Diday,, E. Introduction à l`approche symbolique en analyse des données. Premières journées Symbolique‐Numerique. Workshop. CEREMADE Laboratory, 1987, Université Paris‐Dauphine, France, 21, 56.

Diday, E. The symbolic approach in clustering and related methods of data analysis: the basic choices. In: Bock, HH, ed. *Proceedings of IFCS’87 on Classification and Related Methods of Data Analysis*, Amsterdam, North Holland, 1988, 673–684.

Diday, E. Probabilist, possibilist and belief objects for knowledge analysis. Ann Oper Res 1995, 55:227–276.

Afonso, F, Diday, E, Badez, N, Genest, Y. Symbolic data analysis of complex data: application to nuclear power plant. In: *COMPSTAT’2010*, Paris, 2010.

Afonso, F, Diday, E, Badez, N, Genest, Y. Use of symbolic data analysis for structural health monitoring applications. In: *Second International Symposium on Life‐Cycle Civil Engineering, IALCCE’2010*, October 27–30, 2010. Taipei, Taiwan.

Laaksonen, S. Chapter 22: people`s life values and trust components in Europe—symbolic data analysis for 20–22 countries. In: Diday, E, Noirhomme‐Fraiture, M, eds. Symbolic Data Analysis and the SODAS Software. Chichester: Wiley %26 Sons; 2008, 405–419.

Laaksonen, S. The survey as a basis for symbolic data analysis. In: Carlson, M, Nyquist, H, Villani, M, eds. Official Statistics, Methodology and Applications in Honour of Daniel Thorburn. Stockholm, Sweden: Stockholm University; 2010, 15–28. Available at: officialstatistics.wordpress.com.

Afonso, F, Laaksonen, S. Analyzing European Social Survey data using symbolic data methods and Syrokko software. In: RNTI Special Issue « en l`honneur des travaux de Monique Noirhomme‐Fraiture: Analyse de données et Visualisation ». *RNTI* 2015, 89–100.

Korenjak‐Černe, S, Kejžar, N, Batagelj, V. A weighted clustering of population pyramids for the world`s countries, 1996, 2001, 2006. Pop Stud J Demogr 2015, 69:105–120.

Bock, HH, Diday, E. Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical Information from Complex Data. Heidelberg: Springer‐Verlag; 2000, 425. ISBN: 3-540-66619-2.

Billard, L, Diday, E. Symbolic Data Analysis: Conceptual Statistics and Data Mining. Wiley Series in Computational Statistics. Chichester: Wiley; 2006, 321. ISBN: 0-470-09016-2.

Diday, E, Noirhomme‐Fraiture, M. Symbolic Data Analysis and the SODAS software. Chichester: Wiley; 2008. doi:978-0-470-01883-5.

Billard, L, Douzal‐Chouakria, A, Diday, E. Symbolic principal components for interval‐valued observations. Stat Anal Data Mining 2011, 4:229–246.

Guan, R, Lechevallier, Y, Saporta, G, Wang, H. Advances in Theory and Applications of High Dimensional and Symbolic Data Analysis, vol. E25. Hermann, MO: RNTI; 2013.

Brito, P, Duarte Silva, AP, Dias, JG. Probabilistic clustering of interval data. Intell Data Anal 2015, 19:293–313.

Brito, P, Noirhomme‐Fraiture, M, Arroyo, J. Special issue on symbolic data analysis. Editorial. Adv Data Anal Classif 2015, 9:1–4.

Su, S‐F, Pedrycz, W, Hong, T‐P, De Carvalho, AT. Special issue on granular/symbolic data processing. IEEE Trans Cybern 2016, 344–401.

Kuhn, T. The structure of scientific revolutions. Chicago: University of Chicago Press; 1962.

Aitchison, J. The Statistical Analysis of Compositional Data. London: Chapman and Hall; 1986.

Diday, E. Spatial classification. Discrete Appl Math) 2008, 156:1271–1294.

Diday, E. Des objets de l`Analyse des données à ceux de l`Analyse des connaissances. In: Kodratoff, Y, Diday, E, eds. Induction Symbolic Numerique. Toulouse: CEPADUES; 1991.

Brito, P, Bertrand, P, Cucumel, G, de Carvalho, F, eds. On the analysis of symbolic data. In: Selected Contributions in Data Analysis and Classification. Berlin: Springer; 2007, 13–22.

