Kleijnen, JPC. Design and Analysis of Simulation Experiments. 1st ed. New York: Springer; 2007.

Tøndel, K, Niederer, SA, Land, S, Smith, NP. Insight into model mechanisms through automatic parameter fitting: a new methodological framework for model development. BMC Syst Biol 2014, 8:59.

Tøndel, K, Vik, JO, Martens, H, Indahl, UG, Smith, N, Omholt, SW. Hierarchical multivariate regression‐based sensitivity analysis reveals complex parameter interaction patterns in dynamic models. Chemometr Intell Lab 2013, 120:25–41. doi:10.1016/j.chemolab.2012.10.006.

Martens, H, Veflingstad, S, Plahte, E, Martens, M, Bertrand, D, Omholt, S. The genotype‐phenotype relationship in multicellular pattern‐generating models ‐ the neglected role of pattern descriptors. BMC Syst Biol 2009, 3:87. doi:10.1186/1752‐0509‐3‐87.

Isaeva, J, Martens, M, Sæbø, S, Wyller, JA, Martens, H. The modelome of line curvature: many nonlinear models approximated by a single bi‐linear metamodel with verbal profiling. Phys Nonlinear Phenom 2012, 241:877–889. doi:10.1016/j.physd.2012.02.002.

Isaeva, J, Sæbo, S, Wyller, JA, Nhek, S, Martens, H. Fast and comprehensive fitting of complex mathematical models to massive amounts of empirical data. Chemometr Intell Lab 2012, 117:13–21. doi:10.1016/j.chemolab.2011.04.009.

Isaeva, J, Sæbø, S, Wyller, JA, Wolkenhauer, O, Martens, H. Nonlinear modelling of curvature by bi‐linear metamodelling. Chemometr Intell Lab 2012, 117:2–12. doi:10.1016/j.chemolab.2011.04.010.

Tøndel, K, Indahl, UG, Gjuvsland, AB, Omholt, SW, Martens, H. Multi‐way metamodelling facilitates insight into the complex input‐output maps of nonlinear dynamic models. BMC Syst Biol 2012, 6:88.

Conti, S, O`Hagan, A. Bayesian emulation of complex multi‐output and dynamic computer models. J Stat Plan Inference 2010, 140:640–651. doi:10.1016/j.jspi.2009.08.006.

Cacuci, DG. Sensitivity and Uncertainty Analysis: Theory, vol. 1. 1st ed. Boca Raton, FL: Chapman and Hall/CRC; 2003.

Campbell, K, McKay, MD, Williams, BJ. Sensitivity analysis when model outputs are functions. Reliab Eng Syst Saf 2006, 91:1468–1472. doi:10.1016/j.ress.2005.11.049.

Wold, S, Martens, H, Wold, H. The Multivariate Calibration Method in Chemistry Solved by the PLS Method. Lecturer Notes in Mathematics. Matrix Pencils. Heidelberg: Springer‐Verlag; 1983, 286–293.

Abdi, H. Partial least squares regression and projection on latent structure regression (PLS regression). WIREs: Comput Stat 2010, 2:97–106. doi:10.1002/wics.51.

Esposito Vinzi, V, Russolillo, G. Partial least squares algorithms and methods. WIREs: Comput Stat 2013, 5:1–19. doi:10.1002/wics.1239.

Favoreel, W, De Moor, B, Van Overschee, P. Subspace state space system identification for industrial processes. J Process Control 2000, 10:149–155. doi:10.1016/S0959‐1524(99)00030‐X.

Sobie, EA. Parameter sensitivity analysis in electrophysiological models using multivariable regression. Biophys J 2009, 96:1264–1274. doi:10.1016/j.bpj.2008.10.056.

Martens, H, Måge, I, Tøndel, K, Isaeva, J, Høy, M, Sæbø, S. Multi‐level binary replacement (MBR) design for computer experiments in high‐dimensional nonlinear systems. J Chemometr 2010, 24:748–756.

Tøndel, K, Gjuvsland, AB, Måge, I, Martens, H. Screening design for computer experiments: metamodelling of a deterministic mathematical model of the mammalian circadian clock. J Chemometr 2010, 24:738–747.

