Kaufman, CG, Sain, SR. Bayesian functional ANOVA modeling using gaussian process prior distributions. Bayesian Anal 2010, 5:123–149.

Hall, P, Müller, H‐G, Yao, F. Estimation of functional derivatives. Ann Stat 2009, 37(6A):3307–3329.

Usset, J, Staicu, A‐M, Maity, A. Interaction models for functional regression. Comput Stat Data Anal 2016, 94:317–329.

Cao, J, Zhao, H. Estimating dynamic models for gene regulation networks. Bioinformatics 2008, 24:1619–1624.

Wang, J‐L, Chiou, J‐M, Müller, H‐G. Functional data analysis. Annu Rev Stat Appl 2016, 3:257–295.

Ramsay, JO, Silverman, BW. Functional Data Analysis. Springer Series in Statistics. 2nd ed. New York: Springer; 2005.

Choi, H , Reimherr, M. A geometric approach to confidence regions and bands for functional parameters. arXiv:1607.07771v2 [stat.ME], 2016.

Cao, G, Yang, L, Todem, D. Simultaneous inference for the mean function based on dense functional data. J Nonparametr Stat 2012, 24:359–377.

Degras, D. Simultaneous confidence bands for nonparametric regression with functional data. Stat Sin 2011, 21:1735–1765.

Bunea, F, Ivanescu, AE, Wegkamp, MH. Adaptive inference for the mean of a Gaussian process in functional data. J R Stat Soc Series B Stat Methodol 2011, 73:531–558.

Rice, JA, Silverman, BW. Estimating the mean and covariance structure nonparametrically when the data are curves. J R Stat Soc Series B 1991, 53:233–243.

Hart, JD, Wehrly, TE. Consistency of cross‐validation when the data are curves. Stoch Process Their Appl 1993, 45:351–361.

Hart, JD, Wehrly, TE. Kernel regression estimation using repeated measurements data. J Am Stat Assoc 1986, 81:1080–1088.

Benhenni, K, Degras, D. Local polynomial estimation of the mean function and its derivatives based on functional data and regular designs. ESAIM Probab Stat 2014, 18:881–899.

Yao, F, Müller, H‐G, Wang, J‐L. Functional data analysis for sparse longitudinal data. J Am Stat Assoc 2005, 100:577–590.

Cuevas, A, Febrero, M, Fraiman, R. On the use of the bootstrap for estimating functions with functional data. Comput Stat Data Anal 2006, 51:1063–1074.

Degras, D. Nonparametric estimation of a trend based upon sampled continuous processes. C R Math Acad Sci Paris 2009, 347:191–194.

Ma, S, Yang, L, Carroll, RJ. A simultaneous confidence band for sparse longitudinal regression. Stat Sin 2012, 22:95–122.

Zheng, S, Yang, L, Härdle, WK. A smooth simultaneous confidence corridor for the mean of sparse functional data. J Am Stat Assoc 2014, 109:661–673.

Cardot, H, Degras, D, Josserand, E. Confidence bands for Horvitz‐Thompson estimators using sampled noisy functional data. Bernoulli 2013, 19(5A):2067–2097.

Cardot, H, Goga, C, Lardin, P. Uniform convergence and asymptotic confidence bands for model‐assisted estimators of the mean of sampled functional data. Electron J Stat 2013, 7:562–596.

Crainiceanu, CM, Staicu, A‐M, Ray, S, Punjabi, N. Bootstrap‐based inference on the difference in the means of two correlated functional processes. Stat Med 2012, 31:3223–3240.

Yang, J, Zhu, H, Choi, T, Cox, DD. Smoothing and mean‐covariance estimation of functional data with a Bayesian hierarchical model. Bayesian Anal 2016, 11:649–670.

Morris, JS, Carroll, RJ. Wavelet‐based functional mixed models. J R Stat Soc Series B Stat Methodol 2006, 68:179–199.

Liu, Z, Guo, W. Functional mixed effects models. Wiley Interdiscip Rev Comput Stat 2012, 4:527–534.

Krivobokova, T, Kneib, T, Claeskens, G. Simultaneous confidence bands for penalized spline estimators. J Am Stat Assoc 2010, 105:852–863.

Sørbye, SH, Rue, H. Simultaneous credible bands for latent Gaussian models. Scand J Stat 2011, 38:712–725.

Mas, A. Testing for the mean of random curves: a penalization approach. Stat Infer Stoch Process 2007, 10:147–163.

Antoniadis, A, Sapatinas, T. Estimation and inference in functional mixed‐effects models. Comput Stat Data Anal 2007, 51:4793–4813.

