Dahlin, AB. Size matters: problems and advantages associated with highly miniaturized sensors. Sensors 2012, 12:3018–3036.
Homola, J, Yee, SS, Gauglitz, G. Surface plasmon resonance sensors: review. Sens Actuators B Chem 1999, 54:3–15.
Snopok, B. Theory and practical application of surface plasmon resonance for analytical purposes. Theor Exp Chem 2012, 48:283–306.
Campbell, CT, Kim, G. SPR microscopy and its applications to high‐throughput analyses of biomolecular binding events and their kinetics. Biomaterials 2007, 28:2380–2392.
Rich, RL, Myszka, D. Survey of the year 2007 commercial optical biosensor literature. J Mol Recognit 2008, 21:355–400.
Myszka, D, Rich, RL. Implementing surface plasmon resonance biosensors in drug discovery. Pharm Sci Technol Today 2000, 3:310–317.
Myszka, D. Survey of the 1998 optical biosensor literature. J Mol Recognit 1999, 12:390–408.
Rich, RL, Myszka, D. Advances in surface plasmon resonance biosensor analysis. Curr Opin Biotechnol 2000, 11:54–61.
Rich, RL, Myszka, D. Survey of the 1999 surface plasmon resonance biosensor literature. J Mol Recognit 2000, 13:388–407.
Rich, RL, Myszka, D. Survey of the year 2000 commercial optical biosensor literature. J Mol Recognit 2001, 14:273–294.
Rich, RL, Myszka, D. Survey of the year 2001 commercial optical biosensor literature. J Mol Recognit 2002, 15:352–376.
Rich, RL, Myszka, D. A survey of the year 2002 commercial optical biosensor literature. J Mol Recognit 2003, 16:351–382.
Rich, RL, Myszka, D. Why you should be using more SPR biosensor technology. Drug Discov Today Technol 2004, 1:301–308.
Rich, RL, Myszka, D. Survey of the year 2003 commercial optical biosensor literature. J Mol Recognit 2005, 18:1–39.
Rich, RL, Myszka, D. Survey of the year 2004 commercial optical biosensor literature. J Mol Recognit 2005, 18:431–478.
Rich, RL, Myszka, D. Survey of the year 2005 commercial optical biosensor literature. J Mol Recognit 2006, 19:478–534.
Rich, RL, Myszka, D. Survey of the year 2006 commercial optical biosensor literature. J Mol Recognit 2007, 20:300–366.
Rich, RL, Myszka, D. Grading the commercial optical biosensor literature‐class of 2008: ‘The Mighty Binders’. J Mol Recognit 2009, 23:1–64.
Rich, RL, Myszka, D. Survey of the 2009 commercial optical biosensor literature. J Mol Recognit 2011, 24:892–914.
Gopinath, S. Biosensing applications of surface plasmon resonance‐based Biacore technology. Sens Actuators B Chem 2010, 150:722–733.
Brolo, AG. Plasmonics for future biosensors. Nat Photonics 2012, 6:709–713.
Nelson, BP, Grimsrud, TE, Liles, MR, Goodman, RM, Corn, RM. Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays. Anal Chem 2001, 73:1–7.
Smith, EA, Thomas, WD, Kiessling, LL, Corn, RM. Surface plasmon resonance imaging studies of protein‐carbohydrate interactions. J Am Chem Soc 2003, 125:6140–6148.
Mock, JJ, Barbic, M, Smith, DR, Schultz, DA, Schultz, S. Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J Chem Phys 2002, 116:6755.
Anker, J, Hall, W, Lyandres, O, Shah, N, Zhao, J, Van Duyne, RP. Biosensing with plasmonic nanosensors. Nat Mater 2008, 7:442–453.
McFarland, A, Van Duyne, RP. Single silver nanoparticles as real‐time optical sensors with zeptomole sensitivity. Nano Lett 2003, 3:1057–1062.
Mock, JJ, Smith, DR, Schultz, S. Local refractive index dependence of plasmon resonance spectra from individual nanoparticles. Nano Lett 2003, 3:485–492.