Sarkar, AX, Sobie, EA. Regression analysis for constraining free parameters in electrophysiological models of cardiac cells. PLoS Comput Biol 2010, 6:9. doi:10.1371/journal.pcbi.1000914.

Tøndel, K, Indahl, UG, Gjuvsland, AB, Vik, JO, Hunter, P, Omholt, SW, Martens, H. Hierarchical cluster‐based partial least squares regression is an efficient tool for metamodelling of nonlinear dynamic models. BMC Syst Biol 2011, 5:90.

Mansi, T, Voigt, I, Mengue, EA, Ionasec, R, Georgescu, B, Noack, T, Seeburger, J, Comaniciu, D. Towards patient‐specific finite‐element simulation of MitralClip procedure. In: Fichtinger, G, Martel, A, Peters, T, eds. Medical Image Computing and Computer‐Assisted Intervention ‐ MICCAI 2011. Springer Berlin Heidelberg: 2011, 452–459.

Mansi, T, Georgescu, B, Hussan, J, Hunter, PJ, Kamen, A, Comaniciu, D. Data‐driven reduction of a cardiac myofilament model. In: Ourselin, S, Rueckert, D, Smith, N, eds. Functional Imaging and Modeling of the Heart. Berlin, Germany: Springer Berlin Heidelberg; 2013, 232–240.

Zettinig, O, Mansi, T, Georgescu, B, Kayvanpour, E, Sedaghat‐Hamedani, F, Amr, A, Haas, J, Steen, H, Meder, B, Katus, H, et al. Fast data‐driven calibration of a cardiac electrophysiology model from images and ECG. In: Mori, K, Sakuma, I, Sato, Y, et al., eds. Medical Image Computing and Computer Assisted Intervention – MICCAI 2013. Berlin, Germany: Springer Berlin Heidelberg; 2013, 1–8.

Zettinig, O, Mansi, T, Georgescu, B, Rapaka, S, Kamen, A, Haas, J, Frese, KS, Sedaghat‐Hamedani, F, Kayvanpour, E, Amr, A, et al. From medical images to fast computational models of heart electromechanics: an integrated framework towards clinical Use. In: Ourselin, S, Rueckert, D, Smith, N, eds. Functional Imaging and Modeling of the Heart. Berlin, Germany: Springer Berlin Heidelberg; 2013, 249–258.

Manfren, M, Aste, N, Moshksar, R. Calibration and uncertainty analysis for computer models – a meta‐model based approach for integrated building energy simulation. Appl Energy 2013, 103:627–641. doi:10.1016/j.apenergy.2012.10.031.

Smith, NP, Crampin, EJ, Niederer, SA, Bassingthwaighte, JB, Beard, DA. Computational biology of cardiac myocytes: proposed standards for the physiome. J Exp Biol 2007, 210:1576–1583. doi:10.1242/jeb.000133.

Niederer, SA, Fink, M, Noble, D, Smith, NP. A meta‐analysis of cardiac electrophysiology computational models. Exp Physiol 2009, 94:486–495. doi:10.1113/expphysiol.2008.044610.

Hughey, JJ, Lee, TK, Covert, MW. Computational modeling of mammalian signaling networks. WIREs: Syst Biol Med 2010, 2:194–209. doi:10.1002/wsbm.52.

Gutenkunst, RN, Waterfall, JJ, Casey, FP, Brown, KS, Myers, CR, Sethna, JP. Universally sloppy parameter sensitivities in systems biology models. PLoS Comput Biol 2007, 3:e189. doi:10.1371/journal.pcbi.0030189.

Vilela, M, Vinga, S, Maia, MA, Voit, EO, Almeida, JS. Identification of neutral biochemical network models from time series data. BMC Syst Biol 2009, 3:47. doi:10.1186/1752‐0509‐3‐47.

Cacuci, DG, Ionescu‐Bujor, M, Navon, IM. Sensitivity and Uncertainty Analysis: Applications to Large‐Scale Systems, vol. 2. 1st ed. Boca Raton, FL: CRC Press; 2005.