Billard, L, Diday, E. From the statistics of data to the statistic of knowledge: symbolic data analysis. J Am Stat Assoc 2003, 98:470–487.

Billard, L. Special issue on SDA. ASA Data Sci J 2011, 4:147–246.

Billard, L. Brief overview of symbolic data and analytic issues. Stat Anal Data Mining 2011, 4:149–156.

Noirhomme‐Fraiture, M, Brito, P. Far beyond the classical data models: symbolic data analysis. Stat Anal Data Mining 2012, 4:157–170.

Brito, P. Symbolic data analysis: another look at the interaction of data mining and statistics. Wiley Interdiscip Rev Data Mining Knowl Discov 2014, 4:281–295. doi:10.1002/widm.1133.

Mallat, S. A Wavelet Tour of Signal Processing. San Diego, CA: Academic Press; 1998.

Seck, D. Arbres de décision symboliques, outils de validation et d`aide à l`interprétation. PhD (these de doctorat), Paris‐Dauphine University, France, 2012.

Guinot, C, Malvy, D, Schemann, J‐F, Afonso, F, Haddad, R, Diday, E. Strategies evaluation in environmental conditions by symbolic data analysis: application in medicine and epidemiology to trachoma. Adv Data Anal Classif 2015, 9:107–119.

Leskovec, J, Rajaraman, A, Ullman, JD. Chapter 1: data mining. In: Mining of Massive Datasets. England: Cambridge University Press; 2011, 1–17.

Diday, E, Afonso, F, Haddad, R. The symbolic data analysis paradigm, discriminant discretization and financial application. In: *HDSDA 2013* Conference, Beijing, China. RNTI‐E‐25. Paris: Hermann; 2013, 1–14.

Diday, E. Pouvoir explicatif et discriminant de variables à valeurs diagrammes en bâtons et de tableaux de données symboliques associés. Revue Modulad n° 45, RNTI; In press.

Horn, S, Pesce, AJ, Copeland, BE. A robust approach to reference interval estimation and evaluation. Clin Chem 1998, 44:622–631.

Royall, RM. Model robust confidence intervals using maximum likelihood estimators. Int Stat Rev 1986, 54:221–226.

Lebart, L, Morineau, A, Warwick, KM. Multivariate Descriptive Statistical Analysis. New York: Wiley; 1984.

Birkhoff, G. Lattice Theory, vol. 25. 3rd ed. Providence, RI: AMS Colloquium Publications; 1967. Reprinted 1984.

Diday, E. Introduction à l`analyse des données symboliques. Oper Res Rev 1989, 23:193–236. Also in Rapport de Recherche No. 1074, INRIA, Rocquencourt.

Brito, P. Order structure of symbolic assertion objects. IEEE Trans Knowl Data Eng 1994, 6:5.

Diday, E, Emilion, R. Treillis de Galois maximaux et capacites de Choquet. CR Acad Sci Paris 1997, 325:261–266.

Diday, E, Emilion, R. Maximal and stochastic Galois lattices. Discrete Appl Math 2003, 27:271–284.

Nelsen, RB. An Introduction to Copulas. New‐York: Springer Verlag; 1999.

Diday, E, Vrac, M. Mixture decomposition of distributions by Copulas in the symbolic data analysis framework. Discrete Appl Math 2005, 147:27–41.

Vrac, M, Billard, L, Diday, E, Chédin, A. Copulas analysis of mixture model. Comput Stat 2012, 27:427–457.

Diday, E. Principal component analysis for bar charts and Metabins tables. Stat Anal Data Mining 2013, 6:403–430. doi:10.1002/sam.11188.

Neto, EA, Anjos, UU. Regression model for interval‐valued variables based on copulas. J Appl Stat 2015, 42:2010–2029.

Diday, E, Murthy, N. Symbolic data clustering. In: Wang, J, ed. Encyclopedia of Data Warehousing and Mining. Hershey, NY: Information Science Reference; 2005, 1087–1091.

Emilion, R. Classification et mélanges de processus. CR Acad Sci Paris 2002, 335:189–193.

Soule, A, Salamatian, K, Taft, N, Emilion, R, Papagiannaki, K. Flow classification by histograms. In: *Proceedings of Sigmetrics’04*, New York, 2004.

