Arridge,, S. R. (1999). Optical tomography in medical imaging. Inverse Problems, 15(2), R41–R93.

Arridge,, S. R., Kaipio,, J. P., Kolehmainen,, V., Schweiger,, M., Somersalo,, E., Tarvainen,, T., & Vauhkonen,, M. (2006). Approximation errors and model reduction with an application in optical diffusion tomography. Inverse Problems, 22(1), 175–195.

Backus,, G. (1970a). Inference from inadequate and inaccurate data I. Proceedings of the National Academy of Sciences, 65(1), 1–7.

Backus,, G. (1970b). Inference from inadequate and inaccurate data II. Proceedings of the National Academy of Sciences, 65(2), 281–287.

Backus,, G. (1970c). Inference from inadequate and inaccurate data III. Proceedings of the National Academy of Sciences, 67(1), 282–289.

Bardsley,, J. M., Solonen,, A., Haario,, H., & Laine,, M. (2014). Randomize‐then‐optimize: A method for sampling from posterior distributions in nonlinear inverse problems. SIAM Journal on Scientific Computing, 36(4), A1895–A1910.

Bayarri,, M. J., Berger,, J. O., Paulo,, R., Sacks,, J., Cafeo,, J. A., Cavendish,, J., … Tu,, J. (2007). A framework for validation of computer models. Technometrics, 49(2), 138–154.

Bertero,, M., Boccacci,, P., Desiderà,, G., & Vicidomini,, G. (2009). Image deblurring with Poisson data: From cells to galaxies. Inverse Problems, 25(12), 123006.

Brooks,, S., Gelman,, A., Jones,, G., & Meng,, X. L. (Eds.) (2011). Handbook of Markov chain Monte Carlo. Boca Raton, FL: CRC Press.

Brynjarsdóttir,, J., & O`Hagan,, A. (2014). Learning about physical parameters: The importance of model discrepancy. Inverse Problems, 30(11), 114007.

Calderón,, A. P. (1980). %22On an inverse boundary value problem%22. In Seminar on numerical analysis and its applications to continuum physics, Rio de Janeiro (pp. 65–73). Rio de Janeiro: Society of Brasilian Mathematics.

Calvetti,, D., Dunlop,, M. M., Somersalo,, E., & Stuart,, A. M. (2018). Iterative updating of model error for Bayesian inversion. arXiv preprint Inverse Problems, 3, 025008.

Calvetti,, D., Hakula,, H., Pursiainen,, S., & Somersalo,, E. (2009). Conditionally Gaussian hypermodels for cerebral source localization. SIAM Journal of Imaging Science, 2, 879–909.

Calvetti,, D., Lewis,, B., & Reichel,, L. (2002). On the regularizing properties of the GMRES method. Numerische Mathematik, 91, 605–625.

Calvetti,, D., McGivney,, D., & Somersalo,, E. (2012). Left and right preconditioning for electrical impedance tomography with structural information. Inverse Problems, 28(5), 055015.

Calvetti,, D., Pascarella,, A., Pitolli,, F., Somersalo,, E., & Vantaggi,, B. (2015). A hierarchical Krylov‐Bayes iterative inverse solver for MEG with physiological preconditioning. Inverse Problems, 31, 125005.

Calvetti,, D., Pitolli,, F., Somersalo,, E., & Vantaggi,, B. (forthcoming). Bayes meets Krylov: Statistically inspired preconditioners for CGLS. SIAM Review.

Calvetti,, D., & Somersalo,, E. (2005). Priorconditioners for linear systems. Inverse Problems, 21(4), 1397–1418.

Calvetti,, D., & Somersalo,, E. (2007). Introduction to Bayesian scientific computing – Ten lectures on subjective computing. New York: Springer Verlag.

Calvetti,, D., & Somersalo,, E. (2008). Hypermodels in the Bayesian imaging framework. Inverse Problems, 24(3), 034013.

Calvetti,, D., & Somersalo,, E. (2011). %22Statistical methods in imaging%22. In Handbook of mathematical methods in imaging (pp. 913–957). New York: Springer.

Candès,, E. J., Romberg,, J., & Tao,, T. (2006). Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52(2), 489–509.

Chadan,, K., & Sabatier,, P. C. (2012). Inverse problems in quantum scattering theory. New York, NY: Springer Science %26 Business Media.

Cheney,, M., Isaacson,, D., & Newell,, J. C. (1999). Electrical impedance tomography. SIAM Review, 41(1), 85–101.

Christen,, J. A., & Fox,, C. (2005). Markov chain Monte Carlo using an approximation. Journal of Computational and Graphical Statistics, 14(4), 795–810.

Colton,, D., & Kress,, R. (1992). Inverse acoustic and electromagnetic scattering theory. Berlin: Springer (new edition: 1998).