Saltelli, A, Ratto, M, Andres, T, Campolongo, F, Cariboni, J, Gatelli, D, Saisana, M, Tarantola, S. Global Sensitivity Analysis. The Primer. Chichester, UK: Wiley‐Interscience; 2008.

Lloyd, CM, Lawson, JR, Hunter, PJ, Nielsen, PF. The CellML model repository. Bioinformatics 2008, 24:2122–2123. doi:10.1093/bioinformatics/btn390.

Fenner, J, Brook, B, Clapworthy, G, Coveney, P, Feipel, V, Gregersen, H, Hose, D, Kohl, P, Lawford, P, McCormack, K, et al. The EuroPhysiome, STEP and a roadmap for the virtual physiological human. Philos Trans R Soc Math Phys Eng Sci 2008, 366:2979–2999. doi:10.1098/rsta.2008.0089.

Clapworthy, G, Viceconti, M, Coveney, PV, Kohl, P. The virtual physiological human: building a framework for computational biomedicine I. Editorial. Philos Transact A Math Phys Eng Sci 2008, 366:2975–2978. doi:10.1098/rsta.2008.0103.

Hunter, P, Coveney, PV, de Bono, B, Diaz, V, Fenner, J, Frangi, AF, Harris, P, Hose, R, Kohl, P, Lawford, P, et al. A vision and strategy for the virtual physiological human in 2010 and beyond. Philos Trans R Soc Math Phys Eng Sci 2010, 368:2595–2614. doi:10.1098/rsta.2010.0048.

Hucka, M, Finney, A, Sauro, HM, Bolouri, H, Doyle, JC, Kitano, H, Arkin, AP, Bornstein, BJ, Bray, D, Cornish‐Bowden, A, et al. The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 2003, 19:524–531. doi:10.1093/bioinformatics/btg015.

Hunter, PJ, Borg, TK. Integration from proteins to organs: the physiome project. Nat Rev Mol Cell Biol 2003, 4:237–243. doi:10.1038/nrm1017.

Crampin, EJ, Halstead, M, Hunter, P, Nielsen, P, Noble, D, Smith, N, Tawhai, M. Computational physiology and the Physiome Project. Exp Physiol 2004, 89:1–26.

Bassingthwaighte, J, Hunter, P, Noble, D. The cardiac physiome: perspectives for the future. Exp Physiol 2009, 94:597–605. doi:10.1113/expphysiol.2008.044099.

Hunter, P. Modeling Human Physiology: The IUPS/EMBS Physiome Project. 2010. Available at: http://researchspace.auckland.ac.nz/handle/2292/239. (Accessed August 18, 2010).

Kohl, P, Coveney, P, Clapworthy, G, Viceconti, M. The virtual physiological human. Editorial. Philos Transact A Math Phys Eng Sci 2008, 366:3223–3224. doi:10.1098/rsta.2008.0102.

Kohl, P, Noble, D. Systems biology and the virtual physiological human. Mol Syst Biol 2009, 5:292. doi:10.1038/msb.2009.51.

Kohl, P, Viceconti, M. The virtual physiological human: computer simulation for integrative biomedicine II. Philos Transact A Math Phys Eng Sci 2010, 368:2837–2839. doi:10.1098/rsta.2010.0098.

Lawford, PV, Narracott, AV, McCormack, K, Bisbal, J, Martin, C, Brook, B, Zachariou, M, Kohl, P, Fletcher, K, Diaz‐Zuccarini, V. Virtual physiological human: training challenges. Philos Trans R Soc Math Phys Eng Sci 2010, 368:2841–2851. doi:10.1098/rsta.2010.0082.

Niederer, SA, Kerfoot, E, Benson, AP, Bernabeu, MO, Bernus, O, Bradley, C, Cherry, EM, Clayton, R, Fenton, FH, Garny, A, et al. Verification of cardiac tissue electrophysiology simulators using an N‐version benchmark. Philos Trans R Soc Math Phys Eng Sci 2011, 369:4331–4351. doi:10.1098/rsta.2011.0139.