Soubdhan, T, Emilion, R, Calif, R. Classification of daily solar radiation distributions using a mixture of Dirichlet distributions. Solar Energy 2009, 83:1056–1063.

Calif, R, Emilion, R, Soubdhan, T. Classification of wind speed distributions using a mixture of Dirichlet distributions. Renewable Energy 2011, 36:3091–3097.

Emilion, R. Unsupervised classification of objects described by nonparametric distributions. Stat Anal Data Mining 2012, 388–398.

Bezerra, B, Carvalho, F. Symbolic data analysis tools for recommendation systems. Knowl Inf Syst 2011, 26:385–418. doi:10.1007/s10115-009-0282-3.

Quantin, C, Billard, L, Touati, M, Andreu, N, Cottin, Y, Zeller, M, Afonso, F, Battaglia, G, Seck, D, Le Teuff, G, et al. Classification and regression trees on aggregate data modeling: an application in acute myocardial infarction. J Prob Stat 2011, 2011:19.

Mizuta, M. Study on radiation therapy with distribution valued data. In: Arroyo, J, Maté, C, Brito, P, Noihomme, M, eds. 3rd Workshop in Symbolic Data Analysis. Spain: Universidad Compiutense de Madrid; 2012.

Fablet, C, Diday, E, Bougeard, S, Toque, C, Billard, L. Classification of hierarchical‐structured data with symbolic analysis: application to veterinary epidemiology. In: *COMPSTAT’2010*, Paris, 2010.

Haddad, R, Afonso, F, Diday, E. Approche symbolique pour l`extraction de thématiques: Application à un corpus issu d`appels téléphoniques. In: *actes des XVIIIèmes Rencontres de la Sociéte francophone de Classification*. Université d`Orléans, France; 2011.

García‐Ascanio, C, Maté, C. Electric power demand forecasting using interval time series: a comparison between VAR and iMLP. Energy Policy 2010, 38:715–725.

Emilion, R. Classification of daily solar radiation distributions using a mixture of Dirichlet distributions. Solar Energy 2009, 83:1056–1063.

Han, A, Hong, Y, Lai, KK, Wang, S. Interval time series analysis with an application to the sterling‐dollar exchange rate. J Syst Sci Complex 2008, 21:550–565.

He, LT, Hu, C. Impacts of interval computing on stock market variability forecasting. Comput Econ 2009, 33:263–276.

Long, W, Mok, HMK, Hu, Y, Wang, H. The style and innate structure of the stock markets in China, Pacific‐Basin. Finance J 2009, 17:224–242.

Terraza, V, Toque, C. Mutual Fund Rating: A Symbolic Data Approach. In: Terraza, V, Razafitombo, H, eds. Understanding Investment Funds Insights from Performance and Risk Analysis. Economics %26 Finance Collection. London, UK: The Palgrave Macmillan; 2013.

Bouteiller, V, Toque, C, A, Cherrier, J‐F, Diday, E, Cremona, C. Non‐destructive electrochemical characterizations of reinforced concrete corrosion: basic and symbolic data analysis. Corros Rev 2011, 30:47–62. doi:10.1515/corrrev-2011-002.

Cury, A, Crémona, C, Diday, E. Application of symbolic data analysis for structural modification assessment. Eng Struct J 2010, 32:762–775.

Courtois, A, Genest, G, Afonso, F, Diday, E, Orcesi, A. In service inspection of reinforced concrete cooling towers—EDF`s feedback. In: *IALCCE 2012*, Vienna, Austria, 2012.

Bertrand, P, Goupil, F. Descriptive statistics for symbolic data. In: Bock, H‐H, Diday, E, eds. Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical Information from Complex Data. Berlin: Springer‐Verlag; 2000, 103–124.

Billard, L. Dependencies and variation components of symbolic interval‐valued data. In: Brito, P, Bertrand, P, Cucumel, G, de Carvalho, F, eds. Selected Contributions in Data Analysis and Classification. Berlin: Springer; 2007, 3–12.

Billard, L. Sample covariance functions for complex quantitative data. In: Mituza, M, Nakano, J, eds. Proceedings, World Conferences International Association of Statistical Computing 2008. Tokyo: Yokohama; 2008.

Nagabhushan, P, Kumar, P. Histogram PCA. Adv Neural Netw 2007, 4492:1012–1021.

