flagstad, LA, Gillet, F, Mitchell, EAD. Community development along a proglacial chronosequence: are above‐ground and below‐ground community structure controlled more by biotic than abiotic factors? J Ecol 2010, 98:1084–1095.

Daufresne, M, Bady, P, Fruget, J‐F. Impacts of global changes and extreme hydroclimatic events on macroinvertebrate community structures in the French Rhône River. Oecologia 2007, 151:544–559.

Gailhard, I, Gros, P, Durbec, J, Beliaeff, B, Belin, C, Nezan, E, Lassus, P. Variability patterns of microphytoplankton communities along the French coasts. Marine Ecol Progress Ser 2002, 242:39–50.

Jassey, VEJ, Chiapusio, G, Mitchell, EAD, Binet, P, Toussaint, ML, Gilbert, D. Fine‐scale horizontal and vertical micro‐distribution patterns of testate amoebae along a narrow Fen/Bog gradient. Microb Ecol 2010, 61:374–385.

Lamentowicz, M, Lamentowicz, U, Knaap, WO, Gabka, M, Mitchell, EAD. Contrasting species: environment relationships in communities of testate amoebae, bryophytes and vascular plants along the Fen‐Bog gradient. Microb Ecol 2009, 59:499–510.

Legendre, P, Legendre, L. Numerical Ecology. New York: Elsevier; 2012.

Mazouni, N, Gaertner, J, Deslous‐Paoli, J‐M. Composition of biofouling communities on suspended oyster cultures: an in situ study of their interactions with the water column. Mar Ecol Prog Ser 2001, 214:93–102.

Poulard, J‐C, Léauté, J‐P. Interaction between marine populations and fishing activities: temporal patterns of landings of La Rochelle trawlers in the Bay of Biscay. Aquat Living Resour 2002, 15:197–210.

Franco, J, Crossa, J, Desphande, S. Hierarchical multiple‐factor analysis for classifying genotypes based on phenotypic and genetic data. Crop Sci 2010, 50:105.

Ruget, F, Moreau, JC, Ferrand, M, Poisson, S, Gate, P, Lacroix, B, Lorgeou, J, Cloppet, E, Souverain, F. Describing the possible climate changes in France and some examples of their effects on main crops used in livestock systems. Adv Sci Res 2010, 4:99–104.

Strohmeier, D, Jumisko‐Pyykkö, S, Kunze, K, Bici, MO. The extended‐OPQ method for user‐centered quality of experience evaluation: a study for mobile 3D video broadcasting over DVB‐H. EURASIP J Image Video Process 2011:1–24.

Duvert, C, Gratiot, N, Evrard, O, Navratil, O, Némery, J, Prat, C, Esteves, M. Drivers of erosion and suspended sediment transport in three headwater catchments of the Mexican Central Highlands. Geomorphology 2010, 123:243–256.

Kumagai, T, Utsugi, A. Removal of artifacts and fluctuations from MEG data by clustering methods. Neurocomputing 2004, 62:153–160.

Abdi, H, Dunlop, JP, Williams, LJ. How to compute reliability estimates and display confidence and tolerance intervals for pattern classifiers using the Bootstrap and 3‐way multidimensional scaling (DISTATIS). NeuroImage 2009, 45:89–95.

Buchsbaum, BR, Lemire‐Rodger, S, Fang, C, Abdi, H. The neural basis of vivid memory is patterned on perception. J Cogn Neurosci 2012, 24:1867–1883.

Bécue‐Bertaut, M, Kern, J., Hernández‐Maldonado, M‐L, Juresa, V, Vuletic, S. Health‐risk behaviour in Croatia. Public Health 2008, 122:140–150.

Damiani, G, Farelli, V, Anselmi, A, Sicuro, L, Solipaca, A, Burgio, A, Iezzi, DF, Ricciardi, W. Patterns of Long Term Care in 29 European countries: evidence from an exploratory study. BMC Health Serv Res 2011, 11:316

Joesch, JM, Spiess, K. European mothers` time spent looking after children‐differences and similarities across nine countries. Electron Int J Time Use Res 2006, 3:1–27.

