Karniadakis, GE, Kirby, RM II. Parallel Scientific Computing in C++ and MPI: A Seamless Approach to Parallel Algorithms and Their Implementation. New York: Cambridge University Press; 2003.

Gentle, JE, Härdle, WK, Mori, Y. Handbook of Computational Statistics: Concepts and Methods. Springer Handbooks of Computational Statistics. 2nd ed. Berlin: Springer‐Verlag; 2012.

Menabrea, LF. Sketch of the Analytical Engine Invented by Charles Babbage. Bibliothéque Universelle de Genéve, October 1842, No. 82.

Watnik, M. Early computational statistics. J Comput Graph Stat 2011, 20:811–817.

Porter, RP. The eleventh census. Am Stat Assoc 1891, 2:321–379.

Turing, AM. On computable numbers, with an application to the entscheidungsproblem: a correction. Proc Lond Math Soc 1937, 43:544–546.

Anderson, HL. Metropolis, Monte Carlo and the MANIAC. Los Alamos Sci 1986, 14:96–108.

Heath, MT. Scientific Computing: An Introductory Survey. 2nd ed. New York: McGraw Hill; 2002.

Burden, RL, Douglas Faires, J. Numerical Analysis. 8th ed. Belmont, CA: Thomson Brooks/Cole; 2005.

Press, WH, Teukolsky, SA, Vetterling, WT, Flannery, BP. Numerical Recipes in C: The Art of Scientific Computing. 2nd ed. New York: Cambridge University Press; 1992.

Givens, GH, Hoeting, JA. Computational Statistics. Wiley Series in Computational Statistics. 2nd ed. Hoboken, NJ: John Wiley %26 Sons, Inc.; 2013.

Gentle, JE. Computational Statistics. Statistics and Computing. 2nd ed. New York: Springer; 2009.

Golub, GH, van Loan, CF. Matrix Computations. Johns Hopkins Studies in the Mathematical Sciences. 3rd ed. Baltimore, MD: Johns Hopkins University Press; 1996.

Stewart, GW. Matrix Algorithms Volume 1: Basic Decompositions. Philadelphia, PA: Society for Industrial and Applied Mathematics; 1998.

Ortega, JM. Introduction to Parallel and Vector Solution of Linear Systems. Frontiers of Computer Science. New York: Plenum Press; 1988.

Demmel, JW. Applied Numerical Linear Algebra. Philadelphia, PA: Society for Industrial and Applied Mathematics; 1997.

Stewart, GW. Matrix Algorithms Volume 2: Eigensystems. Philadelphia, PA: Society for Industrial and Applied Mathematics; 2001.

Bowerman, BL, O`Connell, RT. Linear Statistical Models: An Applied Approach. Duxbury Classic Series. 2nd ed. Pacific Grove, CA: Brooks/Cole; 1990.

Small, CG, Wang, J. Numerical Methods for Nonlinear Estimating Equations. Oxford Statistical Science Series. Oxford: Oxford University Press; 2003.

Nocedal, J, Wright, SJ. Numerical Optimization. Springer Series in Operations Research and Financial Engineering. 2nd ed. New York: Springer; 2006.

Quarteroni, A, Sacco, R, Saleri, F. Numerical Mathematics. Texts in Applied Mathematics. 2nd ed. New York: Springer; 2006.

Chen, S, Doolen, GD. On the computation of the probability density function of *α*‐stable distributions. Math Model Anal 2005:333–341.

Shampine, LF, Gladwell, I, Thompson, S. Solving ODE`s with Matlab. New York: Cambridge University Press; 2003.

Thomas, JW. Numerical Partial Differential Equations: Finite Difference Methods. Texts in Applied Mathematics. New York: Springer; 1995.

Thomas, JW. Numerical Partial Differential Equations: Conservation Laws and Elliptic Equations. Texts in Applied Mathematics. New York: Springer; 1999.

Hogg, RV, Tanis, E. Probability and Statistical Inference. 8th ed. New York: Macmillan; 2009.

Dongarra, J, Foster, I, Fox, G, Grop, W, Kennedy, K, Torczon, L, White, A. Sourcebook of Parallel Computing. San Francisco, CA: Morgan Kaumann; 2003.

Strickwerda, JC. Finite Difference Schemes and Partial Differential Equations. Philadelphia, PA: Society for Industrial and Applied Mathematics; 2004.

Leveque, RJ. Finite Volume Methods for Hyberbolic Problems. New York: Cambridge University Press; 2002.

Hughes, TJR. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Mineola, NY: Dover Publications; 2000.

Kopriva, DA. Implementing Spectral Methods for Partial Differential Equations: Algorithms for Scientists and Engineers. Scientific Computation. New York: Springer; 2009.

Cantú‐Paz, E. A survey of parallel genetic algorithms. Calculateurs Paralleles 1998, 10.

Fonseca, CM, Fleming, PJ. Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization. In *Genetic Algorithms: Proceedings of the Fifth International Conference*, July 1993.

van Laarhoven, PJM, Aarts, EHL. Simulated Annealing: Theory and Applications. Dordrecht, The Netherlands: Kluwer Academic Publishers; 2010.

Kulkarni, AD. Artificial Neural Networks for Image Understanding. New York: Van Nostrand Reinhold; 1994.

