Whitesides, GM, Grzybowski, B. Self‐assembly at all scales. Science 2002, 295:2418–2421.
Grzybowski, BA, Wilmer, CE, Kim, J, Browne, KP, Bishop, KJM. Self‐assembly: from crystals to cells. Soft Matter 2009, 5:1110–1128.
Whitesides, GM, Kriebel, JK, Mayers, BT. Self‐assembly and nanostructured materials. In: Huck, WTS, ed. Nanoscale Assembly: Chemical Techniques. New York: Springer; 2005, 217–239.
Whitesides, GM, Mathias, JP, Seto, CT. Molecular self‐assembly and nanochemistry—a chemical strategy for the synthesis of nanostructures. Science 1991, 254:1312–1319.
Boncheva, M, Whitesides, GM. Making things by self‐assembly. MRS Bull 2005, 30:736–742.
Whitesides, GM, Boncheva, M. Beyond molecules: self‐assembly of mesoscopic and macroscopic components. Proc Natl Acad Sci USA 2002, 99:4769–4774.
Bishop, KJM, Campbell, CJ, Mahmud, G, Grzybowski, BA. Biomimetic Design of Dynamic Self‐Assembling Systems. In: Krasnogor, N, Gustafson, S, Pelta, DA, Verdegay, JL, eds. Systems Self‐Assembly: Multidisciplinary Snapshots, Series Studies in Multidisciplinarity, vol. 5. Amsterdam: Elsevier; 2008, 21–48.
Hoeben, FJM, Jonkheijm, P, Meijer, EW, Schenning, APHJ. About supramolecular assemblies of pi‐conjugated systems. Chem Rev 2005, 105:1491–1546.
Steed, JW. Core Concepts in Supramolecular Chemistry and Nanochemistry. Chichester: John Wiley %26 Sons, Ltd; 2007.
Bhagavan, NV. Medical Biochemistry. San Diego: Academic Press; 2002.
Li, HY, LaBean, TH, Leong, KW. Nucleic acid‐based nanoengineering: novel structures for biomedical applications. Interf Focus 2011, 1:702–724.
Liu, Z, Qiao, J, Niu, ZW, Wang, Q. Natural supramolecular building blocks: from virus coat proteins to viral nanoparticles. Chem Soc Rev 2012, 41:6178–6194.
Pelesko, JA. The Science of Things That Put Themselves Together. Chapman and Hall/CRC; Boca Raton, 2007.
Aida, T, Meijer, EW, Stupp, SI. Functional supramolecular polymers. Science 2012, 335:813–817.
Bromley, EHC, Channon, K, Moutevelis, E, Woolfson, DN. Peptide and protein building blocks for synthetic biology: from programming biomolecules to self‐organized biomolecular systems. ACS Chem Biol 2008, 3:38–50.
Scanlon, S, Aggeli, A. Self‐assembling peptide nanotubes. Nano Today 2008, 3:22–30.
Ulijn, RV, Smith, AM. Designing peptide based nanomaterials. Chem Soc Rev 2008, 37:664–675.
Zayed, JM, Nouvel, N, Rauwald, U, Scherman, OA. Chemical complexity‐supramolecular self‐assembly of synthetic and biological building blocks in water. Chem Soc Rev 2010, 39:2806–2816.
Schnur, JM. Lipid tubules—a paradigm for molecularly engineered structures. Science 1993, 262:1669–1676.
Hirst, AR, Escuder, B, Miravet, JF, Smith, DK. High‐tech applications of self‐assembling supramolecular nanostructured gel‐phase materials: from regenerative medicine to electronic devices. Angew Chem Int Ed 2008, 47:8002–8018.
Tanner, P, Baumann, P, Enea, R, Onaca, O, Palivan, C, Meier, W. Polymeric vesicles: from drug carriers to nanoreactors and artificial organelles. Acc Chem Res 2011, 44:1039–1049.
Giacomelli, C, Schmidt, V, Aissou, K, Borsali, R. Block copolymer systems: from single chain to self‐assembled nanostructures. Langmuir 2010, 26:15734–15744.
Zhou, YF, Huang, W, Liu, JY, Zhu, XY, Yan, DY. Self‐assembly of hyperbranched polymers and its biomedical applications. Adv Mater 2010, 22:4567–4590.
Zeng, FW, Zimmerman, SC. Dendrimers in supramolecular chemistry: from molecular recognition to self‐assembly. Chem Rev 1997, 97:1681–1712.
Smith, DK. Dendritic supermolecules—towards controllable nanomaterials. Chem Commun 2006:34–44.
Reynhout, IC, Cornelissen, JJLM, Nolte, RJM. Synthesis of polymer‐biohybrids: from small to giant surfactants. Acc Chem Res 2009, 42:681–692.
Kitamoto, D, Morita, T, Fukuoka, T, Konishi, M, Imura, T. Self‐assembling properties of glycolipid biosurfactants and their potential applications. Curr Opin Colloid Interf Sci 2009, 14:315–328.
Yamamoto, T, Fukushima, T, Aida, T. Self‐assembled nanotubes and nanocoils from pi‐conjugated building blocks. Self‐Assembled Nanomaterials II: Nanotubes, vol. 220. Berlin Heidelberg:Springer, Verlag, 2008, 1–27.
