Fire, A, Xu, SQ, Montgomery, MK, Kostas, SA, Driver, SE, Mello, CC. Potent and specific genetic interference by double‐stranded RNA in Caenorhabditis elegans. Nature 1998, 391:806–811.
Baulcombe, D. RNA silencing in plants. Nature 2004, 431:356–363.
Sanchez‐Vargas, I, Travanty, EA, Keene, KM, Franz, AWE, Beaty, BJ, Blair, CD, Olson, KE. RNA interference, arthropod‐borne viruses, and mosquitoes. Virus Res 2004, 102:65–74.
Voinnet, O. Induction and suppression of RNA silencing: insights from viral infections. Nat Rev Genet 2005, 6:206–220.
Kuwabara, PE, Coulson, A. RNAi—prospects for a general technique for determining gene function. Parasitol Today 2000, 16:347–349.
Wu, W, Sun, M, Zou, GM, Chen, J. MicroRNA and cancer: current status and prospective. Int J Cancer 2007, 120:953–960.
Yadav, S, van Vlerken, LE, Little, SR, Amiji, MM. Evaluations of combination MDR‐1 gene silencing and paclitaxel administration in biodegradable polymeric nanoparticle formulations to overcome multidrug resistance in cancer cells. Cancer Chemother Pharmacol 2009, 63:711–722.
Hannon, GJ. RNA interference. Nature 2002, 418:244–251.
Boxem, M, Srinivasan, DG, van den Heuvel, S. The Caenorhabditis elegans gene ncc‐1 encodes a cdc2‐related kinase required for M phase in meiotic and mitotic cell divisions, but not for S phase. Development 1999, 126:2227–2239.
Longman, D, Johnstone, IL, Caceres, JF. Functional characterization of SR and SR‐related genes in Caenorhabditis elegans. EMBO J 2000, 19:1625–1637.
Svoboda, P, Stain, P, Hayashi, H, Schultz, RM. Selective reduction of dormant maternal mRNAs in mouse oocytes by RNA interference. Development 2000, 127:4147–4156.
Clemens, JC, Worby, CA, Simonson‐Leff, N, Muda, M, Maehama, T, Hemmings, BA, Dixon, JE. Use of double‐stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proc Natl Acad Sci 2000, 97:6499–6503.
Stark, GR, Kerr, IM, Williams, BRG, Silverman, RH, Schreiber, RD. How cells respond to interferons. Annu Rev Biochem 1998, 67:227–264.
Thomas, CE, Ehrhardt, A, Kay, MA. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 2003, 4:346–358.
Pack, DW, Hoffman, AS, Pun, S, Stayton, PS. Design and development of polymers for gene delivery. Nat Rev Drug Discov 2005, 4:581–593.
Li, HJ, Chang, C, Weiskopf, M. Helix‐coil transition in nucleoprotein‐chromatin structure. Biochemistry 1973, 12:1763–1772.
Wu, GY, Wu, CH. Receptor‐mediated in vitro gene transformation by a soluble DNA carrier system. J Biol Chem 1987, 262:4429–4432.
Wagner, E, Plank, C, Zatloukal, K, Cotten, M, Birnstiel, ML. Influenza‐virus hemagglutinin‐Ha‐2 N‐terminal fusogenic peptides augment gene‐transfer by transferrin polylysine DNA complexes—toward a synthetic virus‐like gene‐transfer vehicle. Proc Natl Acad Sci 1992, 89:7934–7938.
Curiel, DT, Agarwal, S, Wagner, E, Cotten, M. Adenovirus enhancement of transferrin polylysine‐mediated gene delivery. Proc Natl Acad Sci 1991, 88:8850–8854.
Midoux, P, Monsigny, M. Efficient gene transfer by histidylated polylysine pDNA complexes. Bioconjugate Chem 1999, 10:406–411.
Vadiei, K, Lopez‐Berestein, G, Perez‐Soler, R, Luke, DR. In vitro evaluation of liposomal cyclosporine. Int J Pharm 1989, 57:133–138.
Scherphof, GL, Dijkstra, J, Spanjer, HH, Derksen, JT, Roerdink, FH. Uptake and intracellular processing of targeted and nontargeted liposomes by rat Kupffer cells in vivo and in vitro. Ann N Y Acad Sci 1985, 446:368–384.