Dahlin, AB, Wittenberg, NJ, Höök, F, Oh, S‐H. Promises and challenges of nanoplasmonic devices for refractometric biosensing. Nanophotonics 2013, 2:1–19.
Ament, I, Prasad, J, Henkel, A, Schmachtel, S, Sönnichsen, C. Single unlabeled protein detection on individual plasmonic nanoparticles. Nano Lett 2012, 12:1092–1095.
Guo, L, Zhou, X, Kim, D‐H. Facile fabrication of distance‐tunable Au‐nanorod chips for single‐nanoparticle plasmonic biosensors. Biosens Bioelectron 2011, 26:2246–2251.
Nusz, GJ, Curry, AC, Marinakos, SM, Wax, A, Chilkoti, A. Rational selection of gold nanorod geometry for label‐free plasmonic biosensors. ACS Nano 2009, 3:795–806.
Nusz, GJ, Marinakos, SM, Curry, AC, Dahlin, AB, Höök, F, Wax, A, Chilkoti, A. Label‐free plasmonic detection of biomolecular binding by a single gold nanorod. Anal Chem 2008, 80:984–989.
Chen, S, Svedendahl, M, Van Duyne, RP, Käll, M. Plasmon‐enhanced colorimetric ELISA with single molecule sensitivity. Nano Lett 2011, 11:1826–1830.
Nusz, GJ, Marinakos, SM, Rangarajan, S, Chilkoti, A. Dual‐order snapshot spectral imaging of plasmonic nanoparticles. Appl Opt 2011, 50:4198–4206.
Guo, L, Ferhan, AR, Lee, K, Kim, D‐H. Nanoarray‐based biomolecular detection using individual Au nanoparticles with minimized localized surface plasmon resonance variations. Anal Chem 2011, 83:2605–2612.
Marinakos, SM, Chen, S, Chilkoti, A. Plasmonic detection of a model analyte in serum by a gold nanorod sensor. Anal Chem 2007, 79:5278–5283.
Nath, N, Chilkoti, A. A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface. Anal Chem 2002, 74:504–509.
Jia, K, Bijeon, JL, Adam, PM, Ionescu, RE. A facile and cost‐effective TEM grid approach to design gold nano‐structured substrates for high throughput plasmonic sensitive detection of biomolecules. Analyst 2013, 138:1015–1019.
Kedem, O, Vaskevich, A, Rubinstein, I. Critical issues in localized plasmon sensing. J Phys Chem C 2014, 118:8227–8244.
Kedem, O, Tesler, AB, Vaskevich, A, Rubinstein, I. Sensitivity and optimization of localized surface plasmon resonance transducers. ACS Nano 2011, 5:748–760.
Kalyuzhny, G, Vaskevich, A, Schneeweiss, MA, Rubinstein, I. Transmission surface‐plasmon resonance (T‐SPR) measurements for monitoring adsorption on ultrathin gold island films. Chem Eur J 2002, 8:3849–3857.
Aćimović, SS, Ortega, MA, Sanz, V, Berthelot, J, Garcia‐Cordero, JL, Renger, J, Maerkl, SJ, Kreuzer, MP, Quidant, R. LSPR chip for parallel, rapid, and sensitive detection of cancer markers in serum. Nano Lett 2014, 14:2636–2641.
McPhillips, J, McClatchey, C, Kelly, T, Murphy, A, Jonsson, MP, Wurtz, G, Winfield, R, Pollard, RJ. Plasmonic sensing using nanodome arrays fabricated by soft nanoimprint lithography. J Phys Chem C 2011, 115:15234–15239.
McPhillips, J, Murphy, A, Jonsson, MP, Hendren, WR, Atkinson, R, Höök, F, Zayats, AV, Pollard, RJ. High‐performance biosensing using arrays of plasmonic nanotubes. ACS Nano 2010, 4:2210–2216.