Terrones, M, Botello‐Mendez, AR, Campos‐Delgado, J, Lopez‐Urias, F, Vega‐Cantu, YI, Rodriguez‐Macias, FJ, Elias, AL, Munoz‐Sandoval, E, Cano‐Marquez, AG, Charlier, JC, et al. Graphene and graphite nanoribbons: morphology, properties, synthesis, defects and applications. Nano Today 2010, 5:351–372.
Rong, JH, Niu, ZW, Lee, LA, Wang, Q. Self‐assembly of viral particles. Curr Opin Colloid Interf Sci 2011, 16:441–450.
Merzlyak, A, Lee, SW. Phage as templates for hybrid materials and mediators for nanomaterial synthesis. Curr Opin Chem Biol 2006, 10:246–252.
Merzlyak, A, Indrakanti, S, Lee, SW. Genetically engineered nanofiber‐like viruses for tissue regenerating materials. Nano Lett 2009, 9:846–852.
Chung, WJ, Oh, JW, Kwak, K, Lee, BY, Meyer, J, Wang, E, Hexemer, A, Lee, SW. Biomimetic self‐templating supramolecular structures. Nature 2011, 478:364–368.
Pinheiro, AV, Han, DR, Shih, WM, Yan, H. Challenges and opportunities for structural DNA nanotechnology. Nat Nanotechnol 2011, 6:763–772.
Krishnan, Y, Simmel, FC. Nucleic acid based molecular devices. Angew Chem Int Ed 2011, 50:3124–3156.
Yu, XF, Liu, ZH, Janzen, J, Chafeeva, I, Horte, S, Chen, W, Kainthan, RK, Kizhakkedathu, JN, Brooks, DE. Polyvalent choline phosphate as a universal biomembrane adhesive. Nat Mater 2012, 11:468–476.
Urata, K, Takaishi, N. Cholesterol as synthetic building blocks for artificial lipids with characteristic physical, chemical and biological properties. Eur J Lipid Sci Technol 2001, 103:29–39.
Gattuso, G, Menzer, S, Nepogodiev, SA, Stoddart, JF, Williams, DJ. Carbohydrate nanotubes. Angew Chem Int Ed 1997, 36:1451–1454.
Numata, M, Shinkai, S. Self‐assembled polysaccharide nanotubes generated from β‐1,3‐glucan polysaccharides. . Self‐Assembled Nanomaterials II: Nanotubes, vol. 220. Berlin Heidelberg: Springer, Verlag, 2008, 65–121.
Jayawarna, V, Ali, M, Jowitt, TA, Miller, AE, Saiani, A, Gough, JE, Ulijn, RV. Nanostructured hydrogels for three‐dimensional cell culture through self‐assembly of fluorenylmethoxycarbonyl‐dipeptides. Adv Mater 2006, 18:611–614.
Webber, MJ, Kessler, JA, Stupp, SI. Emerging peptide nanomedicine to regenerate tissues and organs. J Intern Med 2010, 267:71–88.
Cui, HG, Webber, MJ, Stupp, SI. Self‐assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials. Biopolymers 2010, 94:1–18.
Yang, YL, Khoe, U, Wang, XM, Horii, A, Yokoi, H, Zhang, SG. Designer self‐assembling peptide nanomaterials. Nano Today 2009, 4:193–210.
Luo, Z, Zhang, S. Designer nanomaterials using chiral self‐assembling peptide systems and their emerging benefit for society. Chem Soc Rev 2012, 41:4736–4754.
Lakshmanan, A, Zhang, SG, Hauser, CAE. Short self‐assembling peptides as building blocks for modern nanodevices. Trends Biotechnol 2012, 30:155–165.
Fairman, R, Akerfeldt, KS. Peptides as novel smart materials. Curr Opin Struct Biol 2005, 15:453–463.
Ryan, DM, Nilsson, BL. Self‐assembled amino acids and dipeptides as noncovalent hydrogels for tissue engineering. Polym Chem 2012, 3:18–33.
Matson, JB, Stupp, SI. Self‐assembling peptide scaffolds for regenerative medicine. Chem Commun 2012, 48:26–33.
Blanazs, A, Armes, SP, Ryan, AJ. Self‐assembled block copolymer aggregates: from micelles to vesicles and their biological applications. Macromol Rapid Commun 2009, 30:267–277.
Ko, SH, Su, M, Zhang, CA, Ribbe, AE, Jiang, W, Mao, CD. Synergistic self‐assembly of RNA and DNA molecules. Nat Chem 2010, 2:1050–1055.
Collier, JH, Messersmith, PB. Phospholipid strategies in biomineralization and biomaterials research. Annu Rev Mater Res 2001, 31:237–263.
Varki, A. Biological roles of oligosaccharides—all of the theories are correct. Glycobiology 1993, 3:97–130.
Capito, RM, Azevedo, HS, Velichko, YS, Mata, A, Stupp, SI. Self‐assembly of large and small molecules into hierarchically ordered sacs and membranes. Science 2008, 319:1812–1816.
Barrett, GC, Elmore, DT. Amino Acids and Peptides. Cambridge: Cambridge University Press; 1998.
Albericio, F. Orthogonal protecting groups for N α‐amino and C‐terminal carboxyl functions in solid‐phase peptide synthesis. Biopolymers 2000, 55:123–139.
Alvarez, M, Isidro‐Llobet, A, Albericio, F. Amino acid‐protecting groups. Chem Rev 2009, 109:2455–2504.
Chan, WC, White, PD. Fmoc Solid Phase Peptide Synthesis—A Practical Approach. Oxford: Oxford University Press; 2000.