Alving, CR, Steck, EA, Chapman, WL Jr, Waits, VB, Hendricks, LD, Swartz, GM Jr, Hanson, WL. Therapy of leishmaniasis: superior efficacies of liposome‐encapsulated drugs. Proc Natl Acad Sci 1978, 75:2959–2963.
Wightman, L, Kircheis, R, Rossler, V, Carotta, S, Ruzicka, R, Kursa, M, Wagner, E. Different behavior of branched and linear polyethylenimine for gene delivery in vitro and in vivo. J Gene Med 2001, 3:362–372.
Ogris, M, Steinlein, P, Kursa, M, Mechtler, K, Kircheis, R, Wagner, E. The size of DNA/transferrin‐PEI complexes is an important factor for gene expression in cultured cells. Gene Ther 1998, 5:1425–1433.
Ward, CM, Read, ML, Seymour, LW. Systemic circulation of poly(L‐lysine)/DNA vectors is influenced by polycation molecular weight and type of DNA: differential circulation in mice and rats and the implications for human gene therapy. Blood 2001, 97:2221–2229.
Ogris, M, Brunner, S, Schuller, S, Kircheis, R, Wagner, E. PEGylated DNA/transferrin‐PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Ther 1999, 6:595–605.
Mao, HQ, Roy, K, Troung‐Le, VL, Janes, KA, Lin, KY, Wang, Y, August, JT, Leong, KW. Chitosan‐DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency. J Control Release 2001, 70:399–421.
Kaul, G, Amiji, M. Tumor‐targeted gene delivery using poly(ethylene glycol)‐modified gelatin nanoparticles: In vitro and in vivo studies. Pharmaceut Res 2005, 22:951–961.
Suk, JS, Suh, J, Choy, K, Lai, SK, Fu, J, Hanes, J. Gene delivery to differentiated neurotypic cells with RGD and HIV Tat peptide functionalized polymeric nanoparticles. Biomaterials 2006, 27:5143–5150.
Hatakeyama, H, Akita, H, Kogure, K, Oishi, M, Nagasaki, Y, Kihira, Y, Ueno, M, Kobayashi, H, Kikuchi, H, Harashima, H. Development of a novel systemic gene delivery system for cancer therapy with a tumor‐specific cleavable PEG‐lipid. Gene Ther 2007, 14:68–77.
Kawano, T, Yamagata, M, Takahashi, H, Niidome, Y, Yamada, S, Katayama, Y, Niidome, T. Stabilizing of plasmid DNA in vivo by PEG‐modified cationic gold nanoparticles and the gene expression assisted with electrical pulses. J Control Release 2006, 111:382–389.
Meyer, M, Wagner, E. pH‐responsive shielding of non‐viral gene vectors. Expert Opin Drug Deliv 2006, 3:563–571.
Hafez, I, Maurer, N, Cullis, P. On the mechanism whereby cationic lipids promote intracellular delivery of polynucleic acids. Gene Ther 2001, 8:1188–1196.
Xu, Y, Szoka, FC Jr. Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection. Biochemistry 1996, 35:5616–5623.
Zelphati, O, Szoka, FC Jr. Mechanism of oligonucleotide release from cationic liposomes. Proc Natl Acad Sci 1996, 93:11493–11498.
Verma, A, Stellacci, F. Effect of surface properties on nanoparticle‐cell interactions. Small 2010, 6:12–21.
Lockman, PR, Koziara, JM, Mumper, RJ, Allen, DD. Nanoparticle surface charges alter blood‐brain barrier integrity and permeability. J Drug Target 2004, 12:635–641.
Subbarao, NK, Parente, RA, Szoka, FC Jr, Nadasdi, L, Pongracz, K. The pH‐dependent bilayer destabilization by an amphipathic peptide. Biochemistry 1987, 26:2964–2972.
Wyman, TB, Nicol, F, Zelphati, O, Scaria, P, Plank, C, Szoka, FC Jr. Design, synthesis, and characterization of a cationic peptide that binds to nucleic acids and permeabilizes bilayers. Biochemistry 1997, 36:3008–3017.
Niidome, T, Ohmori, N, Ichinose, A, Wada, A, Mihara, H, Hirayama, T, Aoyagi, H. Binding of cationic α‐helical peptides to plasmid DNA and their gene transfer abilities into cells. J Biol Chem 1997, 272:15307–15312.