Verde, R, Irpino, A. Ordinary least squares for histogram data based on wasserstein distance. In: Lechevallier Y, Saporta G, eds, *Procedings of COMPSTAT’2010*. Heidelberg: Physica‐Verlag; 2010, 581–589.

Makosso‐Kallyth, S, Diday, E. Adaptation of interval PCA to symbolic histogram variables. Advances in Data Analysis and Classification. Adv Data Anal Classif 2012, 6:147–159.

Douzal‐Chouakria, A, Billard, L, Diday, E. Principal component analysis for interval‐valued observations. Stat Anal Data Mining 2011, 4:229–246. doi:10.1002/sam.10118.

Cazes, P, Chouakria, A, Diday, E, Schektman, Y. Extension de l`analyse en composantes principales à des données de type intervalle. Rev Stat Appl 1997, XLV:5–24.

Wang, H, Guan, R, Wu, J. CIPCA: complete‐information‐based principal component analysis for interval‐valued data. Neurocomputing 2012, 86:158–169.

Le‐Rademacher, J, Billard, L. Principal component analysis for interval data. Wiley Interdiscip Rev Comput Stat 2012, 4:535–540.

Le‐Rademacher, J, Billard, L. Principal component histograms from interval‐valued observations. Comput Stat 2013, 28:2117–2138.

Kosmelj, K, Le‐Rademacher, J, Billard, L. Symbolic covariance matrix for interval‐valued variables and its application to principal component analysis: a case study. Metodoloski Zvezki No. 11, 2014, 1–20.

Le‐Rademacher, J, Billard, L. Principal component analysis for histogram‐valued data. Adv Data Anal Classif) 2016; 1–25. doi:10.1007/s11634-016-0255-9.

Murillo, JD, Rodrıguez, O, Diday, E, Winberg, S. Generalization of the principal components analysis to histogram data. In: *4th European Conference on Principles and Practice of Knowledge Discovery in Data Bases*, Lyon, France, 12–16 September, 2000.

Cazes, P. Analyse factorielle d`un tableau de lois de probabilité. Rev Stat Appl 2002, 50:5–24.

Wang, H, Chen, M, Li, N, Wang, L. Principal Component Analysis of Modal Interval‐Valued Data with Constant Numerical Characteristics. The Hague, The Netherlands: International Statistical Institute; 2012.

Shimizu, N, Nakano, J. Histograms principal component analysis. In: Arroyo J, Maté C, Brito P, Noihomme M, eds, *3rd Workshop in Symbolic Data Analysis*. Spain: Universidad Compiutense de Madrid; 2012.

Ichino, M. The quantile method for symbolic principal component analysis. Stat Anal Data Mining 2011, 4:184–198.

Billard, L, Diday, E. Regression analysis for interval‐valued data. In: *Data Analysis, Classification, and Related Methods, Proceedings of the Seventh Conference of the International Federation of Classification*. Societies (IFCS00). Namur, Belgium: Springer; 2000, 369–374.

De Carvalho, FAT, Lima Neto, EA, Tenorio, CP. A new method to fit a linear regression model for interval‐valued data. In: KI2004 Advances in Artificial Intelligence. Lecture Notes in Computer Science. Berlin/Heidelberg: Springer‐Verlag; 2004, 295–306.

Wang, H, Guan, R, Wu, J. Linear regression of interval‐valued data based on complete information in hypercubes. J Syst Sci Syst Eng 2012, 21:422–442.

Xu, W. Symbolic data analysis: interval‐valued data regression. PhD Dissertation, University of Georgia, 2010.

Giordani, P. Lasso‐constrained regression analysis for interval‐valued data. Adv Data Anal Classif 2015, 9:5–19.

Irpino, A, Romano, E. Optimal histogram representation of large data sets: Fisher vs piecewise linear approximation. Revue des Nouvelles Technologies de l`Information (RNTI) 2007, E‐9:99–110.

Souza, RMCR, Queiroz, DCF, Cysneiros, FJA. Logistic regression‐based pattern classifiers for symbolic interval data. Pattern Anal Appl 2011, 14:273–282.

Dias, S, Brito, P. Linear regression model with histogram‐valued variables. Stat Anal Data Mining 2011, 8:75–113. doi:10.1002/sam.11260.

Utkin, LV, Coolen, FPA. Interval‐valued regression and classification models in the framework of machine learning. In: *7th International Symposium on Imprecise Probability: Theories and Applications*, Innsbruck, Austria, 2011.