Gazit, E. Bioinspired chemistry diversity for self‐assembly. Nat Chem 2010, 2:1010–1011.
Woolfson, DN. Building fibrous biomaterials from α‐helical and collagen‐like coiled‐coil peptides. Biopolymers 2010, 94:118–127.
Boyle, AL, Woolfson, DN. Rational design of peptide‐based biosupramolecular systems. In: Gale, PA, Steed, JW, eds. Supramolecular Chemistry: From Molecules Nanomaterials. Oxford: John Wiley, Ltd.; 2012.
Villard, V, Kalyuzhniy, O, Riccio, O, Potekhin, S, Melnik, TN, Kajava, AV, Ruegg, C, Corradin, G. Synthetic RGD‐containing α‐helical coiled coil peptides promote integrin‐dependent cell adhesion. J Pept Sci 2006, 12:206–212.
Rele, S, Song, YH, Apkarian, RP, Qu, Z, Conticello, VP, Chaikof, EL. D‐periodic collagen‐mimetic microfibers. J Am Chem Soc 2007, 129:14780–14787.
Fallas, JA, O`Leary, LER, Hartgerink, JD. Synthetic collagen mimics: self‐assembly of homotrimers, heterotrimers and higher order structures. Chem Soc Rev 2010, 39:3510–3527.
O`Leary, LER, Fallas, JA, Bakota, EL, Kang, MK, Hartgerink, JD. Multi‐hierarchical self‐assembly of a collagen mimetic peptide from triple helix to nanofibre and hydrogel. Nat Chem 2011, 3:821–828.
Gazit, E. Self‐assembled peptide nanostructures: the design of molecular building blocks and their technological utilization. Chem Soc Rev 2007, 36:1263–1269.
Knowles, TPJ, Buehler, MJ. Nanomechanics of functional and pathological amyloid materials. Nat Nanotechnol 2011, 6:469–479.
Zhang, S, Holmes, T, Lockshin, C, Rich, A. Spontaneous assembly of a self‐complementary oligopeptide to form a stable macroscopic membrane. Proc Natl Acad Sci USA 1993, 90:3334–3338.
Semino, CE. Self‐assembling peptides: from bio‐inspired materials to bone regeneration. J Dent Res 2008, 87:606–616.
Maude, S, Tai, LR, Davies, RP, Liu, B, Harris, SA, Kocienski, PJ, Aggeli, A. Peptide synthesis and self‐assembly. Top Curr Chem 2012, 310:27–69.
Collier, JH, Rudra, JS, Gasiorowski, JZ, Jung, JP. Multi‐component extracellular matrices based on peptide self‐assembly. Chem Soc Rev 2010, 39:3413–3424.
Hule, RA, Nagarkar, RP, Hammouda, B, Schneider, JP, Pochan, DJ. Dependence of self‐assembled peptide hydrogel network structure on local fibril nanostructure. Macromolecules 2009, 42:7137–7145.
Schneider, JP, Pochan, DJ, Ozbas, B, Rajagopal, K, Pakstis, L, Kretsinger, J. Responsive hydrogels from the intramolecular folding and self‐assembly of a designed peptide. J Am Chem Soc 2002, 124:15030–15037.
Rughani, RV, Schneider, JP. Molecular design of β‐hairpin peptides for material construction. MRS Bull 2008, 33:530–535.
Haines‐Butterick, L, Rajagopal, K, Branco, M, Salick, D, Rughani, R, Pilarz, M, Lamm, MS, Pochan, DJ, Schneider, JP. Controlling hydrogelation kinetics by peptide design for three‐dimensional encapsulation and injectable delivery of cells. Proc Natl Acad Sci USA 2007, 104:7791–7796.
Altunbas, A, Lee, SJ, Rajasekaran, SA, Schneider, JP, Pochan, DJ. Encapsulation of curcumin in self‐assembling peptide hydrogels as injectable drug delivery vehicles. Biomaterials 2011, 32:5906–5914.
Yan, C, Mackay, ME, Czymmek, K, Nagarkar, RP, Schneider, JP, Pochan, DJ. Injectable solid peptide hydrogel as a cell carrier: effects of shear flow on hydrogels and cell payload. Langmuir 2012, 28:6076–6087.
Hamley, IW. Self‐assembly of amphiphilic peptides. Soft Matter 2011, 7:4122–4138.
Vauthey, S, Santoso, S, Gong, HY, Watson, N, Zhang, SG. Molecular self‐assembly of surfactant‐like peptides to form nanotubes and nanovesicles. Proc Natl Acad Sci USA 2002, 99:5355–5360.
Santoso, S, Hwang, W, Hartman, H, Zhang, SG. Self‐assembly of surfactant‐like peptides with variable glycine tails to form nanotubes and nanovesicles. Nano Lett 2002, 2:687–691.
Silva, GA, Czeisler, C, Niece, KL, Beniash, E, Harrington, DA, Kessler, JA, Stupp, SI. Selective Differentiation of Neural Progenitor Cells by High‐Epitope Density Nanofibers. Science 2004, 303:1352–1355.
Matson, JB, Zha, RH, Stupp, SI. Peptide self‐assembly for crafting functional biological materials. Curr Opin Solid State Mater Sci 2011, 15:225–235.