Friedman, LW. The Simulation Metamodel. Norwell, MA: Kluwer Academic Publishers; 1996.

Emmerich, M, Giotis, A, Özdemir, M, Bäck, T, Giannakoglou, K. Metamodel‐Assisted Evolution Strategies. In: Parallel Problem Solving from Nature, vol. VII. Berlin, Germany: Springer; 2002, 361–370.

Meckesheimer, M, Booker, AJ, Barton, RR, Simpson, TW. Computationally inexpensive metamodel assessment strategies. AIAA J 2002, 40:2053–2060.

Tu, J. Cross‐validated multivariate metamodeling methods for physics‐based computer simulations. In: *Proceedings of the IMAC‐XXI*, Kissimmee, Florida, 2003.

Hendrickx, W, Dhaene, T. In: *The Fourth International Workshop on Multidimensional Systems ‐ NDS*, Wuppertal, Germany, 2005, 212–216.

Viana, FAC, Gogu, C, Haftka, RT. Making the most out of surrogate models: tricks of the trade. In: *ASME 2010 International Design Engineering Technical Conference IDETC/CIE*, Montreal, Canada, 2010.

Boopathy, K, Rumpfkeil, MP. A multivariate interpolation and regression enhanced kriging surrogate model. In: *21st AIAA Fluid Dynamics Conference*, San Diego, USA, 2013.

Shih, DT, Kim, SB, Chen, VCP, Rosenberger, JM, Pilla, VL. Efficient computer experiment‐based optimization through variable selection. Ann Oper Res 2014, 216:287–305. doi:10.1007/s10479‐012‐1129‐y.

Batmaz, I, Tunali, S. Small response surface designs for metamodel estimation. Eur J Oper Res 2003, 145:455–470.

Kalos, MH, Whitlock, PA. Monte Carlo Methods Volume 1: Basics. 1st ed. New York: John Wiley %26 Sons, Inc.; 1986.

Liu, JS. Monte Carlo Strategies in Scientific Computing. New York: Springer; 2008.

Santner, TJ, Williams, BJ, Notz, W. The Design and Analysis of Computer Experiments. New York: Springer; 2003.

McKay, MD, Los, ASL, Beckman, RJ, Conover, WJ. Comparison the three methods for selecting values of input variable in the analysis of output from a computer code. Technometrics 1979, 21:239–245.

Martens, H. Non‐linear multivariate dynamics modelled by PLSR. In: *6th International Conference on Partial Least Squares and Related Methods*. Publishing House of Electronics Industry, Beijing, 2009, 139–144.

Martens, H, Tøndel, K, Tafintseva, V, Kohler, A, Plahte, E, Vik, JO, Gjuvsland, AB, Omholt, SW. PLS‐based multivariate metamodeling of dynamic systems. In: Abdi, H, Chin, WW, Vinzi, VE, et al., eds. New Perspectives in Partial Least Squares and Related Methods. New York: Springer; 2013, 3–30.

Allen, TT, Yu, L, Schmitz, J. An experimental design criterion for minimizing meta‐model prediction errors applied to die casting process design. J R Stat Soc Ser C Appl Stat 2003, 52:103–117.

Wang, H, Li, E, Li, GY, Zhong, ZH. Development of metamodeling based optimization system for high nonlinear engineering problems. Adv Eng Softw 2008, 39:629–645. doi:10.1016/j.advengsoft.2007.10.001.

Xiong, F, Xiong, Y, Chen, W, Yang, S. Optimizing Latin hypercube design for sequential sampling of computer experiments. Eng Optim 2009, 41:793–810. doi:10.1080/03052150902852999.

Martens, H, Stark, E. Extended multiplicative signal correction and spectral interference subtraction: new preprocessing methods for near infrared spectroscopy. J Pharm Biomed Anal 1991, 9:625–635.

Kohler, A, Sulé‐Suso, J, Sockalingum, GD, Tobin, M, Bahrami, F, Yang, Y, Pijanka, J, Dumas, P, Cotte, M, van Pittius, DG, et al. Estimating and correcting Mie scattering in synchrotron‐based microscopic fourier transform infrared spectra by extended multiplicative signal correction. Appl Spectrosc 2008, 62:259–266. doi:10.1366/000370208783759669.