Sinova, B, Colubi, A, Gil, MA, González‐Rodríguez, G. Interval arithmetic‐based simple linear regression between interval data: discussion and sensitivity analysis on the choice of the metric. Inform Sci 2012, 199:109–124.

Cerny, M, Antoch, J, Hladik, M. On the possibilistic approach to linear regression models involving uncertain, indeterminate or interval data. Inform Sci 2013, 244:26–47.

Afonso, F, Billard, L, Diday, E. Symbolic linear regression with taxonomies. In: *Proceedings of the Meeting of the International Federation of Classification Societies (IFCS)*, Chicago, IL. Berlin/Heidelberg: Springer‐Verlag; 2004.

Neto, EA, De Carvalho, FAT. Constrained linear regression models for symbolic interval‐valued variables. Comput Stat Data Anal 2010, 54:333–347.

Lauro, C, Verde, R, Irpino, A. Generalized canonical analysis. In: Diday, E, Noirhomme‐Fraiture, M, eds. Symbolic Data Analysis and the Sodas Software. Chichester: Wiley; 2008, 313–330.

Groenen, PJF, Winsberg, S, Rodriguez, O, Diday, E. I‐Scal: multidimensional scaling of interval dissimilarities. Comput Stat Data Anal 2006, 51:360–378.

Terada, Y, Yadohisa, H. Multidimensional scaling with hyperbox model for percentile dissimilarities. In: Watada, J, Phillips‐Wren, G, Jain, LC, Howlett, RJ, eds. Intelligent Decision Technologies. Berlin/Heidelberg: Springer‐Verlag; 2011, 779–788.

Maia, ALS, De Carvalho, FDAT, Ludermir, TB. Forecasting models for interval‐valued time series. Neurocomputing 2008, 71:3344–3352.

Arroyo, J, Espínola, R, Maté, C. Different approaches to forecast interval time series: a comparison in Finance. Comput Econ 2011, 37:169–191.

Teles, P, Brito, P. Modelling Interval Time Series with Space‐Time Processes. Commun Stat Theory Method 2015, 44:3599–3627.

Arroyo, J, Maté, C. Forecasting histogram time series with k‐nearest neighbors’ methods. Int J Forecast 2009, 25:192–207.

Ciampi, A, Diday, E, Lebbe, J, Perinel, E, Vignes, R. Growing a tree classifier with imprecise data. Pattern Recogn Lett 2000, 21:787–803.

Bravo, M, Garcia‐Santesmases, J. Symbolic Object Description of Strata by Segmentation Trees, Computational Statistics, vol. 15. Heidelberg, Germany: Physica‐Verlag; 2000, 13–24.

Mballo, C, Diday, E. The criterion of Smirnov‐Kolmogorov for binary decision tree: application to interval valued variables. Intell Data Anal 2006, 10:325–341.

Winsberg, S, Diday, E, Limam, M. A tree structured classifier for symbolic class description. In: *Compstat 2006*. Rome, Italy: Physica‐Verlag; 2006.

Afonso, F, Diday, E. Extension de l`algorithme Apriori et des règles d`association aux cas des donnees symboliques diagrammes et intervalles. In: *Revue RNTI, Extraction et Gestion des Connaissances (EGC 2005)*, vol 1. Toulouse: Editions Cépaduès; 2005, 205–210.

Silva, APD, Brito, P. Linear discriminant analysis for interval data. Comput Stat 2006, 21:289–308.

Appice, A, D`Amato, C, Esposito, F. Malerba D. In: Intelligent Data Analysis: Analysis of Symbolic and Spatial Data, vol. 10. The Netherlands: IOS Press Amsterdam; 2006, 301–324.

Duarte Silva, AP, Brito, P. Discriminant analysis of interval data: an assessment of parametric and distance‐based approaches. J Classif 2015, 32:516–541.

Gowda, KC, Diday, E. Symbolic clustering using a new dissimilarity measure. Pattern Recogn 1991, 24:567–578.

Ichino, M, Yaguchi, H. Generalized Minkowski metrics for mixed feature‐type data analysis. IEEE Trans Syst Man Cybern 1994, 24:698–707.