Lowik, DWPM, Garcia‐Hartjes, J, Meijer, JT, van Hest, JCM. Tuning secondary structure and self‐assembly of amphiphilic peptides. Langmuir 2005, 21:524–526.
van den Heuvel, M, Lowik, DW, van Hest, JC. Self‐assembly and polymerization of diacetylene‐containing peptide amphiphiles in aqueous solution. Biomacromolecules 2008, 9:2727–2734.
van den Heuvel, M, Lowik, DW, van Hest, JC. Effect of the diacetylene position on the chromatic properties of polydiacetylenes from self‐assembled peptide amphiphiles. Biomacromolecules 2010, 11:1676–1683.
Trent, A, Marullo, R, Lin, B, Black, M, Tirrell, M. Structural properties of soluble peptide amphiphile micelles. Soft Matter 2011, 7:9572–9582.
Shimada, T, Sakamoto, N, Motokawa, R, Koizumi, S, Tirrell, M. Self‐assembly process of peptide amphiphile worm‐like micelles. J Phys Chem B 2012, 116:240–243.
Shimada, T, Megley, K, Tirrell, M, Hotta, A. Fluid mechanical shear induces structural transitions in assembly of a peptide‐lipid conjugate. Soft Matter 2011, 7:8856–8861.
Shimada, T, Lee, S, Bates, FS, Hotta, A, Tirrell, M. Wormlike micelle formation in peptide‐lipid conjugates driven by secondary structure transformation of the headgroups. J Phys Chem B 2009, 113:13711–13714.
Missirlis, D, Chworos, A, Fu, CJ, Khant, HA, Krogstad, DV, Tirrell, M. Effect of the peptide secondary structure on the peptide amphiphile supramolecular structure and interactions. Langmuir 2011, 27:6163–6170.
Castelletto, V, Hamley, IW, Adamcik, J, Mezzenga, R, Gummel, J. Modulating self‐assembly of a nanotape‐forming peptide amphiphile with an oppositely charged surfactant. Soft Matter 2012, 8:217–226.
Cheetham, AG, Zhang, PC, Lin, YA, Lock, LL, Cui, HG. Supramolecular nanostructures formed by anticancer drug assembly. J Am Chem Soc 2013, 135:2907–2910.
Lin, R, Cheetham, AG, Zhang, PC, Lin, YA, Cui, HG. Supramolecular filaments containing a fixed 41% paclitaxel loading. Chem Commun 2013, 49:4968–4970.
Aulisa, L, Dong, H, Hartgerink, JD. Self‐assembly of multidomain peptides: sequence variation allows control over cross‐linking and viscoelasticity. Biomacromolecules 2009, 10:2694–2698.
Dong, H, Paramonov, SE, Aulisa, L, Bakota, EL, Hartgerink, JD. Self‐assembly of multidomain peptides: balancing molecular frustration controls conformation and nanostructure. J Am Chem Soc 2007, 129:12468–12472.
Galler, KM, Cavender, A, Yuwono, V, Dong, H, Shi, ST, Schmalz, G, Hartgerink, JD, D`Souza, RN. Self‐assembling peptide amphiphile nanofibers as a scaffold for dental stem cells. Tissue Eng Part A 2008, 14:2051–2058.
Galler, KM, Aulisa, L, Regan, KR, D`Souza, RN, Hartgerink, JD. Self‐assembling multidomain peptide hydrogels: designed susceptibility to enzymatic cleavage allows enhanced cell migration and spreading. J Am Chem Soc 2010, 132:3217–3223.
Galler, KM, Hartgerink, JD, Cavender, AC, Schmalz, G, D`Souza, RN. A customized self‐assembling peptide hydrogel for dental pulp tissue engineering. Tissue Eng Part A 2012, 18:176–184.
Orbach, R, Mironi‐Harpaz, I, Adler‐Abramovich, L, Mossou, E, Mitchell, EP, Forsyth, VT, Gazit, E, Seliktar, D. The rheological and structural properties of fmoc‐peptide‐based hydrogels: the effect of aromatic molecular architecture on self‐assembly and physical characteristics. Langmuir 2012, 28:2015–2022.
Smith, AM, Williams, RJ, Tang, C, Coppo, P, Collins, RF, Turner, ML, Saiani, A, Ulijn, RV. Fmoc‐diphenylalanine self assembles to a hydrogel via a novel architecture based on pi‐pi interlocked β‐sheets. Adv Mater 2008, 20:37–41.
Zhou, M, Smith, AM, Das, AK, Hodson, NW, Collins, RF, Ulijn, RV, Gough, JE. Self‐assembled peptide‐based hydrogels as scaffolds for anchorage‐dependent cells. Biomaterials 2009, 30:2523–2530.
Yokoi, H, Kinoshita, T, Zhang, SG. Dynamic reassembly of peptide RADA16 nanofiber scaffold. Proc Natl Acad Sci USA 2005, 102:8414–8419.
Rudra, JS, Tian, YF, Jung, JP, Collier, JH. A self‐assembling peptide acting as an immune adjuvant. Proc Natl Acad Sci USA 2010, 107:622–627.
Rajagopal, K, Lamm, MS, Haines‐Butterick, LA, Pochan, DJ, Schneider, JP. Tuning the pH responsiveness of β‐hairpin peptide folding, self‐assembly, and hydrogel material formation. Biomacromolecules 2009, 10:2619–2625.
Zhang, SG, Marini, DM, Hwang, W, Santoso, S. Design of nanostructured biological materials through self‐assembly of peptides and proteins. Curr Opin Chem Biol 2002, 6:865–871.