Plank, C, Oberhauser, B, Mechtler, K, Koch, C, Wagner, E. The influence of endosome‐disruptive peptides on gene‐transfer using synthetic virus‐like gene‐transfer systems. J Biol Chem 1994, 269:12918–12924.
Frankel, AD, Pabo, CO. Cellular uptake of the tat protein from human immunodeficiency virus. Cell 1988, 55:1189–1193.
Green, M, Loewenstein, PM. Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans‐activator protein. Cell 1988, 55:1179–1188.
Manickam, DS, Bisht, HS, Wan, L, Mao, GZ, Oupicky, D. Influence of TAT‐peptide polymerization on properties and transfection activity of TAT/DNA polyplexes. J Control Release 2005, 102:293–306.
Shmueli, RB, Anderson, DG, Green, JJ. Electrostatic surface modifications to improve gene delivery. Expert Opin Drug Del 2010, 7:535–550.
Harris, TJ, Green, JJ, Fung, PW, Langer, R, Anderson, DG, Bhatia, SN. Tissue‐specific gene delivery via nanoparticle coating. Biomaterials 2010, 31:998–1006.
Cheng, CJ, Saltzman, WM. Enhanced siRNA delivery into cells by exploiting the synergy between targeting ligands and cell‐penetrating peptides. Biomaterials 2011, 32:6194–6203.
Zhou, J, Neff, CP, Swiderski, P, Li, H, Smith, DD, Aboellail, T, Remling‐Mulder, L, Akkina, R, Rossi, JJ. Functional in vivo delivery of multiplexed anti‐HIV‐1 siRNAs via a chemically synthesized aptamer with a sticky bridge. Mol Ther 2013, 21:192–200.
Boussif, O, Lezoualch, F, Zanta, MA, Mergny, MD, Scherman, D, Demeneix, B, Behr, JP. A versatile vector for gene and oligonucleotide transfer into cells in culture and in‐vivo—polyethylenimine. Proc Natl Acad Sci 1995, 92:7297–7301.
Benjaminsen, RV, Mattebjerg, MA, Henriksen, JR, Moghimi, SM, Andresen, TL. The possible ‘proton sponge’ effect of polyethylenimine (PEI) does not include change in lysosomal pH. Mol Ther 2013, 21:149–157.
Sonawane, ND, Szoka, FC, Verkman, AS. Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine‐DNA polyplexes. J Biol Chem 2003, 278:44826–44831.
Nel, AE, Madler, L, Velegol, D, Xia, T, Hoek, EMV, Somasundaran, P, Klaessig, F, Castranova, V, Thompson, M. Understanding biophysicochemical interactions at the nano‐biointerface. Nature Mater 2009, 8:543–557.
Okuda, T, Sugiyama, A, Niidome, T, Aoyagi, H. Characters of dendritic poly(L‐lysine) analogues with the terminal lysines replaced with arginines and histidines as gene carriers in vitro. Biomaterials 2004, 25:537–544.
Benns, JM, Choi, JS, Mahato, RI, Park, JS, Kim, SW. pH‐sensitive cationic polymer gene delivery vehicle: N‐Ac‐poly(L‐histidine)‐graft‐poly(L‐lysine) comb shaped polymer. Bioconjugate Chem 2000, 11:637–645.
Haensler, J, Szoka, FC Jr. Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjugate Chem 1993, 4:372–379.
Vader, P, van der Aa, LJ, Engbersen, JFJ, Storm, G, Schiffelers, RM. Disulfide‐based poly(amido amine)s for siRNA delivery: effects of structure on sirna complexation, cellular uptake, gene silencing and toxicity. Pharmaceut Res 2011, 28:1013–1022.
Felgner, JH, Kumar, R, Sridhar, CN, Wheeler, CJ, Tsai, YJ, Border, R, Ramsey, P, Martin, M, Felgner, PL. Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations. J Biol Chem 1994, 269:2550–2561.
El Ouahabi, A, Thiry, M, Pector, V, Fuks, R, Ruysschaert, JM, Vandenbranden, M. The role of endosome destabilizing activity in the gene transfer process mediated by cationic lipids. FEBS Lett 1997, 414:187–192.
Drummond, DC, Zignani, M, Leroux, JC. Current status of pH‐sensitive liposomes in drug delivery. Prog Lipid Res 2000, 39:409–460.