De Carvalho, FAT. Extension based proximity coefficients between constrained Boolean symbolic objects. In: Hayashi, C et al., eds. Proceedings of IFCS’96. Berlin: Springer‐Verlag; 1998, 370–378.

De Carvalho, F, Souza, R, Chavent, M, Lechevallier, Y. Adaptive Hausdorff distances and dynamic clustering of symbolic interval data. Pattern Recogn Lett 2006, 27:167–179.

Rüschendorf, L. Wasserstein metric. In: Hazewinkel, M, ed. Encyclopedia of Mathematics. Berlin/Heidelberg: Springer; 2001.

Irpino, A, Verde, R. Dynamic clustering of interval data using a Wasserstein‐based distance. Pattern Recogn Lett 2008, 29:1648–1658.

Kosmelj, K, Le‐Rademacher, J, Billard, L. Mallows’ L2 distance in some multivariate methods and its application to histogram‐type data. Metodoloski Zvezki No. 9, 2012, 107–118.

Kim, J, Billard, L. Dissimilarity measures for histogram‐valued observations. Commun Stat Theory Method 2013, 42:283–303.

García‐Santesmases, JM, Franco, C, Montero, J. Consensus measures for symbolic data. Comput Eng Inf Sci 2010, 4:651–658.

Diday, E. The symbolic approach in clustering and related methods of data analysis: the basic choices. In: Bock, H, ed. *First Conference of the International Federation of Classifications Societies*. North‐Holland: Technical University of Aachen (RFA); 1988.

Diday, E, Simon, JC. Cluster analysis. In: Fu, KS, ed. Digital Pattern Intent Recognition. Berlin/Heidelberg: Springer‐Verlag; 1976.

Diday, E. Optimisation en Classification Automatique, Tome 1, 2. Rocquencourt: INRIA; 1979.

Diday, E, Schroeder, A. A new approach in mixed distributions detection. Revue d`Automatique, Informatique et Recherche Opérationnelle (RAIRO), Paris, France; 1975, 10.

Diday, E, Ok, Y, Schroeder, A. The dynamic cluster method in pattern recognition. In: *Proceedings of IFIP Congress*, Stockholm. North‐Holland, 1974.

Ok‐Sakun, Y. Analyse factorielle typologique et lissage typologique. Thèse de 3ème cycle, Université Paris VI, Juin, 1975.

Charles, C. Régression typologique et reconnaissance des formes. Thèse de doctorat 3ème cycle, Université Paris IX‐Dauphine, Juin, 1977.

Diday, E, Govaert, G. Classification avec distance adaptative. CR Acad Sci Paris 1974, 278:993–995.

Diday, E. Introduction à l`Analyse factorielle typologique. Rapport Laboria n° 27. Rocquencourt: INRIA; 1972.

Diday, E. Analyse canonique du point de vu de la classification automatique. Rapport Laboria n°293. Rocquencourt: INRIA; 1978.

De Souza, RMCR, De Carvalho, FAT. Clustering of interval data based on city‐block distances. Pattern Recogn Lett 2004, 25:353–365.

De Carvalho, FAT, Lechevallier, Y. Partitional clustering algorithms for symbolic interval data based on single adaptive distances. Pattern Recog 2010, 42:1223–1236.

Verde, R, Irpino, A. Dynamic Clustering of Histogram Data: Using the Right Metric. Selected Contributions in Data Analysis and Classification. Berlin/Heidelberg: Springer; 2007, 123–134.

Diday, E. Orders and overlapping clusters by pyramids. In: Deleuw, J, Heiser, WJ, Meulman, JJ, Critchley, F, eds. Multivariables Data Analysis. Leiden: DSWO Press; 1986, 201–234.

Brito, P, Diday, E. Use of pyramids in symbolic data analysis. In: Diday, E, Lechevallier, Y, Schader, M, Bertrand, P, Burtschy, B, eds. New Approaches in Classification and Data Analysis. Berlin: Springer‐Verlag; 1990, 378–386.

Brito, P. Symbolic objects: order structure and pyramidal clustering. Ann Oper Res 1995, 55:277–297.

Pak, K, Rahal, MC, Diday, E. Élagage et aide à l`interprétation symbolique et graphique d`une pyramide. In: *Congrès d`extraction et gestion des connaissances (EGC)*, 18–21 Janvier. Paris: Editions Cepadues; 2005.