Hamley, IW. Peptide fibrillization. Angew Chem Int Ed 2007, 46:8128–8147.
Palermo, V, Samori, P. Molecular self‐assembly across multiple length scales. Angew Chem Int Ed 2007, 46:4428–4432.
Lisitza, N, Huang, XD, Hatabu, H, Patz, S. Exploring collagen self‐assembly by NMR. Phys Chem Chem Phys 2010, 12:14169–14171.
Liu, G, Prabhakar, A, Aucoin, D, Simon, M, Sparks, S, Robbins, KJ, Sheen, A, Petty, SA, Lazo, ND. Mechanistic studies of peptide self‐assembly: transient α‐helices to stable β‐sheets. J Am Chem Soc 2010, 132:18223–18232.
Hamley, IW, Nutt, DR, Brown, GD, Miravet, JF, Escuder, B, Rodriguez‐Llansola, F. Influence of the solvent on the self‐assembly of a modified amyloid β peptide fragment. II. NMR and computer simulation investigation. J Phys Chem B 2010, 114:940–951.
Niece, KL, Hartgerink, JD, Donners, JJJM, Stupp, SI. Self‐assembly combining two bioactive peptide‐amphiphile molecules into nanofibers by electrostatic attraction. J Am Chem Soc 2003, 125:7146–7147.
Behanna, HA, Donners, JJJM, Gordon, AC, Stupp, SI. Coassembly of amphiphiles with opposite peptide polarities into nanofibers. J Am Chem Soc 2005, 127:1193–1200.
Paramonov, SE, Jun, HW, Hartgerink, JD. Self‐assembly of peptide‐amphiphile nanofibers: the roles of hydrogen bonding and amphiphilic packing. J Am Chem Soc 2006, 128:7291–7298.
Hirst, AR, Roy, S, Arora, M, Das, AK, Hodson, N, Murray, P, Marshall, S, Javid, N, Sefcik, J, Boekhoven, J, et al. Biocatalytic induction of supramolecular order. Nat Chem 2010, 2:1089–1094.
Haines, LA, Rajagopal, K, Ozbas, B, Salick, DA, Pochan, DJ, Schneider, JP. Light‐activated hydrogel formation via the triggered folding and self‐assembly of a designed peptide. J Am Chem Soc 2005, 127:17025–17029.
Chou, PY, Fasman, GD. Empirical predictions of protein conformation. Annu Rev Biochem 1978, 47:251–276.
Leung, CY, Palmer, LC, Qiao, BF, Kewalramani, S, Sknepnek, R, Newcomb, CJ, Greenfield, MA, Vernizzi, G, Stupp, SI, Bedzyk, MJ, et al. Molecular crystallization controlled by pH regulates mesoscopic membrane morphology. ACS Nano 2012, 6:10901–10909.
Zhang, SM, Greenfield, MA, Mata, A, Palmer, LC, Bitton, R, Mantei, JR, Aparicio, C, de la Cruz, MO, Stupp, SI. A self‐assembly pathway to aligned monodomain gels. Nat Mater 2010, 9:594–601.
Mammadov, R, Tekinay, AB, Dana, A, Guler, MO. Microscopic characterization of peptide nanostructures. Micron 2012, 43:69–84.
Newcomb, CJ, Moyer, TJ, Lee, SS, Stupp, SI. Advances in cryogenic transmission electron microscopy for the characterization of dynamic self‐assembling nanostructures. Curr Opin Colloid Interf Sci 2012, 17:350–359.
Cui, H, Hodgdon, TK, Kaler, EW, Abezgauz, L, Danino, D, Lubovsky, M, Talmon, Y, Pochan, DJ. Elucidating the assembled structure of amphiphiles in solution via cryogenic transmission electron microscopy. Soft Matter 2007, 3:945–955.
Nagarkar, RP, Hule, RA, Pochan, DJ, Schneider, JP. De novo design of strand‐swapped β‐hairpin hydrogels. J Am Chem Soc 2008, 130:4466–4474.
Helen, W, de Leonardis, P, Ulijn, RV, Gough, J, Tirelli, N. Mechanosensitive peptide gelation: mode of agitation controls mechanical properties and nano‐scale morphology. Soft Matter 2011, 7:1732–1740.
Cinar, G, Ceylan, H, Urel, M, Erkal, TS, Tekin, ED, Tekinay, AB, Dana, A, Guler, MO. Amyloid inspired self‐assembled peptide nanofibers. Biomacromolecules 2012, 13:3377–3387.
Hartgerink, JD, Beniash, E, Stupp, SI. Peptide‐amphiphile nanofibers: a versatile scaffold for the preparation of self‐assembling materials. Proc Natl Acad Sci USA 2002, 99:5133–5138.
Rajangam, K, Behanna, HA, Hui, MJ, Han, XQ, Hulvat, JF, Lomasney, JW, Stupp, SI. Heparin binding nanostructures to promote growth of blood vessels. Nano Lett 2006, 6:2086–2090.
Chen, L, Pont, G, Morris, K, Lotze, G, Squires, A, Serpell, LC, Adams, DJ. Salt‐induced hydrogelation of functionalised‐dipeptides at high pH. Chem Commun 2011, 47:12071–12073.
Chen, L, McDonald, TO, Adams, DJ. Salt‐induced hydrogels from functionalised‐dipeptides. RSC Adv 2013, 3:8714–8720.