Cotter,, S. L., Roberts,, G. O., Stuart,, A. M., & White,, D. (2013). MCMC methods for functions: Modifying old algorithms to make them faster. Statistical Science, 28(3), 424–446.

Cui,, T., Law,, K. J., & Marzouk,, Y. M. (2016). Dimension‐independent likelihood‐informed MCMC. Journal of Computational Physics, 304, 109–137.

Cui,, T., Martin,, J., Marzouk,, Y. M., Solonen,, A., & Spantini,, A. (2014). Likelihood‐informed dimension reduction for nonlinear inverse problems. Inverse Problems, 30(11), 114015.

Dashti,, M., & Stuart,, A. M. (2013). The Bayesian approach to inverse problems. arXiv preprint 2013; arXiv:1302.6989.

Dennis,, J. E., & Schnabel,, R. B. (1996). Numerical methods for unconstrained optimization and nonlinear equations. Philadelphia, PA: SIAM.

Donoho,, D. L. (2006). Compressed sensing. IEEE Transactions on Information Theory, 52(4), 1289–1306.

Donoho,, D. L., Johnstone,, I. M., Hoch,, J. C., & Stern,, A. S. (1992). Maximum entropy and the nearly black object. Journal of the Royal Statistical Society: Series B (Methodological), 54, 41–81.

Ehrhardt,, M. J., Thielemans,, K., Pizarro,, L., Atkinson,, D., Ourselin,, S., Hutton,, B. F., & Arridge,, S. R. (2014). Joint reconstruction of PET‐MRI by exploiting structural similarity. Inverse Problems, 31(1), 015001.

Franklin,, J. N. (1970). Well‐posed stochastic extensions of ill‐posed linear problems. Journal of Mathematical Analysis and Applications, 31, 682–716.

Geman,, S., & Geman,, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analalysis and Machine Intelligence, 6, 721–741.

Gilks,, W. R., Richardson,, S., & Spiegelhalter,, D. (Eds.) (1995). Markov chain Monte Carlo in practice. Boca Raton, FL: CRC Press.

Golub,, G. H., & Van Loan,, C. F. (2012). Matrix computations (Vol. 3). Baltimore, MD: JHU Press.

Groetsch,, C. W. (1984). The theory of Tikhonov regularization for Fredholm equations. Boston: Pitman Publication.

Gulley,, A. K., Kaipio,, J. P., Eccles,, J. D., & Malin,, P. E. (2017). A numerical approach for modelling fault‐zone trapped waves. Geophysical Journal International, 210(2), 919–930.

Gustavsson,, M., Ivansson,, S., Moren,, P., & Pihl,, J. (1986). Seismic borehole tomography—Measurement system and field studies. Proceedings of the IEEE, 74, 339–346.

Hämäläinen,, M., Hari,, R., Ilmoniemi,, R. J., Knuutila,, J., & Lounasmaa,, O. V. (1993). Magnetoencephalographytheory, instrumentation, and applications to noninvasive studies of the working human brain. Reviews of Modern Physics, 65(2), 413–497.

Hanke,, M. (2001). On Lanczos based methods for the regularization of discrete ill‐posed problems. BIT, 41, 1008–1018.

Hanke,, M., Neubauer,, A., & Scherzer,, O. A. (1995). Convergence analysis of the Landweber iteration for nonlinear ill‐posed problems. Numerische Mathematik, 72(1), 21–37.

Hansen,, P. C. (1987). The truncated SVD as a method for regularization. BIT, 27, 534–553.

Hansen,, P. C. (1998). Rank‐deficient and discreet ill‐posed problems. Philadelphia: SIAM.

Hastings,, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57(1), 97–109.

Jackson,, D. D. (1972). Interpretation of inaccurate, insufficient and inconsistent data. Geophysical Journal of the Royal Astronomical Society, 28, 97–110.

Jupp,, D. L. B., & Vozoff,, K. (1975). Stable iterative methods for inversion of geophysical data. Geophysical Journal of the Royal Astronomical Society, 42, 957–976.

Kaipio,, J., & Somersalo,, E. (2004). Statistical and computational inverse problems. New York: Springer Verlag.

Kaipio,, J., & Somersalo,, E. (2007). Statistical inverse problems: Discretization, model reduction and inverse crimes. Journal of Computational and Applied Mathematics, 198, 493–504.

Kaipio,, J. P., Kolehmainen,, V., Vauhkonen,, M., & Somersalo,, E. (1999). Inverse problems with structural prior information. Inverse Problems, 15(3), 713.

Kennedy,, M. C., & O`Hagan, (2001). Bayesian calibration of computer models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63(3), 425–464.

Kolehmainen,, V., Lassas,, M., Niinimäki,, K., & Siltanen,, S. (2012). Sparsity‐promoting Bayesian inversion. Inverse Problems, 28(2), 025005.