Wong, S, Gauvrit, H, Cheaib, N, Carré, F, Carrault, G. Multiple factor analysis as a tool for studying the effect of physical training on the autonomic nervous system. Comput Cardiol 2002, 2002:437–440.

Pavoine, S, Bailly, X. New analysis for consistency among markers in the study of genetic diversity: development and application to the description of bacterial diversity. BMC Evol Biol 2007, 7:156–172.

de Tayrac, M, Lê, S, Aubry, M, Mosser, J, Husson, F. Simultaneous analysis of distinct Omics data sets with integration of biological knowledge: multiple factor analysis approach. BMC Genomics 2009, 10:32.

Ares, G, Deliza, R, Barreiro, C, Giménez, A, Gámbaro, A. Comparison of two sensory profiling techniques based on consumer perception. Food Qual Prefer 2010, 21:417–426.

Bécue‐Bertaut, M, Fernández‐Aguirre, K, Modrono‐Herrán, J. Analysis of a mixture of closed and open‐ended questions in the case of a multilingual survey. In: CH Skiadas,, eds. Advances in Data Analysis: Theory and Applications to Reliability and Inference, Data Mining, Bioinformatics, Lifetime Data, and Neural Networks. Boston: Birkhauser; 2008, 21–31.

Costard, S, Porphyre, V, Messad, S, Rakotondrahanta, S, Vidon, H, Roger, F, Pfeiffer, , DU. Multivariate analysis of management and biosecurity practices in smallholder pig farms in Madagascar. Preventive Veterinary Med 2009, 92:199–209.

Pagès, J, Husson, F. Inter‐laboratory comparison of sensory profiles. Food Qual Prefer 2001, 12:297–309.

Worch, T, Lê, S, Punter, P. How reliable are the consumers? Comparison of sensory profiles from consumers and experts. Food Qual Prefer 2010, 21:309–318.

Zárraga, A, Goitisolo, B. Simultaneous analysis and multiple factor analysis for contingency tables: two methods for the joint study of contingency tables. Comput Stat Data Anal 2009, 53:3171–3182.

Lautre, IG, Fernández, EA. A methodology for measuring latent variables based on multiple factor analysis. Comput Stat Data Anal 2004, 45:505–517.

Yanai, H, Takeuchi, K, Takane, Y. Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition. New York: Springer Verlag; 2011.

Abdi, H, Williams, LJ. Principal component analysis. Wiley Interdiscip Rev: Comput Stat 2010, 2:433–459.

Abdi, H. Singular value decomposition (SVD) and generalized singular value decomposition (GSVD). In: Salkind, N, ed. Encyclopedia of Measurement and Statistics. Thousand Oaks, CA: Sage; 2007, 907–912.

Greenacre, M. Theory and Applications of Correspondence Analysis. London, UK: Academic Press; 1984.

Takane, Y. Relationships among various kinds of eigenvalue and singular value decompositions. In: Yanai, H, Okada, A, Shigemasu, K, Kano, Y, Meulman, J, eds. New Developments in Psychometrics. Tokyo: Springer Verlag; 2002, 45–46.

Eckart, C, Young, G. The approximation of one matrix by another of lower rank. Psychometrika 1936, 1:211–218.

Cailliez, F, Pagès, JP. Introduction à l`Analyse des Données. Paris: SMASH; 1976.

Escoufier, Y. Operators related to a data matrix: a survey. COMPSTAT: Proceedings in Computational Statistics; 17th Symposium Held in Rome, Italy, 2006. New York, Physica Verlag; 2007, 285–297.

Holmes, S. Multivariate analysis: the French way. In: Nolan, D, Speed, T, eds. Festschrift for David Freedman. Beachwood: IMS; 2006, 1–14.

de la Cruz, O, Holmes, S. The duality diagram in data analysis: examples of modern applications. Ann Appl Stat 2011, 5:2266–2277.

Thioulouse, J. Simultaneous analysis of a sequence of paired ecological tables: A comparison of several methods. Ann Appl Stat 2011, 5:2300–2325.

Abdi, H. Centroid. Wiley Interdiscip Rev: Comput Stat 2009, 1:259–260.