Mahler, A, Reches, M, Rechter, M, Cohen, S, Gazit, E. Rigid, self‐assembled hydrogel composed of a modified aromatic dipeptide. Adv Mater 2006, 18:1365–1370.
Vegners, R, Shestakova, I, Kalvinsh, I, Ezzell, RM, Janmey, PA. Use of a gel‐forming dipeptide derivative as a carrier for antigen presentation. J Pept Sci 1995, 1:371–378.
Muraoka, T, Koh, CY, Cui, HG, Stupp, SI. Light‐triggered bioactivity in three dimensions. Angew Chem Int Ed 2009, 48:5946–5949.
Webber, MJ, Newcomb, CJ, Bitton, R, Stupp, SI. Switching of self‐assembly in a peptide nanostructure with a specific enzyme. Soft Matter 2011, 7:9665–9672.
Roy, S, Ulijn, RV. Exploiting biocatalysis in the synthesis of supramolecular polymers. Enzym Polym 2010, 237:127–143.
Williams, RJ, Mart, RJ, Ulijn, RV. Exploiting biocatalysis in peptide self‐assembly. Biopolymers 2010, 94:107–117.
Williams, RJ, Smith, AM, Collins, R, Hodson, N, Das, AK, Ulijn, RV. Enzyme‐assisted self‐assembly under thermodynamic control. Nat Nanotechnol 2009, 4:19–24.
Keum, JW, Hathorne, AP, Bermudez, H. Controlling forces and pathways in self‐assembly using viruses and DNA. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2011, 3:282–297.
Lowik, DWPM, Shklyarevskiy, IO, Ruizendaal, L, Christianen, PCM, Maan, JC, van Hest, JCM. A highly ordered material from magnetically aligned peptide amphiphile nanofiber assemblies. Adv Mater 2007, 19:1191–1195.
van den Heuvel, M, Prenen, AM, Gielen, JC, Christianen, PCM, Broer, DJ, Lowik, DWPM, van Hest, JCM. Patterns of diacetylene‐containing peptide amphiphiles using polarization holography. J Am Chem Soc 2009, 131:15014–15017.
Cui, HG, Pashuck, ET, Velichko, YS, Weigand, SJ, Cheetham, AG, Newcomb, CJ, Stupp, SI. Spontaneous and X‐ray‐triggered crystallization at long range in self‐assembling filament networks. Science 2010, 327:555–559.
Velichko, YS, Mantei, JR, Bitton, R, Carvajal, D, Shull, KR, Stupp, SI. Electric field controlled self‐assembly of hierarchically ordered membranes. Adv Funct Mater 2012, 22:369–377.
Zhang, SG, Yan, L, Altman, M, Lassle, M, Nugent, H, Frankel, F, Lauffenburger, DA, Whitesides, GM, Rich, A. Biological surface engineering: a simple system for cell pattern formation. Biomaterials 1999, 20:1213–1220.
Jiang, HZ, Stupp, SI. Dip‐pen patterning and surface assembly of peptide amphiphiles. Langmuir 2005, 21:5242–5246.
Mata, A, Hsu, L, Capito, R, Aparicio, C, Henrikson, K, Stupp, SI. Micropatterning of bioactive self‐assembling gels. Soft Matter 2009, 5:1228–1236.
Hung, AM, Stupp, SI. Understanding factors affecting alignment of self‐assembling nanofibers patterned by sonication‐assisted solution embossing. Langmuir 2009, 25:7084–7089.
Hung, AM, Stupp, SI. Simultaneous self‐assembly, orientation, and patterning of peptide‐amphiphile nanofibers by soft lithography. Nano Lett 2007, 7:1165–1171.
Mendes, AC, Smith, KH, Tejeda‐Montes, E, Engel, E, Reis, RL, Azevedo, HS, Mata, A. Co‐assembled and microfabricated bioactive membranes. Adv Funct Mater 2013, 23:430–438.
Mendes, AC, Baran, ET, Lisboa, P, Reis, RL, Azevedo, HS. Microfluidic fabrication of self‐assembled peptide‐polysaccharide microcapsules as 3D environments for cell culture. Biomacromolecules 2012, 13:4039–4048.
Sinthuvanich, C, Haines‐Butterick, LA, Nagy, KJ, Schneider, JP. Iterative design of peptide‐based hydrogels and the effect of network electrostatics on primary chondrocyte behavior. Biomaterials 2012, 33:7478–7488.
Koutsopoulos, S, Unsworth, LD, Nagai, Y, Zhang, S. Controlled release of functional proteins through designer self‐assembling peptide nanofiber hydrogel scaffold. Proc Natl Acad Sci USA 2009, 106:4623–4628.
Koutsopoulos, S, Zhang, SG. Two‐layered injectable self‐assembling peptide scaffold hydrogels for long‐term sustained release of human antibodies. J Control Release 2012, 160:451–458.
Branco, MC, Pochan, DJ, Wagner, NJ, Schneider, JP. The effect of protein structure on their controlled release from an injectable peptide hydrogel. Biomaterials 2010, 31:9527–9534.
Jung, JP, Jones, JL, Cronier, SA, Collier, JH. Modulating the mechanical properties of self‐assembled peptide hydrogels via native chemical ligation. Biomaterials 2008, 29:2143–2151.
Khan, Y, Yaszemski, MJ, Mikos, AG, Laurencin, CT. Tissue engineering of bone: material and matrix considerations. J Bone Joint Surg 2008, 90:36–42.