Veelenturf, LPJ. Analysis and Applications of Artificial Neural Networks. Englewood Cliffs, NJ: Prentice Hall; 1995.

Hammersley, JM, Handscomb, DC. Monte Carlo Methods. London and New York: Chapman and Hall; 1964.

Kalos, MH, Whitlock, PA. Monte Carlo Methods, Volume I: Basics. Wiley‐Interscience Publications. New York: John Wiley and Sons; 1986.

Rubenstein, RY. Simulation and the Monte Carlo Method. Wiley Series in Probability and Mathematical Statistics. New York: John Wiley and Sons; 1981.

Dugan, N, Erkoc, S. Genetic algorithm‐Monte Carlo hybrid geometry optimization method for atomic clusters. Comput Mater Sci 2008, 45:127–132.

Duvigneau, R, Visonneau, M. Hybrid genetic algorithms and artificial neural networks for complex design optimization in cfd. Int J Numer Methods Fluids 2004, 44:1257–1278.

Torczon, V. Multi‐directional search: a direct search algorithm for parallel machines. PhD Thesis, Rice University, 1989.

Torczon, V. On the convergence of the multidirectional search algorithm. SIAM J Optim 1991, 1:123–145.

Dennis, JE, Torczon, V. Direct search methods on parallel machines. SIAM J Optimiz 1991, 1:448–474.

Dongarra, JJ, Sullivan, F. Top ten algorithms of the century. IEEE Comput Sci Eng 2000, 2:22–23.

Shen, C. Rarefied Gas Dynamics: Fundamentals, Simulations and Micro FLows. Heat and Mass Transfer. Berlin: Springer; 2005.

Wang, Q, Gleich, D, Saberi, A, Etemadi, N, Moin, P. A Monte Carlo method for solving unsteady adjoint equations. J Comput Phys 2008, 227:6184–6205.

Forsythe, GE, Leibler, RA. Matrix inversion by a Monte Carlo method. Math Tables Other Aids Comput 1950, 4:127–129.

Mascagni, M, Srinivasan, A. Algorithm 806: SPRNG: a scalable library for pseudorandom number generation. ACM Trans Math Softw 2000, 26:436–461.

Berg, BA. Markov Chain Monte Carlo Simulations and Their Statistical Analysis. Singapore: World Scientific Publishers; 2004.

Sabelfeld, KK. Monte Carlo Methods in Boundary Value Problems. New York: Springer‐Verlag, Berlin, Heidelberg; 1991.

Marlow, WH. Mathematics for Operations Research. New York: Dover Publications; 1978.

Taha, HA. Operations Research: An Introduction. 9th ed. Upper Saddle River, NJ: Prentice Hall; 2010.

Black, F, Scholes, M. The pricing of options and corporate liabilities. J Polit Econ 1973, 81:637–654.

Fall, CP, Marland, ES, Wagner, JM, Tyson, JJ. Computational Cell Biology. Interdisciplinary Applied Mathematics: Mathematical Biology. New York: Springer‐Verlag; 2002.

Duan, J‐C, Härdle, WK, Gentle, JE. Handbook of Computational Finance. Springer Handbooks of Computational Statistics. Berlin: Springer‐Verlag; 2012.

Einstein, A. Investigations on the Theory of the Brownian Movement. New York, NY: Dover Publications; 1956. English Translation of the original 1926 paper.

Chow, P‐L. Stochastic Partial Differential Equations. Applied Mathematics and Nonlinear Science Series. Boca Raton, FL: CRC Press; 2007.

Kloeden, PE, Platen, E. A survey of numerical methods for stochastic differential equations. Stoch Hydrol Hydraul 1989, 3:155–178.

Schürmann, J. Pattern Classification: A Unified View of Statistical and Neural Approches. New York: John Wiley and Sons; 1996.

Abu‐Mostafa, YS, Magdon‐Ismail, M, Lin, H‐T. *Learning From Data: A Short Course*, 2012. Available at: AMLbook.com.

Bell, RM, Bennett, J, Koren, Y, Volinsky, C. The million dollar programming prize. *IEEE Spectrum* 2009, 46:28–33.

Netflix Prize Official Website. Available at: http://www.netflixprize.com/. (Accessed December 22, 2013).

Kundu, PK, Cohen, IM. Fluid Mechanics. 3rd ed. San Diego, CA: Elsevier Academic Press; 2004.

Chen, S, Doolen, GD. Lattice boltzmann method for fluid flows. Annu Rev Fluid Mech 1998, 30:329–364.

Bao, W, Jin, S. The random projection method for hyperbolic conservation laws with stiff reaction terms. J Comput Phys 2000, 163:216–248.

Research Group of Professor Paul J. Atzberger. Available at: http://www.math.ucsb.edu/atzberg/. (Accessed March 11, 2014).

Radhakrishnan Lab Research Group Webpage. Available at: https://fling.seas.upenn.edu/∼biophys/dynamic/wordpress/. (Accessed March 11, 2014).

The Society for Industrial and Applied Mathematics. Available at: http://www.siam.org. (Accessed December 22, 2013).

Foundations of Computational Mathematics. Available at: http://focm‐society.org/. (Accessed December 22, 2013).

International Association for Statistical Computing. Available at: http://www.iasc‐isi.org/. (Accessed December 22, 2013).

American Statistical Association Statistical Computing Section. Available at: http://stat‐computing.org/. (Accessed December 22, 2013).