Chen, S, Svedendahl, M, Käll, M, Gunnarsson, L, Dmitriev, A. Ultrahigh sensitivity made simple: nanoplasmonic label‐free biosensing with an extremely low limit‐of‐detection for bacterial and cancer diagnostics. Nanotechnology 2009, 20:434015.
Dahlin, AB, Chen, S, Jonsson, MP, Gunnarsson, L, Käll, M, Höök, F. High‐resolution microspectroscopy of plasmonic nanostructures for miniaturized biosensing. Anal Chem 2009, 81:6572–6580.
Haes, AJ, Van Duyne, RP. A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J Am Chem Soc 2002, 124:10596–10604.
Parolo, C, Merkoçi, A. Paper‐based nanobiosensors for diagnostics. Chem Soc Rev 2013, 42:450–457.
Kim, D‐K, Yoo, SM, Park, TJ, Yoshikawa, H, Tamiya, E, Park, JY, Lee, SY. Plasmonic properties of the multispot copper‐capped nanoparticle array chip and its application to optical biosensors for pathogen detection of multiplex DNAs. Anal Chem 2011, 83:6215–6222.
Endo, T, Kerman, K, Nagatani, N, Hiepa, HM, Kim, D‐K, Yonezawa, Y, Nakano, K, Tamiya, E. Multiple label‐free detection of antigen‐antibody reaction using localized surface plasmon resonance‐based core‐shell structured nanoparticle layer nanochip. Anal Chem 2006, 78:6465–6475.
Seydack, M. Nanoparticle labels in immunosensing using optical detection methods. Biosens Bioelectron 2005, 20:2454–2469.
Schultz, S, Smith, DR, Mock, JJ, Schultz, DA. Single‐target molecule detection with nonbleaching multicolor optical immunolabels. Proc Natl Acad Sci U S A 2000, 97:996–1001.
Zhou, X, Xia, S, Lu, Z, Tian, Y, Yan, Y, Zhu, J. Biomineralization‐assisted ultrasensitive detection of DNA. J Am Chem Soc 2010, 132:6932–6934.
Gupta, S, Huda, S, Kilpatrick, PK, Velev, OD. Characterization and optimization of gold nanoparticle‐based silver‐enhanced immunoassays. Anal Chem 2007, 79:3810–3820.
Taton, TA, Scanometric, DNA. Array detection with nanoparticle probes. Science 2000, 289:1757–1760.
Rong‐Hwa, S, Shiao‐Shek, T, Der‐Jiang, C, Yao‐Wen, H. Gold nanoparticle‐based lateral flow assay for detection of staphylococcal enterotoxin B. Food Chem 2010, 118:462–466.
Posthuma‐Trumpie, GA, Korf, J, Amerongen, A. Lateral flow (immuno)assay: its strengths, weaknesses, opportunities and threats. A literature survey. Anal Bioanal Chem 2009, 393:569–582.
Cai, W, Gao, T, Hong, H, Sun, J. Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol Sci Appl 2008, 1:17–32.
Huang, X, Jain, PK, El‐Sayed, IH, El‐Sayed, MA. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 2008, 23:217–228.
El‐Sayed, IH, Huang, X, El‐Sayed, MA. Selective laser photo‐thermal therapy of epithelial carcinoma using anti‐EGFR antibody conjugated gold nanoparticles. Cancer Lett 2006, 239:129–135.
Loo, C, Lowery, A, Halas, NJ, West, JL, Drezek, R. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 2005, 5:709–711.
Hirsch, LR, Stafford, RJ, Bankson, JA, Sershen, SR, Rivera, B, Price, RE, Hazle, JD, Halas, NJ, West, JL. Nanoshell‐mediated near‐infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci U S A 2003, 100:13549–13554.
Huang, X, Pallaoro, A, Braun, GB, Morales, DP, Ogunyankin, MO, Zasadzinski, JA, Reich, NO. Modular plasmonic nanocarriers for efficient and targeted delivery of cancer‐therapeutic siRNA. Nano Lett 2014, 14:2046–2051.