Hosseinkhani, H, Hosseinkhani, M, Tian, F, Kobayashi, H, Tabata, Y. Osteogenic differentiation of mesenchymal stem cells in self‐assembled peptide‐amphiphile nanofibers. Biomaterials 2006, 27:4079–4086.
Hartgerink, JD, Beniash, E, Stupp, SI. Self‐assembly and mineralization of peptide‐amphiphile nanofibers. Science 2001, 294:1684–1688.
Sargeant, TD, Oppenheimer, SM, Dunand, DC, Stupp, SI. Titanium foam‐bioactive nanofiber hybrids for bone regeneration. J Tissue Eng Regen Med 2008, 2:455–462.
Sargeant, TD, Guler, MO, Oppenheimer, SM, Mata, A, Satcher, RL, Dunand, DC, Stupp, SI. Hybrid bone implants: self‐assembly of peptide amphiphile nanofibers within porous titanium. Biomaterials 2008, 29:161–171.
Mata, A, Geng, Y, Henrikson, KJ, Aparicio, C, Stock, SR, Satcher, RL, Stupp, SI. Bone regeneration mediated by biomimetic mineralization of a nanofiber matrix. Biomaterials 2010, 31:6004–6012.
Anderson, JM, Vines, JB, Patterson, JL, Chen, H, Javed, A, Jun, HW. Osteogenic differentiation of human mesenchymal stem cells synergistically enhanced by biomimetic peptide amphiphiles combined with conditioned medium. Acta Biomater 2011, 7:675–682.
Hosseinkhani, H, Hosseinkhani, M, Khademhosseini, A, Kobayashi, H. Bone regeneration through controlled release of bone morphogenetic protein‐2 from 3‐D tissue engineered nano‐scaffold. J Control Release 2007, 117:380–386.
Lee, JY, Choo, JE, Choi, YS, Suh, JS, Lee, SJ, Chung, CP, Park, YJ. Osteoblastic differentiation of human bone marrow stromal cells in self‐assembled BMP‐2 receptor‐binding peptide‐amphiphiles. Biomaterials 2009, 30:3532–3541.
Misawa, H, Kobayashi, N, Soto‐Gutierrez, A, Chen, Y, Yoshida, A, Rivas‐Carrillo, JD, Navarro‐Alvarez, N, Tanaka, K, Miki, A, Takei, J, et al. PuraMatrix facilitates bone regeneration in bone defects of calvaria in mice. Cell Transplant 2006, 15:903–910.
Horii, A, Wang, X, Gelain, F, Zhang, S. Biological designer self‐assembling peptide nanofiber scaffolds significantly enhance osteoblast proliferation, differentiation and 3‐D migration. PLoS One 2007, 2:e190.
Kisiday, J, Jin, M, Kurz, B, Hung, H, Semino, C, Zhang, S, Grodzinsky, AJ. Self‐assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: Implications for cartilage tissue repair. Proc Natl Acad Sci USA 2002, 99:9996–10001.
Kopesky, PW, Vanderploeg, EJ, Sandy, JS, Kurz, B, Grodzinsky, AJ. Self‐Assembling Peptide Hydrogels Modulate In Vitro Chondrogenesis of Bovine Bone Marrow Stromal Cells. Tissue Eng Part A 2010, 16:465–477.
Shah, RN, Shah, NA, Lim, MMD, Hsieh, C, Nuber, G, Stupp, SI. Supramolecular design of self‐assembling nanofibers for cartilage regeneration. Proc Natl Acad Sci USA 2010, 107:3293–3298.
Horner, PJ, Gage, FH. Regenerating the damaged central nervous system. Nature 2000, 407:963–970.
Tysseling‐Mattiace, VM, Sahni, V, Niece, KL, Birch, D, Czeisler, C, Fehlings, MG, Stupp, SI, Kessler, JA. Self‐assembling nanofibers inhibit glial scar formation and promote axon elongation after spinal cord injury. J Neurosci 2008, 28:3814–3823.
Tysseling, VM, Sahni, V, Pashuck, ET, Birch, D, Hebert, A, Czeisler, C, Stupp, SI, Kessler, JA. Self‐assembling peptide amphiphile promotes plasticity of serotonergic fibers following spinal cord injury. J Neurosci Res 2010, 88:3161–3170.
Holmes, TC, de Lacalle, S, Su, X, Liu, G, Rich, A, Zhang, S. Extensive neurite outgrowth and active synapse formation on self‐assembling peptide scaffolds. Proc Natl Acad Sci USA 2000, 97:6728–6733.
Ellis‐Behnke, RG, Liang, Y‐X, You, S‐W, Tay, DKC, Zhang, S, So, K‐F, Schneider, GE. Nano neuro knitting: peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision. Proc Natl Acad Sci USA 2006, 103:5054–5059.
Guo, J, Su, H, Zeng, Y, Liang, YX, Wong, WM, Ellis‐Behnke, RG, So, KF, Wu, W. Reknitting the injured spinal cord by self‐assembling peptide nanofiber scaffold. Nanomed Nanotechnol Biol Med 2007, 3:311–321.
Guo, J, Leung, KKG, Su, H, Yuan, Q, Wang, L, Chu, TH, Zhang, W, Pu, JKS, Ng, GKP, Wong, WM, et al. Self‐assembling peptide nanofiber scaffold promotes the reconstruction of acutely injured brain. Nanomed Nanotechnol Biol Med 2009, 5:345–351.