Greenacre, M. Biplots in Practice. Barcelona: Fundación BBVA; 2010.

Gower, JC, Lubbe, S., le Roux, N. Understanding Biplots. New York: Wiley; 2011.

Husson, F, Lê, S, Pagès, J. Exploratory Multivariate Analysis by Example Using R. Boca Raton, IL: CRC Press; 2011.

Lebart, L, Morineau, A, Warwick, KM. Multivariate Descriptive Statistical Analysis. New York: Wiley; 1984.

Greenacre, M. Correspondence Analysis in Practice. London: Chapman %26 Hall; 2007.

Escoufier, Y. Le traitement des variables vectorielles. Biometrics 1973, 29:751–760.

Robert, P, Escoufier, Y. A unifying tool for linear multivariate statistical methods: the RV‐coefficient. Appl Stat 1976, 25:257–265.

Abdi, H. RV coefficient and congruence coefficient. In: Salkind, NJ, ed. Encyclopedia of Measurement and Statistics. Thousand Oaks, CA: Sage; 2007, 849–853.

Abdi, H. Congruence: congruence coefficient, RV coefficient, %26 Mantel coefficient. In: Salkind, NJ, ed. Encyclopedia of Research Design. Thousand Oaks, CA: Sage; 2010, 222–229.

Gaertner, JC, Chessel, D, Bertrand, J. Stability of spatial structures of dermersal assemblages: a multitable approach. Aquat Living Resour 1998, 11:75–85.

Bhattacharyya, A. On a measure of divergence between two multinomial populations. Sankhya 1941; 7:401–406.

Escofier, B. Analyse factorielle et distances répondant au principe d`équivalence distributionnelle. Revue de Statistique Appliquée 1978, 26:29–37.

Domenges, D, Volle, M. Analyse factorielle sphérique: une exploration. Annales de l`INSEE 1979, 35:3–83.

Rao, CR. Use of Hellinger distance in graphical displays. In: Tiit, EM, Kollo, T, Niemi, H., eds. Multivariate Statistics and Matrices in Statistics. Leiden, Netherlands: Brill Academic Publisher; 1995, 143–161.

Abdi, H. Distance. In: Salkind, N, ed. Encyclopedia of Measurement and Statistics. Thousand Oaks, CA: Sage; 2007, 280–284.

Lebart, L, Piron, M, Morineau, A. Statistique Exploratoire Multidimensionnelle: Visualisations et Inférences en Fouille de Données. Paris: Dunod; 2006.

Saporta, G, Niang, N. Principal component analysis: application to statistical process control. In: Govaert, G, ed. Data Analysis. London: Wiley; 2009.

Pelé, J, Abdi, H, Moreau, M, Thybert, D, Chabbert, M. Multidimensional scaling reveals the main evolutionary pathways of class A G‐protein‐coupled receptors. PLoS One 2011, 6: 1‐10, e19094. doi:10.1371/journal.pone.0019094.

Pelé, J, Bécu, JM, Abdi, H, Chabbert, M. Bios2mds: an R package for comparing orthologous protein families by metric multidimensional scaling. BMC Bioinf 2012, 13:133–140.

Gower, JC Adding a point to vector diagrams in multivariate analysis. Biometrika 1968, 55:582–585.

Josse, J, Husson, F. Selecting the number of components in PCA using cross‐validation approximations. Comput Stat Data Anal 2012, 56:1869–1879.

Peres‐Neto, PR, Jackson, DA, Somers, KM. How many principal components? stopping rules for determining the number of non‐trivial axes revisited. Comput Stat Data Anal 2005, 49:974–997.

Timmerman, ME, Kiers, HAL, Smilde, AK. Estimating confidence intervals for principal component loadings: a comparison between the bootstrap and asymptotic results. Br J Math Stat Psychol 2007, 60: 295–314.

Abdi, H, Williams, LJ. Jackknife. In: Salkind, NJ, ed. Encyclopedia of Research Design. Thousand Oaks, CA: Sage; 2010, 655–660.

Efron, B, Tibshirani, RJ. An Introduction to the Bootstrap. New York: Chapman and Hall; 1993.