Kohler, A, Zimonja, M, Segtnan, V, Martens, H. Normal variate, multiplicative signal correction and extended multiplicative signal correction preprocessing in biospectroscopy. In: Brown, S, Tauler, R, Walcz, B, eds. Comprehensive Chemometrics. Oxford: Elsevier; 2009, 139–162.

Martens, H, Næs, T. Multivariate Calibration. Chichester: John Wiley and Sons; 1989.

Wold, S, Ruhe, A, Wold, H, Dunn, WJ. The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses. SIAM J Sci Stat Comput 1984, 5:735–743.

Martens, H, Martens, M. NIR spectroscopy ‐ applied philosophy. Infra‐red spectroscopy. In: Hildrum, KI, Isaksson, T, Naes, T, Tandberg, A, eds. Bridging Gap Data Analisis and NIR Applications. Chichester: Ellis Horwood; 1992, 1–10.

Martens, H, Martens, M. Multivariate Analysis of Quality: An Introduction. 1st ed. Chichester: John Wiley %26 Sons Ltd.; 2001.

Martens, H. The informative converse paradox: windows into the unknown. Chemometr Intell Lab 2011, 107:124–138. doi:16/j.chemolab.2011.02.007.

Malinowski, K, McAvoy, TJ, George, R, Dieterich, S, D`Souza, WD. Maintaining tumor targeting accuracy in real‐time motion compensation systems for respiration‐induced tumor motion. Med Phys 2013, 40:071709. doi:10.1118/1.4808119.

Vik, JO, Gjuvsland, AB, Li, L, Tøndel, K, Niederer, SA, Smith, N, Hunter, PJ, Omholt, SW. Genotype‐phenotype map characteristics of an in silico heart cell. Front Genomic Physiol 2011, 2:106. doi:10.3389/fphys.2011.00106.

Tafintseva, V, Tøndel, K, Ponosov, A, Martens, H. Global structure of sloppiness in a nonlinear model. J Chemometr 2014, doi:10.1002/cem.2651.

Walczak, B, Massart, DL. Local modelling with radial basis function networks. Chemometr Intell Lab 2000, 50:179–198. doi:10.1016/S0169‐7439(99)00056‐8.

Czekaj, T, Wu, W, Walczak, B. About kernel latent variable approaches and SVM. J Chemometr 2005, 19:341–354. doi:10.1002/cem.937.

Zerzucha, P, Daszykowski, M, Walczak, B. Dissimilarity partial least squares applied to non‐linear modeling problems. Chemometr Intell Lab 2012, 110:156–162. doi:10.1016/j.chemolab.2011.11.005.

Zerzucha, P, Walczak, B. Concept of (dis)similarity in data analysis. TrAC Trends Anal Chem 2012, 38:116–128. doi:10.1016/j.trac.2012.05.005.

Bro, R. PARAFAC. Tutorial and applications. Chemometr Intell Lab 1997, 38:149–171. doi:16/S0169‐7439(97)00032‐4.

Bro, R. Multiway calibration. Multilinear PLS. J Chemometr 1996, 10:47–61. doi:10.1002/(SICI)1099‐128X(199601)10:1%3C47::AID‐CEM400%3E3.0.CO;2‐C.

Nordbø, Ø. Constructing and exploring the parameter‐to‐phenotype map of the passively inflated ventricle. PhD Thesis, Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, 2013.

Martens, HA, Dardenne, P. Validation and verification of regression in small data sets. Chemometr Intell Lab 1998, 44:99–121. doi:10.1016/S0169‐7439(98)00167‐1.

Wu, T, Martens, H, Hunter, P, Mithraratne, K. Emulating facial biomechanics using multivariate partial least squares surrogate models. Int J Numer Methods Biomed Eng 2014, doi:10.1002/cnm.2646.

Wu, T, Martens, H, Hunter, P, Mithraratne, K. Estimating muscle activation patterns using a surrogate model of facial biomechanics. In: *2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)*, Osaka, Japan, 2013, 7172–7175.