Rahal, MC, Diday, E. Spatial hierarchical and pyramidal clustering software. In: *Proceedings of the 10th Conference of the Federation of Classification Societies: Data Science and Classification*, Ljubljana, Slovenia, 25–29 July, 2006. Editions Springer.

Chavent, M. Criterion‐based divisive clustering for symbolic data. In: Bock, H‐H, Diday, E, eds. Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical Information from Complex Data. Berlin: Springer‐Verlag; 2000, 299–311.

Kim, J. Dissimilarity measures for histogram‐valued data and divisive clustering of symbolic objects. Doctoral Dissertation, University of Georgia, 2009.

Kim, J, Billard, L. A polythetic clustering process and cluster validity indexes for histogram‐valued objects. Comput Stat Data Anal 2011, 55:2250–2262.

Kim, J, Billard, L. Dissimilarity measures and divisive clustering for symbolic multimodal‐valued data. Comput Stat Data Anal 2012, 56:2795–2808.

Brito, P, Duarte Silva, AP. Modelling interval data with normal and skew‐normal distributions. J Appl Stat 2012, 39:3–20.

Hajjar, C., Hamdan, H. Self‐organizing map based on L2 distance for interval‐valued data. In: *6th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI 2011)*, Timisoara, Romania, 2011, 317–322.

Ganter, B, Wille, R. Formale Begrffsanalyse: Mathematishe Grunlagen. Heidelberg, Deutschland: Springer‐Verlag; 1996.

Wille, R. Knowledge acquisition by methods of formal concepts analysis. In: *Proceedings of the conference on Data Analysis, Learning Symbolic and Numeric Knowledge*. Antibes, France: Nova Sciences; 1989, 365–380.

Barbut, M, Monjardet, B. Ordres et Classification. Paris: Hachette; 1971.

Polaillon, G, Diday, E. Galois lattices of symbolic objects. Rapport n0 9631. Paris: CEREMADE, University Paris; 1997.

Polaillon, G, Diday, E. Reduction of symbolic Galois lattices via hierarchies. In: *Proceedings of Conference on Knowledge Extraction and Symbolic Data Analysis (KESDA’98)*. Luxembourg: Office for Official Publications of the European Communities; 1999, 137–143.

Polaillon, G. Interpretation and reduction of Galois lattices of complex data. In: Rizzi, A, Vichi, M, Bock, H‐H, eds. Advances in Data Science and Classification. Berlin/Heidelberg: Springer‐Verlag; 1998, 433–440.

Brito, P, Polaillon, G. Structuring probabilistic data by Galois lattices. Math Social Sci 2005, 169:77–104.

Brito, P, Polaillon, G. Homogeneity and stability in conceptual analysis. In: Napoli A, Vychodil V, eds. *Proceedings of the 8th International Conference on Concept Lattices and Their Applications*, Nancy, France. Nancy: INRIA; 2011, 251–263.

Montanary, A, Calo, DG. Model‐based clustering of probability density functions. Adv Data Anal Classif 2013, 7:301–320.

Cuvelier, E. QAMML: probability distributions for functional. PhD Thesis, University of Namur, Belgium, 2009.

Fan, W, Bouguila, N. Infinite Dirichlet mixtures models learning via expectation propagation. Adv Data Anal Classif 2013, 7:465–489.

Shimizu, N, Nakano, J. Clustering based on normal mixture model for aggregated symbolic data. In: Arroyo J, Maté C, Brito P, Noihomme M, eds, *3rd Workshop in Symbolic Data Analysis*. Spain: Universidad Compiutense de Madrid; 2012.

Le‐Rademacher, J, Billard, L. Likelihood functions and some maximum likelihood estimators for symbolic. J Stat Plan Inference 2011, 141:1593–1602.

Diday, E. Modélisation de Données Symboliques et Application au cas des Intervalles. Orléans: Journées Nationales de la Société Francophone de Classification; 2011.

Chiun‐How, K, Chih‐Wen, O, Yin‐Jing, T, Chuan‐kai,, Y, Chun‐houh, C. A symbolic database for TIMSS. In: Arroyo J, Maté C, Brito P, Noihomme M, eds, *3rd Workshop in Symbolic Data Analysis*. Spain: Universidad Compiutense de Madrid; 2012.