Gary, DJ, Puri, N, Won, YY. Polymer‐based siRNA delivery: perspectives on the fundamental and phenomenological distinctions from polymer‐based DNA delivery. J Control Release 2007, 121:64–73.
Luo, D, Saltzman, WM. Synthetic DNA delivery systems. Nat Biotechnol 2000, 18:33–37.
Kawasaki, H, Taira, K. Short hairpin type of dsRNAs that are controlled by tRNAVal promoter significantly induce RNAi‐mediated gene silencing in the cytoplasm of human cells. Nucleic Acids Res 2003, 31:700–707.
Lynn, DM, Langer, R. Degradable poly (β‐amino esters): synthesis, characterization, and self‐assembly with plasmid DNA. J Am Chem Soc 2000, 122:10761–10768.
Tzeng, SY, Green, JJ. Subtle changes to polymer structure and degradation mechanism enable highly effective nanoparticles for siRNA and DNA delivery to human brain cancer. Adv Healthcare Mater 2013, 2:468–480.
Son, S, Namgung, R, Kim, J, Singha, K, Kim, WJ. Bioreducible polymers for gene silencing and delivery. Acc Chem Res 2012, 45:1100–1112.
Elbakry, A, Zaky, A, Liebl, R, Rachel, R, Goepferich, A, Breunig, M. Layer‐by‐layer assembled gold nanoparticles for siRNA delivery. Nano Lett 2009, 9:2059–2064.
Lee, JS, Green, JJ, Love, KT, Sunshine, J, Langer, R, Anderson, DG. Gold, poly (β‐amino ester) nanoparticles for small interfering RNA delivery. Nano Lett 2009, 9:2402–2406.
Spagnou, S, Miller, AD, Keller, M. Lipidic carriers of siRNA: differences in the formulation, cellular uptake, and delivery with plasmid DNA. Biochemistry 2004, 43:13348–13356.
Hill, IR, Garnett, MC, Bignotti, F, Davis, SS. In vitro cytotoxicity of poly(amidoamine)s: relevance to DNA delivery. Biochim Biophys Acta 1999, 1427:161–174.
Lim, YB, Han, SO, Kong, HU, Lee, Y, Park, JS, Jeong, B, Kim, SW. Biodegradable polyester, poly[α‐(4 aminobutyl)‐L‐glycolic acid], as a non‐toxic gene carrier. Pharmaceut Res 2000, 17:811–816.
Forrest, ML, Koerber, JT, Pack, DW. A degradable polyethylenimine derivative with low toxicity for highly efficient gene delivery. Bioconjugate Chem 2003, 14:934–940.
Sutton, D, Kim, SJ, Shuai, XT, Leskov, K, Marques, JT, Williams, BRG, Boothman, DA, Gao, JM. Efficient suppression of secretory clusterin levels by polymer‐siRNA nanocomplexes enhances ionizing radiation lethality in human MCF‐7 breast cancer cells in vitro. Int J Nanomed 2006, 1:155–162.
Grayson, ACR, Doody, AM, Putnam, D. Biophysical and structural characterization of polyethylenimine‐mediated siRNA delivery in vitro. Pharmaceut Res 2006, 23:1868–1876.
Hagerman, PJ. Flexibility of RNA. Annu Rev Biophys Biomol Struct 1997, 26:139–156.
Kebbekus, P, Draper, DE, Hagerman, P. Persistence length of RNA. Biochemistry 1995, 34:4354–4357.
Bolcato‐Bellemin, AL, Bonnet, ME, Creusatt, G, Erbacher, P, Behr, JP. Sticky overhangsenhance siRNA‐mediated gene silencing. Proc Natl Acad Sci 2007, 104:16050–16055.
Li, SD, Chen, YC, Hackett, MJ, Huang, L. Tumor‐targeted delivery of siRNA by self‐assembled nanoparticles. Mol Ther 2008, 16:163–169.
Adair, JH, Parette, MP, Altinoglu, EI, Kester, M. Nanoparticulate alternatives for drug delivery. ACS Nano 2010, 4:4967–4970.
Chono, S, Li, SD, Conwell, CC, Huang, L. An efficient and low immunostimulatory nanoparticle formulation for systemic siRNA delivery to the tumor. J Control Release 2008, 131:64–69.