Vo‐Dinh, T, Liu, Y, Fales, AM, Ngo, H, Wang, H‐N, Register, JK, Yuan, H, Norton, SJ, Griffin, GD. SERS Nanosensors and Nanoreporters: Golden Opportunities in Biomedical Applications. WIREs Nanomed Nanobiotechnol 2014. doi: 10.1002/wnan.1283
Cetin, AE, Coskun, AF, Galarreta, BC, Huang, M, Herman, D, Ozcan, A, Altug, H. Handheld high‐throughput plasmonic biosensor using computational on‐chip imaging. Light Sci Appl 2014, 3:e122.
Wang, Y, Kar, A, Paterson, A, Kourentzi, K, Le, H, Ruchhoeft, P, Willson, R, Boa, J. Transmissive nanohole arrays for massively‐parallel optical biosensing. ACS Photonics 2014, 1:241–245.
Brolo, AG, Gordon, R, Leathem, B, Kavanagh, K. Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films. Langmuir 2004, 20:4813–4815.
Yanik, AA, Huang, M, Kamohara, O, Artar, A, Geisbert, TW, Connor, JH, Altug, H. An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media. Nano Lett 2010, 10:4962–4969.
Dahlin, AB, Zäch, M, Rindzevicius, T, Käll, M, Sutherland, DS, Höök, F. Localized surface plasmon resonance sensing of lipid‐membrane‐mediated biorecognition events. J Am Chem Soc 2005, 127:5043–5048.
Jonsson, MP, Jönsson, P, Dahlin, AB, Höök, F. Supported lipid bilayer formation and lipid‐membrane‐mediated biorecognition reactions studied with a new nanoplasmonic sensor template. Nano Lett 2007, 7:3462–3468.
Lee, SH, Lindquist, NC, Wittenberg, NJ, Jordan, LR, Oh, S‐H. Real‐time full‐spectral imaging and affinity measurements from 50 microfluidic channels using nanohole surface plasmon resonance. Lab Chip 2012, 12:3882.
Eftekhari, F, Escobedo, C, Ferreira, J, Duan, X, Girotto, EM, Brolo, AG, Gordon, R, Sinton, D. Nanoholes as nanochannels: flow‐through plasmonic sensing. Anal Chem 2009, 81:4308–4311.
Im, H, Wittenberg, NJ, Lesuffleur, A, Lindquist, NC, Oh, S‐H. Membrane protein biosensing with plasmonic nanopore arrays and pore‐spanning lipid membranes. Chem Sci 2010, 1:688.
Su, K, Wei, Q, Zhang, X, Mock, JJ, Smith, DR, Schultz, S. Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett 2003, 3:1087–1090.
Sönnichsen, C, Reinhard, BM, Liphardt, J, Alivisatos, AP. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat Biotechnol 2005, 23:741–745.
Chen, JIL, Chen, Y, Ginger, DS. Plasmonic nanoparticle dimers for optical sensing of DNA in complex media. J Am Chem Soc 2010, 132:9600–9601.
Guo, L, Ferhan, AR, Chen, H, Li, C, Chen, G, Hong, S, Kim, D‐H. Distance‐mediated plasmonic dimers for reusable colorimetric switches: a measurable peak shift of more than 60 nm. Small 2012, 9:234–240.
Reinhard, BM, Siu, M, Agarwal, H, Alivisatos, AP, Liphardt, J. Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles. Nano Lett 2005, 5:2246–2252.
Gunnarsson, L, Rindzevicius, T, Prikulis, J, Kasemo, B, Käll, M, Zou, S, Schatz, GC. Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions. J Phys Chem B 2005, 109:1079–1087.
Romero, I, Aizpurua, J, Bryant, GW, Garcia de Abajo, FJ. Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers. Opt Express 2006, 14:9988–9999.
Jain, PK, Huang, W, El‐Sayed, MA. On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation. Nano Lett 2007, 7:2080–2088.
