Home
This Title All WIREs
WIREs RSS Feed
How to cite this WIREs title:
WIREs Nanomed Nanobiotechnol
Impact Factor: 5.681

Characterization of physicochemical properties of nanomaterials and their immediate environments in high‐throughput screening of nanomaterial biological activity

Full article on Wiley Online Library:   HTML PDF

Can't access this content? Tell your librarian.

Thousands of nanomaterials (NMs) are in commerce and few have toxicity data. To prioritize NMs for toxicity testing, high‐throughput screening (HTS) of biological activity may be the only practical and timely approach to provide the necessary information. As in all nanotoxicologic studies, characterization of physicochemical properties of NMs and their immediate environments in HTS is critical to understanding how these properties affect NM bioactivity and to allow extrapolation to NMs not screened. The purpose of the study, the expert‐groups‐recommended minimal characterization, and NM physicochemical properties likely to affect measured bioactivity all help determine the scope of characterization. A major obstacle in reaping the full benefits of HTS for NMs is the low throughput of NM physicochemical characterization, which may require more sample quantity than HTS assays. Increasing the throughput and speed, and decreasing the amount of NMs needed for characterization are crucial. Finding characterization techniques and biological activity assays compatible with diverse classes of NMs is a challenge and multiple approaches for the same endpoints may be necessary. Use of computational tools and nanoinformatics for organizing and analyzing data are important to fully utilize the power of HTS. Other desired advances include the ability to more fully characterize: pristine NM without prior knowledge of NM physicochemical properties; non‐pristine NMs (e.g., after use); NM in not‐perfectly‐dispersed suspension; and NM in biological samples at exposure‐relevant conditions. Through combining HTS and physicochemical characterization results, we will better understand NM bioactivities, prioritize NMs for further testing, and build computational models to predict NM toxicity. WIREs Nanomed Nanobiotechnol 2013. doi: 10.1002/wnan.1229

Conflict of interest: The authors have declared no conflicts of interest for this article.

Browse by Topic

Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials
blog comments powered by Disqus

Access to this WIREs title is by subscription only.

Recommend to Your
Librarian Now!

The latest WIREs articles in your inbox

Sign Up for Article Alerts

Twitter: smalljournal Follow us on Twitter

    Highly Conductive, Capacitive, Flexible and Soft Electrodes Based on a 3D Graphene–Nanotube–Palladium Hybrid and... http://t.co/DcLdIpc97j
    Solvent Effects on Polymer Sorting of Carbon Nanotubes with Applications in Printed Electronics http://t.co/cQCY37A0fI
    Layered Double Hydroxide-based Nanomaterials as Highly Efficient Catalysts and Adsorbents http://t.co/jmykgCs2pI