Akinc, A, Goldberg, M, Qin, J, Dorkin, JR, Gamba‐Vitalo, C, Maier, M, Jayaprakash, KN, Jayaraman, M, Rajeev, KG, Manoharan, M, et al. Development of lipidoid‐siRNA formulations for systemic delivery to the liver. Mol Ther 2009, 17:872–879.
Akinc, A, Zumbuehl, A, Goldberg, M, Leshchiner, ES, Busini, V, Hossain, N, Bacallado, SA, Nguyen, DN, Fuller, J, Alvarez, R, et al. A combinatorial library of lipid‐like materials for delivery of RNAi therapeutics. Nat Biotechnol 2008, 26:561–569.
Lu, JJ, Langer, R, Chen, JZ. A novel mechanism is involved in cationic lipid‐mediated functional siRNA delivery. Mol Pharm 2009, 6:763–771.
Umeda, M, Nojima, S, Inoue, K. Effect of lipid composition on HVJ‐mediated fusion of glycophorin liposomes to erythrocytes. J Biochem 1985, 97:1301–1310.
Heyes, J, Palmer, L, Bremner, K, MacLachlan, I. Cationic lipid saturation influences intracellular delivery of encapsulated nucleic acids. J Control Release 2005, 107:276–287.
Semple, SC, Akinc, A, Chen, J, Sandhu, AP, Mui, BL, Cho, CK, Sah, DW, Stebbing, D, Crosley, EJ, Yaworski, E, et al. Rational design of cationic lipids for siRNA delivery. Nat Biotechnol 2010, 28:172–176.
Meyer, M, Philipp, A, Oskuee, R, Schmidt, C, Wagner, E. Breathing life into polycations: functionalization with pH‐responsive endosomolytic peptides and polyethylene glycol enables siRNA delivery. J Am Chem Soc 2008, 130:3272.
Zhou, J, Patel, TR, Fu, M, Bertram, JP, Saltzman, WM. Octa‐functional PLGA nanoparticles for targeted and efficient siRNA delivery to tumors. Biomaterials 2012, 33:583–591.
Mok, H, Park, TG. Self‐crosslinked and reducible fusogenic peptides for intracellular delivery of siRNA. Biopolymers 2008, 89:881–888.
Yuan, XD, Shah, BA, Kotadia, NK, Li, JA, Gu, H, Wu, ZQ. The development and mechanism studies of cationic chitosan‐modified biodegradable PLGA nanoparticles for efficient siRNA drug delivery. Pharmaceut Res 2010, 27:1285–1295.
Matsumoto, S, Christie, RJ, Nishiyama, N, Miyata, K, Ishii, A, Oba, M, Koyama, H, Yamasaki, Y, Kataoka, K. Environment‐responsive block copolymer micelles with a disulfide cross‐linked core for enhanced siRNA delivery. Biomacromolecules 2009, 10:119–127.
van der Aa, L, Vader, P, Storm, G, Schiffelers, R, Engbersen, J. Optimization of poly (amido amine) s as vectors for siRNA delivery. J Control Release 2011, 150:177–186.
Christie, RJ, Matsumoto, Y, Miyata, K, Nomoto, T, Fukushima, S, Osada, K, Halnaut, J, Pittella, F, Kim, HJ, Nishiyama, N, et al. Targeted polymeric micelles for siRNA treatment of experimental cancer by intravenous injection. ACS Nano 2012, 6:5174–5189.
Tzeng, SY, Yang, PH, Grayson, WL, Green, JJ. Synthetic poly(ester amine) and poly(amido amine) nanoparticles for efficient DNA and siRNA delivery to human endothelial cells. Int J Nanomed 2012, 6:3309–3322.
Vandenbroucke, RE, De Geest, BG, Bonne, S, Vinken, M, Van Haecke, T, Heimberg, H, Wagner, E, Rogiers, V, De Smedt, SC, Demeester, J, et al. Prolonged gene silencing in hepatoma cells and primary hepatocytes after small interfering RNA delivery with biodegradable poly(β‐amino esters). J Gene Med 2008, 10:783–794.
Tzeng, SY, Hung, BP, Grayson, WL, Green, JJ. Cystamine‐terminated poly(β‐amino ester)s for siRNA delivery to human mesenchymal stem cells and enhancement of osteogenic differentiation. Biomaterials 2012, 33:8142–8151.