Abdi, H, Edelman, B, Valentin, D, Dowling, WJ. Experimental Design and Analysis for Psychology. Oxford: Oxford University Press; 2009.

Milan, M. Applications of the parametric bootstrap to models that incorporate a singular value decomposition. Appl Stat 1995, 44:31–49.

Lebart, L. Which Bootstrap for principal axes methods? In: Brito, P, Bertrand, P, Cucumel, G, de Carvalho, F, ed. Selected Contributions in Data Analysis and Classification. Studies in Classification, Data Analysis, and Knowledge Organization. Berlin: Springer Verlag; 2007, 581–588.

Husson, F, Le Dien, S, Pagès, J. Confidence ellipse for the sensory profiles obtained by Principal Component Analysis. Food Qual Prefer 2005, 16:245–250.

Pagès, J, Husson, F. Multiple Factor Analysis with confidence ellipses: a methodology to study the relationships between sensory and instrumental data. J Chemometr 2005, 19:138–144.

Lê, S, Husson, F, Pagès, J. Confidence ellipses applied to the comparison of sensory profiles. J Sens Stud 2006, 21:241–248.

Cadoret, M, Husson, F. Construction and evaluation of confidence ellipses applied at sensory data. Food Qual Prefer 2013, 28:106–115.

Dehlholm, C, Brockhoff, PB, Bredie, WLP. Confidence ellipses: a variation based on parametric bootstrapping applicable on multiple factor analysis results for rapid graphical evaluation. Food Qual Prefer 2012, 26:278–280.

Abdi, H. The Bonferonni and Sidák corrections for multiple comparisons. In: Salkind, N, ed. Encyclopedia of Measurement and Statistics. Thousand Oaks, CA: Sage; 2007, 104–107.

Le Dien, S, Pagès, J. Hierarchical multiple factor analysis: application to the comparison of sensory profiles. Food Qual Prefer 2003, 14:397–403.

Le Dien, S, Pagès, J. Analyse Factorielle Multiple Hiérarchique. Revue de Statistique Appliquée 2003, 51:47–73.

Eslami, A, Qannari, EM, Kohler, A, Bougeard, S. General overview of methods of analysis of multi‐group datasets. *Review of New Information* *Technologies* 2013. In press.

Horst, P. Factor Analysis of Data Matrices. New York: Holt; 1965.

Young, G, Householder, AS. Discussion of a set of points in terms of their mutual distances. Psychometrika 1938, 3:19–22.

Torgerson, W. Theory and Methods of Scaling. New York: Wiley; 1958.

Abdi, H. Metric multidimensional scaling. In: Salkind, , N, ed. Encyclopedia of Measurement and Statistics.Thousand Oaks, CA: Sage; 2007, 598–605.

Abdi, H, Valentin, D. Multiple correspondence analysis. In: Salkind, NJ, ed. Encyclopedia of Measurement and Statistics. Thousand Oaks, CA: Sage; 2007c, 651–657.

Abdi, H, Williams, LJ. Correspondence analysis. In: Salkind, NJ, ed. Encyclopedia of Research Design. Thousand Oaks, CA: Sage; 2010d, 267–278.

Bécue‐Bertaut, M, Pagès, J. A principal axis method for comparing multiple contingency tables: MFCAT. Comput Stat Data Anal 2004, 45:481–503.

Bécue‐Bertaut, M, Pagès, J. Multiple factor analysis for contingency tables. In: Greenacre, M, Blasius, J, ed. Multiple Correspondence Analysis and Related Methods. Boca Raton, IL: Chapman %26 Hall; 2006, 300–326.

Kostov, B, Bécue‐Bertaut, M, Husson, F. Multiple Factor Analysis for contingency tables in the *FactoMineR* package. R J. Submitted for publication.

Zarraga, A, Goitisolo, B. Simultaneous analysis: a joint study of several contingency tables with different margins. In: Greenacre, M, Blasius, J, ed. Multiple Correspondence Analysis and Related Methods. Boca Raton, IL: Chapman and Hall/CRC; 2006, 327–350.