Chuili, S, Hahn, J (2005) On the use of partial least squares (PLS) and balancing for nonlinear model reduction. IEEE, 2572–2577.

Gubskaya, AV, Kholodovych, V, Knight, D, Kohn, J, Welsh, WJ. Prediction of fibrinogen adsorption for biodegradable polymers: integration of molecular dynamics and surrogate modeling. Polymer 2007, 48:5788–5801. doi:10.1016/j.polymer.2007.07.007.

Wei, Z, Wei, W, Guofeng, X. Non‐Linear Partial Least Squares Response Surface Method for Structural Reliability Analysis. Harbin, China: Harbin Institute of Technology, HIT; 2012.

Gauchi, J‐P. PLS‐based global sensitivity analysis for numerical models. An application to aircraft infrared signatures. In: The 7th International Conference on Partial Least Squares and Related Methods. Houston, TX: Springer Verlag; 2012, 1–7.

Tøndel, K. Prediction of homology model quality with multivariate regression. J Chem Inf Comput Sci 2004, 44:1540–1551. doi:10.1021/ci049924m.

Lehuta, S, Mahévas, S, Petitgas, P, Pelletier, D. Combining sensitivity and uncertainty analysis to evaluate the impact of management measures with ISIS–fish: marine protected areas for the Bay of Biscay anchovy (Engraulis encrasicolus) fishery. ICES J Mar Sci 2010, 67:1063–1075. doi:10.1093/icesjms/fsq002.

Martens, M, Veflingstad, SR, Plahte, E, Bertrand, D, Martens, H. A sensory scientific approach to visual pattern recognition of complex biological systems. Food Qual Prefer 2010, 21:977–986. doi:10.1016/j.foodqual.2010.04.013.

Berglund, A, Wold, S. INLR, implicit non‐linear latent variable regression. J Chemometr 1997, 11:141–156. doi:10.1002/(SICI)1099‐128X(199703)11:2%3C141::AID‐CEM461%3E3.0.CO;2‐2.

Westad, F, Diepold, K, Martens, H. QR‐PLSR: Reduced‐rank regression for high‐speed hardware implementation. J Chemometr 1996, 10:439–451. doi:10.1002/(SICI)1099‐128X(199609)10:5/6%3C439::AID‐CEM443%3E3.0.CO;2‐C.

Srinivasan, BV, Schwartz, WR, Duraiswami, R, Davis, L Partial least squares on graphical processor for efficient pattern recognition. Computer Science Department, University of Maryland; CS‐TR‐4968, 2010.

Hassani, S, Martens, H, Qannari, EM, Hanafi, M, Borge, GI, Kohler, A. Analysis of ‐ omics data: graphical interpretation ‐ and validation tools in multi‐block methods. Chemometr Intell Lab 2010, 104:140–153. doi:10.1016/j.chemolab.2010.08.008.

Næs, T, Tomic, O, Mevik, B‐H, Martens, H. Path modelling by sequential PLS regression. J Chemometr 2011, 25:28–40. doi:10.1002/cem.1357.

Abdi, H, Williams, LJ. Partial least squares methods: partial least squares correlation and partial least square regression. Methods Mol Biol 2013, 930:549–579. doi:10.1007/978‐1‐62703‐059‐5_23.

Klompstra, MB, Bakker, GJ, Blom, HAP. Sensitivity analysis in Monte Carlo simulation based rare event estimation. Safety, Complexity and Responsibility based design and validation of highly automated Air Traffic Management; EU project no. TREN/07/FP6AE/S07.71574/037180 IFLY Deliverable D7.2f, Version 1.3, 2010.

De Jong, S. SIMPLS: An alternative approach to partial least squares regression. Chemometr Intell Lab 1993, 18:251–263. doi:10.1016/0169‐7439(93)85002‐X.

Andersson, M. A comparison of nine PLS1 algorithms. J Chemometr 2009, 23:518–529. doi:10.1002/cem.1248.

Golub, G, Kahan, W. Calculating the singular values and pseudo‐inverse of a matrix. J Soc Ind Appl Math Ser B Numer Anal 1965, 2:205–224.