Agrawal, R,Srikant, R.Fast Algorithms for mining association rules in large databases. In:Proceedings of the 20th International Conference on Very Large Data Bases.San Francisco, CA: Morgan Kaufmann;1994,487–499.
Han, J,Pei, J,Yin, Y.Mining frequent patterns without candidate generation. In:Proceedings of the ACM SIGMOD International Conference on Management of Data.Dallas, TX: ACM;2000,1–12.
Quinlan, JR.C4.5: Pprograms for Machine Learning.San Francisco, CA: Morgan Kaufmann;1993.
Geng, L,Hamilton, HJ:Interestingness measures for data mining: a survey.ACM Comput Surv2006,38:9.
McGarry, K.A survey of interestingness measures for knowledge discovery.Knowl Eng Rev2005,20:39–61.
Silberschatz, A,Tuzhilin, A.What makes patterns interesting in knowledge discovery systems.IEEE Trans Knowl Data Eng1996,8:970–974.
Silberschatz, A,Tuzhilin, A.On subjective measures of interestingness in knowledge discovery. In:Knowledge Discovery and Data Mining (KDD‐95).Palo Alto, CA: AAAI;1995,275–281.
Geerts, F,Goethals, B,Mielikainen, T.Tiling databases. In:Discovery Science.New York: Springer;2004,278–289.
Klemettinen, M,Mannila, H,Ronkainen, P,Toivonen, H,Verkamo, AI.Finding interesting rules from large sets of discovered association rules. In:Proceedings of the Third International Conference on Information and Knowledge Management.Gaithersburg, MD: ACM;1994,401–407.
Liu, B,Hsu, W.Post‐analysis of learned Rules. In:Proceedings of the Thirteenth National Conference on Artificial Intelligence.Vol. 1.Portland, OR: AAAI Press;1996,828–834.
Liu, B,Hsu, W,Chen, S.Using general impressions to analyze discovered classification rules. In:Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining (KDD‐97).Palo Alto, CA: AAAI Press;1997,31–36.
Liu, B,Hsu, W,Mun, L‐F,Lee, H‐Y.Finding interesting patterns using user expectations.IEEE Trans Knowl Data Eng1999,11:817–832.
Sahar, S.Interestingness via what is not interesting. In:Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.San Diego, CA: ACM;1999,332–336.
Wang, K,Jiang, Y,Lakshmanan, LVS.Mining unexpected rules by pushing user dynamics. In:Proceedings of the ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.Washington, D.C.: ACM;2003,246–255.
Padmanabhan, B,Tuzhilin, A.Small is beautiful: discovering the minimal set of unexpected patterns. In:Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.Boston, MA: ACM;2000,54–63.
Koller, D,Friedman, N.Probabilistic Graphical Models: Principles and Techniques.Cambridge, MA: MIT Press;2009.
De Bie, T.Maximum entropy models and subjective interestingness: an application to tiles in binary databases.Data Min Knowl Discov2010,1–40.
Kontonasios, K‐N,De Bie, T.An information‐theoretic approach to finding informative noisy tiles in binary databases. In:Proceedings of the 10th SIAM International Conference on Data Mining (SDM‐10).Colombus, OH: SIAM;2010,153–164.
Padmanabhan, B,Tuzhilin, A.A belief‐driven method for discovering unexpected patterns. In:Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining (KDD‐98).New York City, NY: IEEE;1998,94–100.
Jaroszewicz, S,Simovici, DA.Interestingness of frequent itemsets using Bayesian networks as background knowledge. In:Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.Seattle, WA: ACM;2004,178–186.
Jaroszewicz, S,Scheffer, T.Fast discovery of unexpected patterns in data, relative to a Bayesian network. In:Proceedings of the Eleventh ACM SIGKDD International conference on Knowledge Discovery in Data Mining.Chicago, IL: ACM;2005,118–127.
Xin, D,Shen, X,Mei, Q,Han, J.Discovering interesting patterns through user`s interactive feedback. In:Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.Philadelphia, PA: ACM;2006,773–778.
Gionis, A,Mannila, H,Mielikainen, T,Tsaparas, P.Assessing data mining results via swap randomization.ACM Trans Knowl Discov Data2007,1:14.
Hanhijrvi, S,Ojala, M,Vuokko, N,Puolamaki, K,Tatti, N,Mannila, H.Tell me something i don`t know: randomization strategies for iterative data mining. In:Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.Paris: ACM;2009,379–388.
Ojala, M,Vuokko, N,Kallio, A,Haiminen, N,Mannila, H.Randomization methods for assessing data analysis results on real‐valued matrices.Stat Anal Data Min2009,2:209–230.
De Bie, T.An information theoretic framework for data mining. In:Proceedings of the 17th ACM SIGKDD conference on Knowledge Discovery and Data Mining (KDD`11).San Diego, CA: ACM;2011,564–572.
De Bie, T,Kontonasios, K‐N,Spyropoulou, E.A framework for mining interesting pattern sets.SIGKDD Explor Newsl2011,12:92–100.
Jaynes, ET.On the rationale of maximum‐entropy methods.Proc IEEE1982,20:939–952.
Bertsekas, DP.Nonlinear Programming.Nashua, NH: Athena Scientific;1995.
Cover, TM,Thomas, JA.Elements of Information Theory.New York: Wiley‐Interscience;2006.
