Holland, PW, Laskey, KB, Leinhardt, S. Stochastic blockmodels: first steps. Social Netw 1983, 5:109–137.

Salter‐Townshend, M, White, A, Gollini, I, Murphy, T. Review of statistical network analysis: models, algorithms, and software. Stat Anal Data Mining 2012, 5:243–264.

Coppersmith, G, Priebe, C. Vertex nomination via content and context. *arXiv:1201.4118v1*, 2012.

Resnick, P, Varian, H. Recommender systems. Commun ACM 1997, 40:56–58.

Hoff, P, Raftery, A, Handcock, M. Latent space approaches to social network analysis. J Am Stat Assoc 2002, 97:1090–1098.

Nowicki, K, Snijders, T. Estimation and prediction for stochastic blockstructures. J Am Stat Assoc 2001, 96:1077–1087.

Sussman, DL, Tang, M, Priebe, CE. Consistent latent position estimation and vertex classification for random dot product graphs. IEEE Trans Pattern Anal Mach Intell 2014, 36:48–57.

Tang, M, Sussman, DL, Priebe, CE. Universally consistent vertex classification for latent positions graphs. Ann Stat 2013, 41:1406–1430.

Lee, N, Leung, T, Priebe, C. Random graphs based on self‐exciting messaging activities, 2011.

Marchette, D, Priebe, C, Coppersmith, G. Vertex nomination via attributed random dot product graphs. In: *Proceedings of the 57th ISI World Statistics Congress*, Vol. 6, 16, 2011.

Nickel, C. Random dot product graphs: a model for social networks. PhD Thesis, Johns Hopkins University, 2006.

Young, S, Scheinerman, E. Random dot product graph models for social networks. Workshop on *Algorithms and Models for the Web‐graph*, 2007, 138–149.

Priebe, C, Conroy, J, Marchette, D, Park, Y. Scan statistics on enron graphs. Comput Math Organ Theory 2005, 11:229–247.

Priebe, C, Park, Y, Marchette, D, Conroy, J, Grothendieck, J, Gorin, A. Statistical inference on attributed random graphs: fusion of graph features and content: an experiment on time series of enron graphs. Comput Stat Data Anal 2010, 54:1766–1776.

Grothendieck, J, Priebe, C, Gorin, A. Statistical inference on attributed random graphs: fusion of graph features and content. Comput Stat Data Anal 2010, 54:1777–1790.

Sun, M, Tang, M, Priebe, C. A comparison of graph embedding methods for vertex nomination. In: *2012 11th International Conference on Machine Learning and Applications (ICMLA)*, IEEE, Volume 1, 2012, 398–403.

Coppersmith, G. Vertex nomination. WIREs Comput Stat 2014, 6:144–153.

Fishkind, DE, Lyzinski, V, Pao, H, Chen, L, Priebe, CE. Vertex nomination schemes for membership prediction. *arXiv preprint arXiv:1312.2638*, 2013.

Qi, G, Aggarwal, C, Qi, T, Ji, H, Huang, T. Exploring context and content links in social media: a latent space method. IEEE Trans Pattern Anal Mach Intell 2012, 34:850–862.

Manning, CD, Raghavan, P, Schütze, H. Introduction to Information Retrieval, vol. 1. Cambridge: Cambridge University Press; 2008.

Gelman, A, Rubin, DB. Inference from iterative simulation using multiple sequences. Statistical Sci 1992, 7:457–472.

Botev, Z, Grotowski, J, Kroese, D. Kernel density estimation via diffusion. Ann Stat 2010, 38:2916–2957.

Park, L. Bootstrap confidence intervals for mean average precision. In: *Proceedings of the Fourth ASEARC Conference*, 2011, 51–54.

Efron, B. Better bootstrap confidence intervals. J Am Stat Assoc 1987, 82:171–185.

Zhang, D, Gatica‐Perez, D, Roy, D, Bengio, S. Modeling interactions from email communication. In: *2006 I.E. International Conference on Multimedia and Expo*, IEEE, 2006, 2037–2040.

Berry, MW, Browne, M, Signer, B. Topic annotated enron email data set. Philadelphia: Linguistic Data Consortium; 2001.

Aicher, C, Jacobs, AZ, Clauset, A. Learning latent block structure in weighted networks. J Complex Netw 2015, 3:221–248.