Dhawan, A, Norton, SJ, Gerhold, MD, Vo‐Dinh, T. Comparison of FDTD numerical computations and analytical multipole expansion method for plasmonics‐active nanosphere dimers. Opt Express 2009, 17:9688–9703.
Yang, L, Wang, H, Yan, B, Reinhard, BM. Calibration of silver plasmon rulers in the 1–25 nm separation range: experimental indications of distinct plasmon coupling regimes. J Phys Chem C 2010, 114:4901–4908.
Hill, RT, Mock, JJ, Hucknall, A, Wolter, SD, Jokerst, NM, Smith, DR, Chilkoti, A. Plasmon ruler with angstrom length resolution. ACS Nano 2012, 6:9237–9246.
Elghanian, R. Selective colorimetric detection of polynucleotides based on the distance‐dependent optical properties of gold nanoparticles. Science 1997, 277:1078–1081.
Park, S‐J, Lazarides, AA, Storhoff, J, Pesce, L, Mirkin, CA. The structural characterization of oligonucleotide‐modified gold nanoparticle networks formed by DNA hybridization. J Phys Chem B 2004, 108:12375–12380.
Sebba, DS, Mock, JJ, Smith, DR, Labean, TH, Lazarides, AA. Reconfigurable core‐satellite nanoassemblies as molecularly‐driven plasmonic switches. Nano Lett 2008, 8:1803–1808.
Maye, MM, Kumara, MT, Nykypanchuk, D, Sherman, WB, Gang, O. Switching binary states of nanoparticle superlattices and dimer clusters by DNA strands. Nat Nanotechnol 2010, 5:116–120.
Yan, Y, Chen, JIL, Ginger, DS. Photoswitchable oligonucleotide‐modified gold nanoparticles: controlling hybridization stringency with photon dose. Nano Lett 2012, 12:2530–2536.
Lu, Y, Liu, Y, Zhang, S, Wang, S, Zhang, S, Zhang, X. Aptamer‐based plasmonic sensor array for discrimination of proteins and cells with the naked eye. Anal Chem 2013, 85:6571–6574.
Fong, KE, Yung, L‐YL. Analysis of metallic nanoparticle‐DNA assembly formation in bulk solution via localized surface plasmon resonance shift. RSC Adv 2012, 2:5154.
Reinhard, BM, Sheikholeslami, S, Mastroianni, A, Alivisatos, AP, Liphardt, J. Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single EcoRV restriction enzymes. Proc Natl Acad Sci U S A 2007, 104:2667–2672.
Skewis, LR, Reinhard, BM. Spermidine modulated ribonuclease activity probed by RNA plasmon rulers. Nano Lett 2008, 8:214–220.
Chen, JIL, Durkee, H, Traxler, B, Ginger, DS. Optical detection of protein in complex media with plasmonic nanoparticle dimers. Small 2011, 7:1993–1997.
Sannomiya, T, Hafner, C, Voros, J. In situ sensing of single binding events by localized surface plasmon resonance. Nano Lett 2008, 8:3450–3455.
Waldeisen, JR, Wang, T, Ross, BM, Lee, LP. Disassembly of a core‐satellite nanoassembled substrate for colorimetric biomolecular detection. ACS Nano 2011, 5:5383–5389.
Tokarev, I, Tokareva, I, Minko, S. Optical nanosensor platform operating in near‐physiological pH range via polymer‐brush‐mediated plasmon coupling. ACS Appl Mater Interfaces 2011, 3:143–146.
Tokareva, I, Minko, S, Fendler, JH, Hutter, E. Nanosensors based on responsive polymer brushes and gold nanoparticle enhanced transmission surface plasmon resonance spectroscopy. J Am Chem Soc 2004, 126:15950–15951.
Agrawal, A, Deo, R, Wang, GD, Wang, MD, Nie, S. Nanometer‐scale mapping and single‐molecule detection with color‐coded nanoparticle probes. Proc Natl Acad Sci U S A 2008, 105:3298–3303.