Koulouri,, A., Rimpiläinen,, V., Brookes,, M., & Kaipio,, J. P. (2016). Compensation of domain modelling errors in the inverse source problem of the Poisson equation: Application in electroencephalographic imaging. Applied Numerical Mathematics, 106, 24–36.

Lanczos,, C. (1958). Linear systems in self‐adjoint form. American Mathematical Monthly, 65, 665–679.

Landweber,, L. (1951). An iteration formula for Fredholm integral equations of the first kind. Amer. J. Math., 73(3), 615–624.

Laplace,, P.‐S. (1986). Mémoire sur la probabilité des causes par les évènemens. English translation in Stigler SM, Laplace`s 1774 Memoir on Inverse Probability. Statistical Science, 1, 359–363.

Lehtinen,, M., Päivärinta,, L., & Somersalo,, E. (1989). Linear inverse problems for generalized random variables. Inverse Problems, 5, 599–612.

Liu,, J. S. (2001). Monte Carlo strategies in scientific computing. New York, NY: Springer Science %26 Business Media.

Lucy,, L. B. (1974). An iterative technique for the rectification of observed distributions. The Astronomical Journal, 79(6), 745–754.

Mandelbaum,, A. (1984). Linear estimators and measurable linear transformations on a Hilbert space. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete., 65(3), 385–397.

Martin,, J., Wilcox,, L. C., Burstedde,, C., & Ghattas,, O. (2012). A stochastic Newton MCMC method for large‐scale statistical inverse problems with application to seismic inversion. SIAM Journal on Scientific Computing, 34(3), A1460–A1487.

Marzouk,, Y., Moselhy,, T., Parno,, M., & Spantini,, A. (2016). An introduction to sampling via measure transport. arXiv preprint arXiv: 2016; 1602.05023.

Matérn,, B. (1960). Spatial variation. Meddelanden från statens skogsforsknigsinstitut, 49(5), 1–144.

Metropolis,, N., & Ulam,, S. M. (1949). The Monte Carlo method. Journal of the American Statatistical Association., 44, 335–341.

Mosegaard,, K., & Tarantola,, A. (2002). Probabilistic approach to inverse problems. International Geophysics Series, 81(A), 237–268.

Mueller,, J. L., & Siltanen,, S. (2012). Linear and non‐linear inverse problems with applications. Philadelphia: SIAM.

Nachman,, A. (1996). Global uniqueness for a two‐dimensional inverse boundary value problem. Annals of Mathematics, 143, 71–96.

Newton,, R. G. (2013). Scattering theory of waves and particles. New York, NY: Springer Science %26 Business Media.

Richardson,, W. H. (1972). Bayesian‐based iterative method of image restoration. Journal of the Optical Society of America, 62(1), 55–59.

Roininen,, L., Huttunen,, J. M., & Lasanen,, S. (2014). Whittle‐Matérn priors for Bayesian statistical inversion with applications in electrical impedance tomography. Inverse Problems Imaging, 8(2), 561–586.

Roininen,, L., Lehtinen,, M., Lasanen,, S., Orispää,, M., & Markkanen,, M. (2011). Correlation priors. Inverse Problems and Imaging, 5(1), 167–184.

Rudin,, L. I., Osher,, S., & Fatemi,, E. (1992). Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena, 60(1–4), 259–268.

Shepp,, L. A., & Vardi,, Y. (1982). Maximum likelihood reconstruction for mmission tomography. IEEE Transactions on Medical Imaging, 1, 113–122.

Stuart,, A. M. (2010). Inverse problems: A Bayesian perspective. Acta Numer, 19, 451–559.

Sylvester,, J., & Uhlmann,, G. A. (1897). Global uniqueness theorem for an inverse boundary value problem. Annals of Mathematics, 125, 153–169.

Tarantola,, A. (1987). Inverse problem theory. Philadelphia: Elsevier. Revised and rewritten edition: 2005, SIAM.

Tarantola,, A., & Valette,, B. (1982). Inverse problems = quest for information. Journal of Geophysics, 50, 159–170.

Tikhonov,, A. N. (1963). Regularization of incorrectly posed problems. Soviet Mathematics Doklady, 4, 1624–1627.

Tikhonov,, A. N., Arsenin,, V. I., & John,, F. (1977). Solutions of ill‐posed problems (Vol. 14). Washington, DC: Winston.

Vauhkonen,, M., Kaipio,, J. P., Somersalo,, E., & Karjalainen,, P. A. (1997). Electrical impedance tomography with basis constraints. Inverse Problems, 13(2), 523–530.

Westwater,, E. R., & Strand,, O. N. (1967). Statistical information content used in indirect sensing. Journal of the Atmospheric Sciences, 25, 750–758.

Whittle,, P. (1954). On stationary processes in the plane. Biometrika, 41, 434–449.