Kiers, HA,Van Mechelen, I.Three‐way component analysis: principles and illustrative application.Psychol Methods2001,6:84–110.

Kroonenberg, PM.Applied Multiway Data Analysis.New York:John Wiley %26 Sons, 2008.

Appellof, CJ,Davidson, ER.Strategies for analyzing data from video fluorometric monitoring of liquid chromatographic effluents. Analyt Chem1981,53:2053–2056.

Bro, R.Review on multiway analysis in chemistry 2000–2005.Critical Reviews in Analytical Chemistry2006, 36:279–293.

Andersen, AH,Rayens, WS.Structure‐seeking multilinear methods for the analysis of fmri data.Neuroimage2004,22:728–739.

Mørup, M,Hansen, L,Arnfred, S,Lim, L‐H,Madsen, K.Shift‐invariant multilinear decomposition of neuroimaging data.NeuroImage2008,42:1439–1450.

Miwakeichi, F,Martnez‐Montes, E,Valds‐Sosa, PA,Nishiyama, N,Mizuharam, H,Yamaguchi, Y.Decomposing eeg data into space time frequency components using parallel factor analysis. Neuroimage2004,22:1035–1045.

Mørup, M,Hansen, LK,Hermann, CS,Parnas, J,Arnfred, SM.Parallel factor analysis as an exploratory tool for wavelet transformed event‐related eeg. Neuroimage2006,29:938–947.

Comon, P.Independent component analysis, a new concept?Signal Process1994,36:287–314.

De Lathauwer, L,Vandewalle, J.Dimensionality reduction in higher‐order signal processing and rank‐(r_{1},r_{2},…,r_{n}) reduction in multilinear algebra.Lin Alg Appl2004,391:31–55.

Comon, P,Jutten, C, Eds.HANDBOOK OF BLIND SOURCE SEPARATION: Independent Component Analysis and Applications. Elsevier, 2010.

Sidiropoulos, ND,Member, S,Giannakis, GB,Bro, R.Blind parafac receivers for ds‐cdma systems.IEEE Trans Signal Process2000,48:810–823.

Sidiropoulos, ND,Bro, R,Giannakis, GB.Parallel factor analysis in sensor array processing.IEEE Trans Signal Process2000,48:2377–2388.

Vasilescu, MAO,Terzopoulos, D.Multilinear analysis of image ensembles: Tensorfaces. In *ECCV ’02: Proceedings of the 7th European Conference on Computer Vision‐Part I* 2002, Springer‐Verlag, 447–460.

Yan, S,Xu, D,Yang, Q,Zhang, L,Tang, X,Zhang, HJ.Multilinear discriminant analysis for face recognition.Image Processing, IEEE Transactions on2007, 16:212–220.

Savas, B,Eldén, L.Handwritten digit classification using higher order singular value decomposition. Pattern Recogn2007,40:993–1003.

Dyrby, M,Baunsgaard, D,Bro, R,Engelsen, SB.Multiway chemometric analysis of the metabolic response to toxins monitored by nmr. Chemom Intell Lab Systems2005, 76:79–89.

Yener, B,Acar, E,Aguis, P,Bennett, K,Vandenberg, S,Plopper, G.Multiway modeling and analysis in stem cell systems biology.BMC Systems Biology2008, 2:63.

Omberg, L,Meyerson, JR,Kobayashi, K,Drury, LS,Diffley,, JFX,Alter, O.Global effects of dna replication and dna replication origin activity on eukaryotic gene expression. Molecular Systems Biology2009, 5.

Acar, E,Camtepe, SA,Krishnamoorthy, MS,Yener, B.Modeling and multiway analysis of chatroom tensors.Intelligence and Security Informatics, Lecture Notes in Computer Science2005, 3495:256–268.

Bader, BW,Harshman, RA,Kolda, TG.Temporal analysis of semantic graphs using asalsan.In ICDM2007, IEEE Computer Society,33–42.

Kolda, TG,Bader, BW,Kenny, JP.Higher‐order web link analysis using multilinear algebra. InICDM ’05: Proceedings of the Fifth IEEE International Conference on Data Mining. IEEE Computer Society, Washington, DC,2005, 242–249.

Sun, J‐T,Zeng, H‐J,Liu, H,Lu, Y,Chen, Z.Cubesvd: a novel approach to personalized web search. InWWW ’05: Proceedings of the 14th international conference on World Wide Web. ACM Press, New York, 2005, 382–390.

Kolda, TG,Bader, BW.Tensor decompositions and applications.SIAM Review.

Cichocki, A,Zdunek, R,Phan, AH,Amari, S‐i.Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multiway Data Analysis and Blind Source Separation.New York: John Wiley %26 Sons,2009.

Comon, P,Luciani, X,de Almeida, ALF.Tensor decompositions, alternating least squares and other tales.J Chemom2009,23:393–405.