Breunig, M, Hozsa, C, Lungwitz, U, Watanabe, K, Umeda, I, Kato, H, Goepferich, A. Mechanistic investigation of poly (ethylene imine)‐based siRNA delivery: disulfide bonds boost intracellular release of the cargo. J Control Release 2008, 130:57–63.
Jeong, JH, Christensen, LV, Yockman, JW, Zhong, ZY, Engbersen, JFJ, Kim, WJ, Feijen, J, Kim, SW. Reducible poly(amido ethylenimine) directed to enhance RNA interference. Biomaterials 2007, 28:1912–1917.
Christensen, LV, Chang, CW, Kim, WJ, Kim, SW, Zhong, ZY, Lin, C, Engbersen, JFJ, Feijen, J. Reducible poly(amido ethylenimine)s designed for triggered intracellular gene delivery. Bioconjugate Chem 2006, 17:1233–1240.
Vader, P, van der Aa, LJ, Engbersen, JFJ, Storm, G, Schiffelers, RM. Physicochemical and biological evaluation of siRNA polyplexes based on PEGylated poly (amido amine) s. Pharmaceut Res 2012, 29:352–361.
Tanaka, T, Mangala, LS, Vivas‐Mejia, PE, Nieves‐Alicea, R, Mann, AP, Mora, E, Han, HD, Shahzad, MM, Liu, X, Bhavane, R, et al. Sustained small interfering RNA delivery by mesoporous silicon particles. Cancer Res 2010, 70:3687–3696.
Giljohann, DA, Seferos, DS, Prigodich, AE, Patel, PC, Mirkin, CA. Gene regulation with polyvalent siRNA‐nanoparticle conjugates. J Am Chem Soc 2009, 131:2072–2073.
Zheng, D, Giljohann, DA, Chen, DL, Massich, MD, Wang, XQ, Iordanov, H, Mirkin, CA, Paller, AS. Topical delivery of siRNA‐based spherical nucleic acid nanoparticle conjugates for gene regulation. Proc Natl Acad Sci 2012, 109:11975–11980.
Derfus, AM, Chen, AA, Min, DH, Ruoslahti, E, Bhatia, SN. Targeted quantum dot conjugates for siRNA delivery. Bioconjugate Chem 2007, 18:1391–1396.
Kim, SH, Jeong, JH, Lee, SH, Kim, SW, Park, TG. Local and systemic delivery of VEGF siRNA using polyelectrolyte complex micelles for effective treatment of cancer. J Control Release 2008, 129:107–116.
Singh, N, Agrawal, A, Leung, AKL, Sharp, PA, Bhatia, SN. Effect of nanoparticle conjugation on gene silencing by RNA interference. J Am Chem Soc 2010, 132:8241–8243.
Kim, SH, Jeong, JH, Lee, SH, Kim, SW, Park, TG. PEG conjugated VEGF siRNA for anti‐angiogenic gene therapy. J Control Release 2006, 116:123–129.
Lee, JB, Hong, J, Bonner, DK, Poon, Z, Hammond, PT. Self-assembled RNA interference microsponges for efficient siRNA delivery. Nature Mater 2012, 11:316–322.
Mok, H, Lee, SH, Park, JW, Park, TG. Multimeric small interfering ribonucleic acid for highly efficient sequence‐specific gene silencing. Nature Mater 2010, 9:272–278.
Cutler, JI, Zhang, K, Zheng, D, Auyeung, E, Prigodich, AE, Mirkin, CA. Polyvalent nucleic acid nanostructures. J Am Chem Soc 2011, 133:9254–9257.
Forbes, DC, Peppas, NA. Oral delivery of small RNA and DNA. J Control Release 2012, 162:435–438.
Dalby, B, Cates, S, Harris, A, Ohki, EC, Tilkins, ML, Price, PJ, Ciccarone, VC. Advanced transfection with Lipofectamine 2000 reagent: primary neurons, siRNA, and high‐throughput applications. Methods 2004, 33:95–103.
Ma, Z, Li, J, He, FT, Wilson, A, Pitt, B, Li, S. Cationic lipids enhance siRNA‐mediated interferon response in mice. Biochem Biophys Res Commun 2005, 330:755–759.
Palliser, D, Chowdhury, D, Wang, QY, Lee, SJ, Bronson, RT, Knipe, DM, Lieberman, J. An siRNA‐based microbicide protects mice from lethal herpes simplex virus 2 infection. Nature 2006, 439:89–94.