Rajangam, K, Arnold, MS, Rocco, MA, Stupp, SI. Peptide amphiphile nanostructure‐heparin interactions and their relationship to bioactivity. Biomaterials 2008, 29:3298–3305.
Stendahl, JC, Wang, LJ, Chow, LW, Kaufman, DB, Stupp, SI. Growth factor delivery from self‐assembling nanofibers to facilitate islet transplantation. Transplantation 2008, 86:478–481.
Chow, LW, Wang, LJ, Kaufman, DB, Stupp, SI. Self‐assembling nanostructures to deliver angiogenic factors to pancreatic islets. Biomaterials 2010, 31:6154–6161.
Davis, ME, Motion, JPM, Narmoneva, DA, Takahashi, T, Hakuno, D, Kamm, RD, Zhang, S, Lee, RT. Injectable self‐assembling peptide nanofibers create intramyocardial microenvironments for endothelial cells. Circulation 2005, 111:442–450.
Webber, MJ, Tongers, J, Renault, MA, Roncalli, JG, Losordo, DW, Stupp, SI. Development of bioactive peptide amphiphiles for therapeutic cell delivery. Acta Biomater 2010, 6:3–11.
Narmoneva, DA, Vukmirovic, R, Davis, ME, Kamm, RD, Lee, RT. Endothelial cells promote cardiac myocyte survival and spatial reorganization. Circulation 2004, 110:962–968.
Lin, YD, Luo, CY, Hu, YN, Yeh, ML, Hsueh, YC, Chang, MY, Tsai, DC, Wang, JN, Tang, MJ, Wei, EIH, et al. Instructive nanofiber scaffolds with VEGF create a microenvironment for arteriogenesis and cardiac repair. Sci Transl Med 2012, 4:146ra109.
Webber, MJ, Han, X, Prasanna Murthy, SN, Rajangam, K, Stupp, SI, Lomasney, JW. Capturing the stem cell paracrine effect using heparin‐presenting nanofibres to treat cardiovascular diseases. J Tissue Eng Regen Med 2010, 4:600–610.
Spoerke, ED, Anthony, SG, Stupp, SI. Enzyme directed templating of artificial bone mineral. Adv Mater 2009, 21:425–430.
Chow, LW, Bitton, R, Webber, MJ, Carvajal, D, Shull, KR, Sharma, AK, Stupp, SI. A bioactive self‐assembled membrane to promote angiogenesis. Biomaterials 2011, 32:1574–1582.
Webber, MJ, Tongers, J, Newcomb, CJ, Marquardt, KT, Bauersachs, J, Losordo, DW, Stupp, SI. Supramolecular nanostructures that mimic VEGF as a strategy for ischemic tissue repair. Proc Natl Acad Sci USA 2011, 108:13438–13443.
Mammadov, R, Mammadov, B, Toksoz, S, Aydin, B, Yagci, R, Tekinay, AB, Guler, MO. Heparin mimetic peptide nanofibers promote angiogenesis. Biomacromolecules 2011, 12:3508–3519.
Tian, YF, Devgun, JM, Collier, JH. Fibrillized peptide microgels for cell encapsulation and 3D cell culture. Soft Matter 2011, 7:6005–6011.
Jung, JP, Moyano, JV, Collier, JH. Multifactorial optimization of endothelial cell growth using modular synthetic extracellular matrices. Integr Biol 2011, 3:185–196.
Wu, J, Mari‐Buye, N, Muinos, T, Borros, S, Favia, P, Semino, C. Nanometric self‐assembling peptide layers maintain adult hepatocyte phenotype in sandwich cultures. J Nanobiotechnol 2010, 8:29.
Genove, E, Shen, C, Zhang, SG, Semino, CE. The effect of functionalized self‐assembling peptide scaffolds on human aortic endothelial cell function. Biomaterials 2005, 26:3341–3351.
Chau, Y, Luo, Y, Cheung, ACY, Nagai, Y, Zhang, SG, Kobler, JB, Zeitels, SM, Langer, R. Incorporation of a matrix metalloproteinase‐sensitive substrate into self‐assembling peptides—a model for biofunctional scaffolds. Biomaterials 2008, 29:1713–1719.
Gelain, F, Bottai, D, Vescovi, A, Zhang, SG. Designer self‐assembling peptide nanofiber scaffolds for adult mouse neural stem cell 3‐dimensional cultures. PLoS One 2006, 1:e119.
Bull, SR, Guler, MO, Bras, RE, Meade, TJ, Stupp, SI. Self‐assembled peptide amphiphile nanofibers conjugated to MRI contrast agents. Nano Lett 2005, 5:1–4.
Haines‐Butterick, LA, Salick, DA, Pochan, DJ, Schneider, JP. In vitro assessment of the pro‐inflammatory potential of β‐hairpin peptide hydrogels. Biomaterials 2008, 29:4164–4169.
Rudra, JS, Tripathi, PK, Hildeman, DA, Jung, JP, Collier, JH. Immune responses to coiled coil supramolecular biomaterials. Biomaterials 2010, 31:8475–8483.
Smith, KH, Tejeda‐Montes, E, Poch, M, Mata, A. Integrating top‐down and self‐assembly in the fabrication of peptide and protein‐based biomedical materials. Chem Soc Rev 2011, 40:4563–4577.