Tatti, N,Mampaey, M.Using background knowledge to rank itemsets.Data Min Knowl Discov2010,21:293–309.
Kontonasios, K‐N,De Bie, T.Formalizing complex prior information to quantify subjective interestingness of frequent pattern sets. Tech Report, TR‐133886.University of Bristol,Bristol, UK;2011.
Ojala, M.Assessing data mining results on matrices with randomization. In:Proceedings of the 2010 IEEE International Conference on Data Mining.Sydney, Australia: IEEE Computer Society;2010,959–964.
Kontonasios, K‐N,Vreeken, J,De Bie, T.Maximum entropy modeling for assessing results on real‐valued data. In:Proceedings of the 2011 IEEE International Conference on Data Mining.Vancouver, BC: IEEE Computer Society;2011:350–359.
De Bie, T.Subjectively interesting alternative clusters. In:Proceedings of the 2nd MultiClust Workshop: Discovering, Summarizing, and Using Multiple Clusterings.Athens, Greece: CEUR Workshop Proceedings (CEUR‐WS.org) (online);2011, 43–54.
Spyropoulou, E,De Bie, T.Interesting multi‐relational patterns. In:Proceedings of the 2011 IEEE International Conference on Data Mining.Vancouver, BC: IEEE Computer Society;2011:675–684.
Chakrabarti, S,Sarawagi, S,Dom, B.Mining surprising patterns using temporal description length. In:Proceedings of the 24rd International Conference on Very Large Data Bases.San Francisco, CA: Morgan Kaufmann;1998,606–617.
Berger, G,Tuzhilin, A.Discovering unexpected patterns in temporal data using temporal logic. In:Etzion, O,Jajodia, S,Sripada, S, eds.Temporal Databases: Research and Practice.New York: Springer;1998.
Newman, MEJ.Modularity and community structure in networks.Proc Natl Acad Sci USA2006,103:8577–8582.
Li, D,Laurent, A,Poncelet, P.Mining unexpected Web usage behaviors. In:Proceedings of the 8th industrial conference on Advances in Data Mining: Medical Applications, E‐Commerce, Marketing, and Theoretical Aspects.Leipzig, Germany: Springer‐Verlag;2008,283–297.
Dong, G,Li, J.Interestingness of discovered association rules in terms of neighborhood‐based unexpectedness. In:Proceedings of the Second Pacific‐Asia Conference on Research and Development in Knowledge Discovery and Data Mining.London, UK: Springer‐Verlag;1998,72–86.
Guillet, F,Hamilton, HJ.Quality measures in data mining.New York: Springer;2007.
Blanchard, J,Guillet, F,Kuntz, P.Semantics‐based classification of rule interestingness. In:Zhao, Y,Zhang, C,Cao, L, eds.Post‐Mining of Association Rules: Techniques for Effective Knowledge Extraction.Hershey, PA: IGI;2009, 56–79.
Piatetsky‐Shapiro, G,Matheus, CJ.The interestingness of deviations. In:Fayyad, VM,Uthurusamy, R, eds.Knowledge Discovery in Databases, Papers.Seattle, Washington: AAAI Workshop (KDD ‘94);1994:25–36.
Adamopoulos, P,Tuzhilin, A.On unexpectedness in recommender systems: or how to expect the unexpected. In:DiveRS 2011–ACM RecSys 2011 Workshop on Novelty and Diversity in Recommender Systems.Chicago, IL: Workshop Location;2011.
Shekar, B,Natarajan, R.A framework for evaluating knowledge‐based interestingness of association rules.Fuzzy Optim Decis Mak2004,3:157–185.
Marinica, C,Guillet, F.Knowledge‐based interactive postmining of association rules using ontologies.IEEE Trans Knowl Data Eng2010,22:784–797.
de Graaf, JM,Kosters, WA,Witteman, JJ.Interesting fuzzy associations rules in quantitative databases. In:Proceedings of the Fifth European Conference on Principles of Data Mining and Knowledge Discovery (PKDD 2001).Freiburg, Germany;2001,140–151.
de Graaf, JM,Kosters, WA,Witteman, JJ.Interesting associations rules in multiple taxonomies. In:Proceedings of BNAIC`00.Kaatsheuvel, The Netherlands;2000,93–100.
Freitas, AA:On rule interestingness measures.Knowl Based Syst1999,12:309–315.
Tan, P,Kumar, V,Srivastava, J.Selecting the right interestingness measures. In:Proceedings of the 8th ACM SIGKDD conference on Knowledge Discovery and Data Mining (KDD`02).Edmonton, Canada: ACM;2002, 32–41.
Freitas, AA.On objective measures of rule surprisingness. In:Proceedings of the Second European Conference on Principles of Data Mining and Knowledge Discovery (PKDD 1998).Nantes, France;1998,1–9.
Liu, B,Hsu, W,Wang, K,Chen, S.Visually aided exploration of interesting association rules. In:Proceedings of the 3rd Pasific‐Asia Conference on Methodologies for Knowledge Discovery and Data Mining (PAKDD).Melbourne, Australia:1998,380–389.
Jindal, N,Liu, B,Lim, EP.Finding unusual review patterns using unexpected rules. In:Proceedings of the 19th International Conference on Information and Knowledge Management (CIKM ‘10).Toronto, Canada;2010,1549–1552.