Wu, L, Reinhard, BM. Probing subdiffraction limit separations with plasmon coupling microscopy: concepts and applications. Chem Soc Rev 2014, 43:3884–3897.
Yu, X, Wang, J, Feizpour, A, Reinhard, BM. Illuminating the lateral organization of cell‐surface CD24 and CD44 through plasmon coupling between Au nanoparticle immunolabels. Anal Chem 2013, 85:1290–1294.
Wang, J, Boriskina, SV, Wang, H, Reinhard, BM. Illuminating epidermal growth factor receptor densities on filopodia through plasmon coupling. ACS Nano 2011, 5:6619–6628.
Mock, JJ, Hill, RT, Degiron, A, Zauscher, S, Chilkoti, A, Smith, DR. Distance‐dependent plasmon resonant coupling between a gold nanoparticle and gold film. Nano Lett 2008, 8:2245–2252.
Hill, RT, Mock, JJ, Urzhumov, Y, Sebba, DS, Oldenburg, S, Chen, S‐Y, Lazarides, AA, Chilkoti, A, Smith, DR. Leveraging nanoscale plasmonic modes to achieve reproducible enhancement of light. Nano Lett 2010, 10:4150–4154.
Mock, JJ, Hill, RT, Tsai, Y‐J, Chilkoti, A, Smith, DR. Probing dynamically tunable localized surface plasmon resonances of film‐coupled nanoparticles by evanescent wave excitation. Nano Lett 2012, 12:1757–1764.
Ciracì, C, Hill, RT, Mock, JJ, Urzhumov, Y, Fernández‐Domínguez, AI, Maier, SA, Pendry, JB, Chilkoti, A, Smith, DR. Probing the ultimate limits of plasmonic enhancement. Science 2012, 337:1072–1074.
Moreau, A, Ciracì, C, Mock, JJ, Hill, RT, Wang, Q, Wiley, BJ, Chilkoti, A, Smith, DR. Controlled‐reflectance surfaces with film‐coupled colloidal nanoantennas. Nature 2012, 492:86–89.
Hill, RT, Kozek, KM, Hucknall, A, Smith, DR, Chilkoti, A. Nanoparticle‐film plasmon ruler interrogated with transmission visible spectroscopy. ACS Photonics 2014, 1:974–984.
Chen, S, Chien, F, Lin, G, Lee, K. Enhancement of the resolution of surface plasmon resonance biosensors by control of the size and distribution of nanoparticles. Opt Lett 2004, 29:1390–1392.
He, L, Smith, E, Natan, MJ, Keating, CD. The distance‐dependence of colloidal Au‐amplified surface plasmon resonance. J Phys Chem B 2004, 108:10973–10980.
Hutter, E, Fendler, JH, Roy, D. Surface plasmon resonance studies of gold and silver nanoparticles linked to gold and silver substrates by 2‐aminoethanethiol and 1,6‐hexanedithiol. J Phys Chem B 2001, 105:11159–11168.
He, L, Musick, MD, Nicewarner, SR, Salinas, FG, Benkovic, SJ, Natan, MJ, Keating, CD. Colloidal Au‐enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization. J Am Chem Soc 2000, 122:9071–9077.
Jung, J, Na, K, Lee, J, Kim, K‐W, Hyun, J. Enhanced surface plasmon resonance by Au nanoparticles immobilized on a dielectric SiO2 layer on a gold surface. Anal Chim Acta 2009, 651:91–97.
Kang, T, Hong, S, Choi, I, Sung, JJ, Kim, Y, Hahn, J‐S, Yi, J. Reversible pH‐driven conformational switching of tethered superoxide dismutase with gold nanoparticle enhanced surface plasmon resonance spectroscopy. J Am Chem Soc 2006, 128:12870–12878.
Wang, F, Wang, J, Liu, X, Dong, S. Nanoparticle‐amplified surface plasmon resonance study of protein conformational change at interface. Talanta 2008, 77:628–634.