Judge, AD, Bola, G, Lee, ACH, Maclachlan, I. Design of noninflammatory synthetic siRNA mediating potent gene silencing in vivo. Mol Ther 2006, 13:494–505.
Litzinger, DC, Huang, L. Phosphatidylethanolamine liposomes—drug delivery, gene‐transfer and immunodiagnostic applications. Biochim Biophys Acta 1992, 1113:201–227.
Hafez, IM, Cullis, PR. Roles of lipid polymorphism in intracellular delivery. Adv Drug Deliv Rev 2001, 47:139–148.
Love, KT, Mahon, KP, Levins, CG, Whitehead, KA, Querbes, W, Dorkin, JR, Qin, J, Cantley, W, Qin, LL, Racie, T, et al. Lipid‐like materials for low‐dose, in vivo gene silencing. Proc Natl Acad Sci 2010, 107:1864–1869.
Leconet, W, Petit, P, Peraldi‐Roux, S, Bresson, D. Nonviral delivery of small interfering RNA into pancreas‐associated immune cells prevents autoimmune diabetes. Mol Ther 2012, 20:2315–2325.
TKM 080301 for Primary or Secondary Liver Cancer. Available at: http://clinicaltrials.gov/ct2/show/NCT01437007. (Accessed 2013).
Dose Escalation Study to Determine Safety, Pharmacokinetics, and Pharmacodynamics of Intravenous TKM‐080301. Available at: http://clinicaltrials.gov/show/NCT01262235. (Accessed 2013)
Trial to Evaluate Safety and Tolerability of ALN‐TTR01 in Transthyretin (TTR) Amyloidosis. Available at: http://clinicaltrials.gov/show/NCT01148953. (Accessed 2013)
Study With Atu027 in Patients With Advanced Solid Cancer. Available at: http://clinicaltrials.gov/ct2/show/study/NCT00938574. (Accessed 2013)
Kakizawa, Y, Harada, A, Kataoka, K. Environment‐sensitive stabilization of core‐shell structured polyion complex micelle by reversible cross‐linking of the core through disulfide bond. J Am Chem Soc 1999, 121:11247–11248.
Kakizawa, Y, Harada, A, Kataoka, K. Glutathione‐sensitive stabilization of block copolymer micelles composed of antisense DNA and thiolated poly (ethylene glycol)‐b lock‐poly (l‐lysine): a potential carrier for systemic delivery of antisense DNA. Biomacromolecules 2001, 2:491–497.
Miyata, K, Kakizawa, Y, Nishiyama, N, Harada, A, Yamasaki, Y, Koyama, H, Kataoka, K. Block catiomer polyplexes with regulated densities of charge and disulfide cross‐linking directed to enhance gene expression. J Am Chem Soc 2004, 126:2355–2361.
Bernstein, E, Caudy, AA, Hammond, SM, Hannon, GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 2001, 409:363–366.
Kozielski, KL, Tzeng, SY, Green, JJ. A bioreducible linear poly(β‐amino ester) for siRNA delivery. Chem Commun 2013, 49:5319–5321.
Woodrow, KA, Cu, Y, Booth, CJ, Saucier‐Sawyer, JK, Wood, MJ, Saltzman, WM. Intravaginal gene silencing using biodegradable polymer nanoparticles densely loaded with small‐interfering RNA. Nature Mater 2009, 8:526–533.
Tzeng, SY, Lavik, EB. Photopolymerizable nanoarray hydrogels deliver CNTF and promote differentiation of neural stem cells. Soft Matter 2010, 6:2208–2215.
Bertram, JP, Williams, CA, Robinson, R, Segal, SS, Flynn, NT, Lavik, EB. Intravenous hemostat: nanotechnology to halt bleeding. Sci Transl Med 2009, 1:11ra22.
Davis, ME. The first targeted delivery of siRNA in humans via a self‐assembling, cyclodextrin polymer‐based nanoparticle: from concept to clinic. Mol Pharm 2009, 6:659–668.
Chen, C, Okayama, H. High‐efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol 1987, 7:2745–2752.
Jordan, M, Schallhorn, A, Wurm, FM. Transfecting mammalian cells: optimization of critical parameters affecting calcium‐phosphate precipitate formation. Nucleic Acids Res 1996, 24:596–601.
Tolou, H. Administration of oligonucleotides to cultured cells by calcium phosphate precipitation method. Anal Biochem 1993, 215:156–158.