Tomasi, G.Practical and computational aspects in chemometric data analysisPhD thesis, The Royal Veterinary and Agricultural University,Frederiksberg, Denmark, May 2006.

Smilde, A,Bro, R,Geladi, P.Multiway Analysis: Applications in the Chemical Sciences.New York: John Wiley %26 Sons,2004.

Tucker, LR.Some mathematical notes on three‐mode factor analysis.Psychometrika1966,31:279–311.

Carroll, JD,Chang, JJ.Analysis of individual differences in multidimensional scaling via an N‐way generalization of ‘Eckart‐Young’ decomposition.Psychometrika1970,35:283–319.

Harshman, RA.Foundations of the PARAFAC procedure: Models and conditions for an ‘explanatory’ multi‐modal factor analysis.UCLA Working Papers in Phonetics1970,16:1–84.

Lathauwer, LD,Moor, BD,Vandewalle, J.Multilinear singular value decomposition.SIAM J MATRIX ANAL APPL, 2000,21:1253–1278.

Hitchcock, FL.Multiple invariants and generalized rank of a p‐way matrix or tensor.J Math Phys Camb1927,39–70.

Kruskal, JB.More factors than subjects, tests and treatments: An indeterminacy theorem for canonical decomposition and individual differences scaling.Psychometrika1976,41:281–293.

Kruskal, J.Three‐way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics.Linear Algebra Appl1977,18:95–138.

Lim, L‐H,Comon, P.Multiarray signal processing: tensor decomposition meets compressed sensing. Comptes Rendus de l’Académie des sciences, to appear2010.

Sidiropoulos, ND,Bro, R.On the uniqueness of multilinear decomposition of *n*‐way arrays.J Chemom2000,14:229–239.

Harshman, RA,Lundy, ME.Data preprocessing and the extended parafac model.In: Law, HG,Snyder,, CW Jr.,Hattie, JA,McDonald, RP. (eds.),Research Methods for Multimode Data Analysis,Praeger, New York,1984, 216–281.

de Silva, V,Lim, L‐H.Tensor rank and the ill‐posedness of the best low‐rank approximation problem. SIAM J Matrix Anal Appl2008,30:1084–1127.

Acar, E,Dunlavy, DM,Kolda, TG,Mørup, M.Scalable tensor factorizations for incomplete data.arXiv:1005.2197v1, 2010.

Mørup, M,Hansen, LK.Automatic relevance determination for multiway models.J Chemometrics2009,23,352–363.

Bro, R,Kiers, HAL.A new efficient method for determining the number of components in parafac models. J Chemom2003,17:274–286.

Bro, R,Kjeldahl, K,Smilde, AK,Kiers, HAL.Cross‐validation of component models: A critical look at current methods. Anal Bioanal Chem2008,390:1241–1251.

Acar, E,Yener, B.Unsupervised multiway data analysis: a literature survey.IEEE Trans Knowl Data Eng2009,21:6–20.

Bro, R,Andersson, CA.The *n*‐way toolbox for matlab.Chemom Intell Lab Systems2000,52:1–4.

Bader, BW,Kolda, TG.Algorithm 862: Matlab tensor classes for fast algorithm prototyping.ACM Trans Math Softw2006,32:635–653.

Möcks, J.Topographic components model for event‐related potentials and some biophysical considerations. IEEE Trans Biomed Eng1988, 35:482–484.

Cattell, R.The three basic factor‐analytic research designs – their interrelations and derivatives. Psychol Bull1952, 49:499–520.

Murakami, T,Kroonenberg, PM.Three‐mode models and individual differences in semantic differential data. Multivariate Behav Res2003,38:247–283.

Mørup, M,Hansen, L,Arnfred, SM.Erpwavelab a toolbox for multi‐channel analysis of time‐frequency transformed event related potentials. J Neurosci Methods2007, 161:361–368.

Cichocki, A,Pha, A‐H.Fast local algorithms for large scale nonnegative matrix and tensor factorizations. IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences E92‐A2009,3:708–721.

Comon, P.Tensor DecompositionMathematics in Signal Processing V. Clarendon Press,Oxford, UK, 2002,1–24.

Mu, Y,Tao, D,Li, X,Murtagh, F.Biologically inspired tensor features.Cognit Comput2009,1:327–341.

Sun, J,Tao, D,Faloutsos, C.Beyond streams and graphs: dynamic tensor analysis. InIn KDD2006,374–383.

De Lathauwer, L.Decompositions of a higher‐order tensor in block terms—part ii: Definitions and uniqueness. SIAM J Matrix Anal Appl2008, 30:1033–1066.

Harshman, R,Lundy, M.Uniqueness proof for a family of models sharing features of tucker’s three‐mode factor analysis and parafac/candecomp.Psychometrika1996,61:133–154.

Kemp, C,Tenenbaum, JB,Griffiths, TL,Yamada, T,Ueda, N.Learning systems of concepts with an infinite relational model. Proc. 21st National Conference on Artiificial Intelligence (AAAI‐06).