Jiang, G, Baba, A, Ikarashi, H, Xu, R, Locklin, J, Kashif, K, Shinbo, K, Kato, K, Kaneko, F, Advincula, R. Signal enhancement and tuning of surface plasmon resonance in Au nanoparticle/polyelectrolyte ultrathin films. J Phys Chem C 2007, 111:18687–18694.
Hong, X, Hall, EAH. Contribution of gold nanoparticles to the signal amplification in surface plasmon resonance. Analyst 2012, 137:4712–4719.
Sundaramurthy, A, Crozier, KB, Kino, G, Fromm, D, Schuck, P, Moerner, W. Field enhancement and gap‐dependent resonance in a system of two opposing tip‐to‐tip Au nanotriangles. Phys Rev B 2005, 72:165409.
Sun, M, Fang, Y, Yang, Z, Xu, H. Chemical and electromagnetic mechanisms of tip‐enhanced Raman scattering. Phys Chem Chem Phys 2009, 11:9412.
Yeo, B‐S, Stadler, J, Schmid, T, Zenobi, R, Zhang, W. Tip‐enhanced Raman spectroscopy—its status, challenges and future directions. Chem Phys Lett 2009, 472:1–13.
Vlcková, B, Moskovits, M, Pavel, I, Sisková, K, Sládková, M, Slouf, M. Single‐molecule surface‐enhanced Raman spectroscopy from a molecularly‐bridged silver nanoparticle dimer. Chem Phys Lett 2008, 455:131–134.
Lim, D‐K, Jeon, K‐S, Kim, HM, Nam, J‐M, Suh, YD. Nanogap‐engineerable Raman‐active nanodumbbells for single‐molecule detection. Nat Mater 2010, 9:60–67.
Rycenga, M, Camargo, PHC, Li, W, Moran, CH, Xia, Y. Understanding the SERS effects of single silver nanoparticles and their dimers, one at a time. J Phys Chem Lett 2010, 1:696–703.
Moskovits, M. Persistent misconceptions regarding SERS. Phys Chem Chem Phys 2013, 15:5301.
Andreou, C, Hoonejani, MR, Barmi, MR, Moskovits, M, Meinhart, CD. Rapid detection of drugs of abuse in saliva using surface enhanced Raman spectroscopy and microfluidics. ACS Nano 2013, 7:7157–7164.
Driskell, JD, Primera‐Pedrozo, OM, Dluhy, RA, Zhao, Y, Tripp, RA. Quantitative surface‐enhanced Raman spectroscopy based analysis of microRNA mixtures. Appl Spectrosc 2009, 63:1107–1114.
Driskell, JD, Uhlenkamp, J, Lipert, RJ, Porter, MD. Surface‐enhanced Raman scattering immunoassays using a rotated capture substrate. Anal Chem 2007, 79:4141–4148.
Nie, S, Emory, S. Probing single molecules and single nanoparticles by surface‐enhanced Raman scattering. Science 1997, 275:1102.
Chen, S‐Y, Lazarides, AA. Quantitative amplification of Cy5 SERS in ‘warm spots’ created by plasmonic coupling in nanoparticle assemblies of controlled structure. J Phys Chem C 2009, 113:12167–12175.
Schwartzberg, A, Grant, C, Wolcott, A, Talley, C, Huser, T, Bogomolni, R, Zhang, J. Unique gold nanoparticle aggregates as a highly active surface‐enhanced Raman scattering substrate. J Phys Chem B 2004, 108:19191–19197.
Imura, K, Okamoto, H, Hossain, M, Kitajima, M. Visualization of localized intense optical fields in single gold‐nanoparticle assemblies and ultrasensitive Raman active sites. Nano Lett 2006, 6:2173–2176.
Itoh, T, Biju, V, Ishikawa, M, Kikkawa, Y, Hashimoto, K, Ikehata, A, Ozaki, Y. Surface‐enhanced resonance Raman scattering and background light emission coupled with plasmon of single Ag nanoaggregates. J Chem Phys 2006, 124:134708.