Pagès, J. Analyse factorielle de données mixtes. Revue de Statistique Appliquée 2004, 52:93–111.

Abdi, H, Williams, LJ. Barycentric discriminant analysis (BADIA). In: Salkind, NJ, ed. Encyclopedia of Research Design. Thousand Oaks, CA: Sage; 2010, 64–75.

Abdi, H. Discriminant correspondence analysis. In Salkind, NJ, ed. Encyclopedia of Measurement and Statistics. Thousand Oaks, CA: Sage; 2007, 270–272.

Horst, P. Generalized canonical correlations and their applications to experimental data. J Clin Psychol 1961, 17:331–347.

Takane, Y, Yanai, M, Hwang, H. An improved method for generalized constrained canonical correlation analysis. Comput Stat Data Anal 2006, 50:221–241.

Takane, Y, Hwang, H, Abdi, H. Regularized multiple set canonical correlation analysis. Psychometrika 2008, 73: 753–775.

Gower, JC, Dijksterhuis, GB. Procrustes Problems. Oxford: O.U.P; 2004.

Abdi, H, Valentin, D. STATIS. In: Salkind, NJ, ed. Encyclopedia of Measurement and Statistics. Thousand Oaks, CA: Sage; 2007, 955–962.

Abdi, H, Valentin, D. Some new and easy ways to describe, compare, and evaluate products and assessors. In: Valentin, D, Nguyen, DZ, Pelletier, L, ed. New Trends in Sensory Evaluation of Food and Non‐Food Products. Ho Chi Minh, Vietnam: Vietnam National University‐Ho chi Minh City Publishing House; 2007, 5–18.

Abdi, H, Valentin, D, Chollet, S, Chrea, C. Analyzing assessors and products in sorting tasks: DISTATIS, theory and applications. Food Qual Prefer 2007, 18:627–640.

Husson, F, Pagès, J. INDSCAL model: geometrical interpretation and methodology. Comput Stat Data Anal 2006, 50:358–378.

Areia, A, Oliveira, MM, Mexia, JT. Models for a series of studies based on geometrical representation. Stat Methodol 2008, 5:277–288.

Abdi, H. Partial least square regression, projection on latent structure regression, PLS‐Regression. Wiley Interdiscip Rev: Comput Stat 2010, 2:97–106.

Krishnan, A, Williams, LJ, McIntosh, AR, Abdi, H. Partial Least Squares (PLS) methods for neuroimaging: a tutorial and review. NeuroImage 2011, 56: 455–475.

Tucker, LR. The extension of factor analysis to three‐dimensional matrices. In: Frederiksen, N, Gulliken, H, ed. Contributions to Mathematical Psychology. New York: Holt; 1964, 110–182.

Westerhuis, JA, Kourti, T, MacGregor, JF. Analysis of multiblock and hierarchical PCA and PLS models. J Chemometr 1998, 12:301–321.

Næs, T, Brockhoff, PB, Tomic, O. Statistics for Sensory and Consumer Science. London: Wiley; 2010.

Lê, S, Josse, J, Husson, F. FactoMineR: an R package for multivariate analysis. J Stat Softw 2008, 24:1–18.

Thioulouse, J, Chessel, D, Dolédec, S, Olivier, JM. ADE‐4: a multivariate analysis and graphical display software. Stat Comput 1997, 7:75–83.

Dray, S, Dufour, AB, Chessel, D. The ade4 package‐II: two‐table and K‐table methods. R News 2007, 7:47–52.

Abdi, H, Valentin, D, O`Toole, AJ, Edelman, B. DISTATIS: the analysis of multiple distance matrices. In: Proceedings of the IEEE Computer Society: International Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, 2005, 42–47.

Bécue‐Bertaut, M, Pagès, J. Multiple factor analysis and clustering of a mixture of quantitative categorical and frequency data. Comput Stat Data Anal 2008, 52:3255–3268.

Chernick, MR. Bootstrap Methods: A Guide for Practitioners and Researchers. New York: Wiley; 2008.

Pagès, J. Eléments de comparaison entre l`analyse factorielle multiple et la méthode STATIS. Revue de Statistique Appliquée 1996, 44:81–95.