Afonso, F, Haddad, R, Toque, C, Eliezer, ES, Diday, E. User manual of the SYR software. Syrokko Internal Publication, 2012, 70. Available at: http://www.syrokko.com. (Accessed August 3, 2016).

Duarte Silva, AP, Brito, P. MAINT.DATA: model and analyze interval data. R Package, version 0.2; 2011. Available at: http://cran.r‐project.org/web/packages/MAINT.Data/index.html. (Accessed August 3, 2016).

Irpino, A. HistDAWass: Histogram‐Valued Data Analysis, R package, version 0.1.4. 2016. Available at: https://cran.rproject.org/web/packages/HistDAWass/index.html.hermann. (Accessed August 3, 2016).

Irpino, A, Verde, R. Linear regression for numeric symbolic variables: a least squares approach based on Wasserstein distance. Adv Data Anal Classif) 2015, 9:81–106.

Irpino, A, Verde, R. Basic statistics for distributional symbolic variables: a new metric‐based approach. Adv Data Anal Classif) 2015, 9:143–175.

Benzécri, JP. L`Analyse des Données: l`Analyse des Correspondances. Paris: Dunod; 1980.

Pawlowsky‐Glahn, V, Egozcue, JJ, Tolosana‐Delgado, R. Modeling and Analysis of Compositional Data. Chichester: Wiley; 2015.

Fisher, RA. On the mathematical foundations of theoretical statistics. Philos Trans A Math Phys Eng Sci 1922, 222:309–368.

Wang, H, Shangguan, L, Guan, R, Billard, L. Principal component analysis for compositional data vectors. Comput Stat 2015, 30:1079–1096.

Dempster, A, Laird, N, Rubin, D. Maximum likelihood from incomplete data with the EM algorithm. J R Stat Soc Series B Stat Methodol 1977, 39:1–38.

Gelman, A, Carlin, J, Stern, H, Rubin, D. Bayesian Data Analysis. 2nd ed. New York: Chapman and Hall; 2001.

Marin, J‐M, Robert, C. Bayesian Core: A Practical Approach to Computational Bayesian Statistics. New York: Springer‐Verlag; 2007.

Diday, E, Emilion, R. Symbolic bayesian network. In: *SDA ‘2015*, 17–19 November, Orleans, France. 2015. Available at: http://www.univ‐orleans.fr/mapmo/colloques/sda2015/SDA2015Slides.zip. (Accessed August 3, 2016).

Raudenbush, SW, Bryk, AS. Hierarchical Linear Models. 2nd ed. Thousand Oaks, CA: Sage; 2002.

Inuiguchi, M, Hirano, S, Tsumoto, S, eds. Rough Set Theory and Granular Computing. Berlin: Springer; 2003.

Pedrycz, W. Granular Computing: Analysis and Design of Intelligent Systems. Boca Raton, FL: CRC Press/Taylor %26 Francis; 2013.

Pawlak, Z. Rough Sets: Theoretical Aspects of Reasoning About Data. Dordrecht: Kluwer Academic Publishing; 1991. ISBN: 0-7923-1472-7.

Verde, R, Diday, E. Chapter 16—symbolic data analysis: a factorial approach based on fuzzy coded data. In: Blasius, J, Greenacre, M, eds. Visualization and Verbalization of Data. Mathematics|Probability and Statistics. UK: CRC Press Chapman %26 Hall book; 2014, 255–270.

Diday, E, Moreau, JV. Hierarchical Inference. In: *Proceedings in Computational Statistics (COMPSTAT 6)*, Prague: Physica‐Verlag; 1984.

Lance, GN, Williams, WT. A general theory of classificatory sorting strategies: hierarchical systems. Comput J 1967, 9:373–380.

Meroune, O. Traitement à grand échelle des données symboliques. PhD co‐directed by Prof.E. Diday and P. Rigaux, Paris Dauphine University. France, 2011.

Minami, H, Mizuta, M. SDA framework is the tool for big data analysis? In: Arroyo J, Maté C, Brito P, Noihomme M, eds. *3rd Workshop in Symbolic Data Analysis*, Spain: Universidad Compiutense de Madrid; 2012.

Schweizer, B. Distributions are the numbers of the future. In: *Proc. Sec. Napoli Meeting on “The Mathematics of Fuzzy Systems*”. Instituto di Mathematica delle Faculta di Mathematica delle Faculta di Achitectura, Universita degli studi di Napoli; 1984, 137–149.