Kakizawa, Y, Kataoka, K. Block copolymer self‐assembly into monodispersive nanoparticles with hybrid core of antisense DNA and calcium phosphate. Langmuir 2002, 18:4539–4543.
Kakizawa, Y, Furukawa, S, Ishii, A, Kataoka, K. Organic–inorganic hybrid‐nanocarrier of siRNA constructing through the self‐assembly of calcium phosphate and PEG‐based block aniomer. J Control Release 2006, 111:368–370.
Zhang, M, Ishii, A, Nishiyama, N, Matsumoto, S, Ishii, T, Yamasaki, Y, Kataoka, K. PEGylated calcium phosphate nanocomposites as smart environment‐sensitive carriers for siRNA delivery. Adv Mater 2009, 21:3520–3525.
Connor, EE, Mwamuka, J, Gole, A, Murphy, CJ, Wyatt, MD. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 2005, 1:325–327.
Daniel, MC, Astruc, D. Gold nanoparticles: assembly, supramolecular chemistry, quantum‐size‐related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev Columbus 2004, 104:293.
Ghosh, PS, Kim, CK, Han, G, Forbes, NS, Rotello, VM. Efficient gene delivery vectors by tuning the surface charge density of amino acid‐functionalized gold nanoparticles. ACS Nano 2008, 2:2213–2218.
Love, JC, Estroff, LA, Kriebel, JK, Nuzzo, RG, Whitesides, GM. Self‐assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev Columbus 2005, 105:1103–1170.
Mirkin, CA, Letsinger, RL, Mucic, RC, Storhoff, JJ. A DNA‐based method for rationally assembling nanoparticles into macroscopic materials. Nature 1996, 382:607–609.
Decher G, Hong JD. Buildup of ultrathin multilayer films by a self‐assembly process, 1 consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces. In: Makromolekulare Chemie. Macromolecular Symposia: Wiley Online Library; 1991.
Meng, H, Liong, M, Xia, T, Li, Z, Ji, Z, Zink, JI, Nel, AE. Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P‐glycoprotein siRNA to overcome drug resistance in a cancer cell line. ACS Nano 2010, 4:4539–4550.
Gao, X, Cui, Y, Levenson, RM, Chung, LWK, Nie, S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 2004, 22:969–976.
Wu, X, Liu, H, Liu, J, Haley, KN, Treadway, JA, Larson, JP, Ge, N, Peale, F, Bruchez, MP. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 2002, 21:41–46.
Derfus, AM, Chan, WCW, Bhatia, SN. Intracellular delivery of quantum dots for live cell labeling and organelle tracking. Adv Mater 2004, 16:961–966.
Derfus, AM, Chan, WCW, Bhatia, SN. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 2004, 4:11–18.
Mattheakis, LC, Dias, JM, Choi, YJ, Gong, J, Bruchez, MP, Liu, J, Wang, E. Optical coding of mammalian cells using semiconductor quantum dots. Anal Biochem 2004, 327:200–208.
Chen, AA, Derfus, AM, Khetani, SR, Bhatia, SN. Quantum dots to monitor RNAi delivery and improve gene silencing. Nucleic Acids Res 2005, 33:e190–e190.
Ameres, SL, Martinez, J, Schroeder, R. Molecular basis for target RNA recognition and cleavage by human RISC. Cell 2007, 130:101–112.
Medarova, Z, Pham, W, Farrar, C, Petkova, V, Moore, A. In vivo imaging of siRNA delivery and silencing in tumors. Nat Med 2007, 13:372–377.
Soutschek, J, Akinc, A, Bramlage, B, Charisse, K, Constien, R, Donoghue, M, Elbashir, S, Geick, A, Hadwiger, P, Harborth, J, et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 2004, 432:173–178.
Wolfrum, C, Shi, S, Jayaprakash, KN, Jayaraman, M, Wang, G, Pandey, RK, Rajeev, KG, Nakayama, T, Charrise, K, Ndungo, EM, et al. Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nat Biotechnol 2007, 25:1149–1157.
Diegelman, AM, Kool, ET. Generation of circular RNAs and trans‐cleaving catalytic RNAs by rolling transcription of circular DNA oligonucleotides encoding hairpin ribozymes. Nucleic Acids Res 1998, 26:3235–3241.