Ghiglietti, A, Ieva, F, Paganoni, AM. Statistical inference for stochastic processes: two‐sample hypothesis tests. J Stat Plann Infer 2017, 180:49–68.

Benko, M, Härdle, W, Kneip, A. Common functional principal components. Ann Stat 2009, 37:1–34.

Wand, MP, Jones, MC. Kernel Smoothing. London: Chapman and Hall; 1995.

Green, PJ, Silverman, BW. Nonparametric Regression and Generalized Linear Models. A Roughness Penalty Approach. London: Chapman %26 Hall; 1994.

Eilers, P, Marx, B. Flexible smoothing with B‐splines and penalties. Stat Sci 1996, 89:89–121.

De Boor, C. A Practical Guide to Splines. Applied Mathematical Sciences. New York: Springer‐Verlag; 1978.

Nason, G. Wavelet Methods in Statistics with R. New York: Springer; 2008.

Fan, J, Gijbels, I. Local Polynomial Modelling and Its Applications. London: Chapman %26 Hall; 1996.

Ruppert, D, Wand, MP, Carroll, RJ. Semiparametric Regression. Cambridge: Cambridge University Press; 2003.

Degras, D. Asymptotics for the nonparametric estimation of the mean function of a random process. Stat Probab Lett 2008, 78:2976–2980.

Indritz, J. Methods in Analysis. New York and London: The Macmillan Co. and Collier‐Macmillan Ltd.; 1963.

Goldsmith, J, Greven, S, Crainiceanu, C. Corrected confidence bands for functional data using principal components. Biometrics 2013, 69:41–51.

Efron, B. Estimation and accuracy after model selection. J Am Stat Assoc 2014, 109:991–1007.

Yao, F. Asymptotic distributions of nonparametric regression estimators for longitudinal or functional data. J Multivariate Anal 2007, 98:40–56.

Degras, D. *SCBmeanfd: Simultaneous Confidence Bands for the Mean of Functional Data*. R package version 1.2.2, 2016.

Hocking, TD, Schleiermacher, G, Janoueix‐Lerosey, I, Boeva, V, Cappo, J, Delattre, O, Bach, F, Vert, J‐P. Learning smoothing models of copy number profiles using breakpoint annotations. BMC Bioinformatics 2013, 14:1–15.

Nakao, K, Mehta, KR, Fridlyand, J, Moore, DH, Jain, AN, Lafuente, A, Wiencke, JW, Terdiman, JP, Waldman, FM. High‐resolution analysis of DNA copy number alterations in colorectal cancer by array‐based comparative genomic hybridization. Carcinogenesis 2004, 25:1345–1357.

Chaudhuri, P, Marron, JS. SiZer for exploration of structures in curves. J Am Stat Assoc 1999, 94:807–823.

King, E, Hart, JD, Wehrly, TE. Testing the equality of two regression curves using linear smoothers. Stat Probab Lett 1991, 12:239–247.

Bowman, AW, Azzalini, A. Applied Smoothing Techniques for Data Analysis: The Kernel Approach with S‐Plus Illustrations. Press, New York: Oxford Univ; 1997.

Goldsmith, J, Scheipl, F, Huang, L, Wrobel, J, Gellar, J, Harezlak, J, McLean, MW, Swihart, B, Xiao, L, Crainiceanu, C, et al. *refund: Regression with Functional Data*. R package version 0.1‐16, 2016.

Goldsmith, J, Bobb, J, Crainiceanu, CM, Caffo, B, Reich, D. Penalized functional regression. J Comput Graph Stat 2011, 20:830–851.

Pomann, G‐M, Staicu, A‐M, Ghosh, S. A two‐sample distribution‐free test for functional data with application to a diffusion tensor imaging study of multiple sclerosis. J R Stat Soc Ser C Appl Stat 2016, 65:395–414.

Horváth, L, Kokoszka, P. Inference for Functional Data with Applications. New York, NY: Springer New York; 2012.

Hörmann, S, Kokoszka, P. Consistency of the mean and the principal components of spatially distributed functional data. Bernoulli 2013, 19(5A):1535–1558.

Rakêt, LL, Markussen, B. Approximate inference for spatial functional data on massively parallel processors. Comput Stat Data Anal 2014, 72:227–240.

Horváth, L, Rice, G. Testing equality of means when the observations are from functional time series. J Time Ser Anal 2015, 36:84–108.

Morris, JS. Functional regression. Annu Rev Stat Appl 2015, 2:321–359.