Qian, X, Peng, X, Ansari, D, Yin‐Goen, Q, Chen, G, Shin, D, Yang, L, Young, A, Wang, MD, Nie, S. In vivo tumor targeting and spectroscopic detection with surface‐enhanced Raman nanoparticle tags. Nat Biotechnol 2007, 26:83–90.
Zhang, H, Harpster, MH, Park, HJ, Johnson, PA, Wilson, WC. Surface‐enhanced Raman scattering detection of DNA derived from the west nile virus genome using magnetic capture of Raman‐active gold nanoparticles. Anal Chem 2011, 83:254–260.
Zhang, H, Harpster, MH, Wilson, WC, Johnson, PA. Surface‐enhanced Raman scattering detection of DNAs derived from virus genomes using Au‐coated paramagnetic nanoparticles. Langmuir 2012, 28:4030–4037.
Nguyen, CT, Nguyen, JT, Rutledge, S, Zhang, J, Wang, C, Walker, GC. Detection of chronic lymphocytic leukemia cell surface markers using surface enhanced Raman scattering gold nanoparticles. Cancer Lett 2010, 292:91–97.
Neng, J, Harpster, MH, Zhang, H, Mecham, JO, Wilson, WC, Johnson, PA. A versatile SERS‐based immunoassay for immunoglobulin detection using antigen‐coated gold nanoparticles and malachite green‐conjugated protein A/G. Biosens Bioelectron 2010, 26:1009–1015.
Ikeda, K, Suzuki, S, Uosaki, K. Crystal face dependent chemical effects in surface‐enhanced Raman scattering at atomically defined gold facets. Nano Lett 2011, 11:1716–1722.
Gehan, H, Fillaud, L, Chehimi, MM, Aubard, J, Hohenau, A, Felidj, N, Mangeney, C. Thermo‐induced electromagnetic coupling in gold/polymer hybrid plasmonic structures probed by surface‐enhanced raman scattering. ACS Nano 2010, 4:6491–6500.
Kim, NH, Lee, SJ, Moskovits, M. Aptamer‐mediated surface‐enhanced Raman spectroscopy intensity amplification. Nano Lett 2010, 10:4181–4185.
Park, W‐H, Ahn, S‐H, Kim, ZH. Surface‐enhanced Raman scattering from a single nanoparticle‐plane junction. ChemPhysChem 2008, 9:2491–2494.
Braun, GB, Lee, SJ, Dante, M, Nguyen, T‐Q, Moskovits, M, Reich, NO. Surface‐enhanced Raman spectroscopy for DNA detection by nanoparticle assembly onto smooth metal films. J Am Chem Soc 2007, 129:6378–6379.
Driskell, JD, Lipert, RJ, Porter, MD. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface‐enhanced Raman scattering. J Phys Chem B 2006, 110:17444–17451.
Anderson, DJ, Moskovits, M. A SERS‐active system based on silver nanoparticles tethered to a deposited silver film. J Phys Chem B 2006, 110:13722–13727.
Kim, K, Yoon, JK. Raman scattering of 4‐aminobenzenethiol sandwiched between Ag/Au nanoparticle and macroscopically smooth Au substrate. J Phys Chem B 2005, 109:20731–20736.
Daniels, JK, Chumanov, G. Nanoparticle‐mirror sandwich substrates for surface‐enhanced Raman scattering. J Phys Chem B 2005, 109:17936–17942.
Driskell, JD, Kwarta, K, Lipert, RJ, Porter, MD, Neill, J, Ridpath, J. Low‐level detection of viral pathogens by a surface‐enhanced Raman scattering based immunoassay. Anal Chem 2005, 77:6147–6154.
Punj, D, Ghenuche, P, Moparthi, SB, De Torres, J, Grigoriev, V, Rigneault, H, Wenger, J. Plasmonic antennas and zero‐mode waveguides to enhance single molecule fluorescence detection and fluorescence correlation spectroscopy toward physiological concentrations. WIREs Nanomed Nanobiotechnol 2014, 6:268–282.