Acharya,, C., Ghosh,, S. K., & Kundu,, S. C. (2008). Silk fibroin protein from mulberry and non‐mulberry silkworms: Cytotoxicity, biocompatibility and kinetics of L929 murine fibroblast adhesion. Journal of Materials Science. Materials in Medicine, 19(8), 2827–2836. https://doi.org/10.1007/s10856-008-3408-3
Altman,, G. H., Diaz,, F., Jakuba,, C., Calabro,, T., Horan,, R. L., Chen,, J., … Kaplan,, D. L. (2003). Silk‐based biomaterials. Biomaterials, 24(3), 401–416.
Altman,, G. H., Horan,, R. L., Lu,, H. H., Moreau,, J., Martin,, I., Richmond,, J. C., & Kaplan,, D. L. (2002). Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials, 23(20), 4131–4141.
Arai,, T., Freddi,, G., Innocenti,, R., & Tsukada,, M. (2003). Biodegradation of Bombyx mori silk fibroin fibers and films. Journal of Applied Polymer Science, 91, 2383–2390.
Asakura,, T., Ashida,, J., Yamane,, T., Kameda,, T., Nakazawa,, Y., Ohgo,, K., & Komatsu,, K. (2001). A repeated beta‐turn structure in poly(ala‐Gly) as a model for silk I of Bombyx mori silk fibroin studied with two‐dimensional spin‐diffusion NMR under off magic angle spinning and rotational echo double resonance. Journal of Molecular Biology, 306(2), 291–305. https://doi.org/10.1006/jmbi.2000.4394
Asakura,, T., Kuzuhara,, A., Tabeta,, R., & Zaito,, H. (1985). Conformation characterization of Bombyx mori silk fibroin in the solid state by high‐frequency C cross polarization ‐ magic angle spinning NMR, X‐ray diffraction, and infrared spectroscopy. Macromolecules, 18(10), 1841–1845.
Asakura,, T., Sugino,, R., Yao,, J., Takashima,, H., & Kishore,, R. (2002). Comparative structure analysis of tyrosine and valine residues in unprocessed silk fibroin (silk I) and in the processed silk fiber (silk II) from Bombyx mori using solid‐state (13)C,(15)N, and (2)H NMR. Biochemistry, 41(13), 4415–4424.
Bellis,, S. L. (2011). Advantages of RGD peptides for directing cell association with biomaterials. Biomaterials, 32(18), 4205–4210. https://doi.org/10.1016/j.biomaterials.2011.02.029
Bhattacharjee,, P., Kundu,, B., Naskar,, D., Kim,, H. W., Maiti,, T. K., Bhattacharya,, D., & Kundu,, S. C. (2017). Silk scaffolds in bone tissue engineering: An overview. Acta Biomaterialia, 63, 1–17. https://doi.org/10.1016/j.actbio.2017.09.027
Bini,, E., Foo,, C. W., Huang,, J., Karageorgiou,, V., Kitchel,, B., & Kaplan,, D. L. (2006). RGD‐functionalized bioengineered spider dragline silk biomaterial. Biomacromolecules, 7(11), 3139–3145. https://doi.org/10.1021/bm0607877
Bini,, E., Knight,, D. P., & Kaplan,, D. L. (2004). Mapping domain structures in silks from insects and spiders related to protein assembly. Journal of Molecular Biology, 335(1), 27–40.
Boonrungsiman,, S., Thongtham,, N., Suwantong,, O., Wutikhun,, T., Soykeabkaew,, N., & Nimmannit,, U. (2018). An improvement of silk‐based scaffold properties using collagen type I for skin tissue engineering applications. Polymer Bulletin, 75, 685–700.
Brown,, J., Lu,, C. L., Coburn,, J., & Kaplan,, D. L. (2015). Impact of silk biomaterial structure on proteolysis. Acta Biomaterialia, 11, 212–221. https://doi.org/10.1016/j.actbio.2014.09.013
Cao,, Y., & Wang,, B. (2009). Biodegradation of silk biomaterials. International Journal of Molecular Sciences, 10(4), 1514–1524. https://doi.org/10.3390/ijms10041514
Cebe,, P., Partlow,, B. P., Kaplan,, D. L., Wurm,, A., Zhuravlev,, E., & Schick,, C. (2017). Silk I and silk II studied by fast scanning calorimetry. Acta Biomaterialia, 55, 323–332. https://doi.org/10.1016/j.actbio.2017.04.001
Coburn,, J. M., & Kaplan,, D. L. (2015). Engineering biomaterial‐drug conjugates for local and sustained chemotherapeutic delivery. Bioconjugate Chemistry, 26(7), 1212–1223. https://doi.org/10.1021/acs.bioconjchem.5b00046
Collier,, J. H., & Segura,, T. (2011). Evolving the use of peptides as components of biomaterials. Biomaterials, 32(18), 4198–4204. https://doi.org/10.1016/j.biomaterials.2011.02.030
Crivelli,, B., Perteghella,, S., Bari,, E., Sorrenti,, M., Tripodo,, G., Chlapanidas,, T., & Torre,, M. L. (2018). Silk nanoparticles: From inert supports to bioactive natural carriers for drug delivery. Soft Matter, 14(4), 546–557. https://doi.org/10.1039/c7sm01631j
Dou,, H., & He,, J.‐H. (2012). Nanoparticles fabricated by the bubble electrospinning. Thermal Science, 16(5), 1562–1563.
Gupta,, V., Aseh,, A., Ríos,, C. N., Aggarwal,, B. B., & Mathur,, A. B. (2009). Fabrication and characterization of silk fibroin‐derived curcumin nanoparticles for cancer therapy. International Journal of Nanomedicine, 4, 115–122.
Han,, F., Liu,, S., Liu,, X., Pei,, Y., Bai,, S., Zhao,, H., … Zhu,, H. (2014). Woven silk fabric‐reinforced silk nanofibrous scaffolds for regenerating load‐bearing soft tissues. Acta Biomaterialia, 10(2), 921–930. https://doi.org/10.1016/j.actbio.2013.09.026
Hersel,, U., Dahmen,, C., & Kessler,, H. (2003). RGD modified polymers: Biomaterials for stimulated cell adhesion and beyond. Biomaterials, 24(24), 4385–4415.
Horan,, R. L., Antle,, K., Collette,, A. L., Wang,, Y., Huang,, J., Moreau,, J. E., … Altman,, G. H. (2005). In vitro degradation of silk fibroin. Biomaterials, 26(17), 3385–3393. https://doi.org/10.1016/j.biomaterials.2004.09.020
Horan,, R. L., Bramono,, D. S., Stanley,, J. R., Simmons,, Q., Chen,, J., Boepple,, H. E., & Altman,, G. H. (2009). Biological and biomechanical assessment of a long‐term bioresorbable silk‐derived surgical mesh in an abdominal body wall defect model. Hernia, 13(2), 189–199. https://doi.org/10.1007/s10029-008-0459-9
Hu,, X., Shmelev,, K., Sun,, L., Gil,, E. S., Park,, S. H., Cebe,, P., & Kaplan,, D. L. (2011). Regulation of silk material structure by temperature‐controlled water vapor annealing. Biomacromolecules, 12(5), 1686–1696. https://doi.org/10.1021/bm200062a
Janani,, G., Nandi,, S. K., & Mandal,, B. B. (2017). Functional hepatocyte clusters on bioactive blend silk matrices towards generating bioartificial liver constructs. Acta Biomaterialia, 67, 167–182. https://doi.org/10.1016/j.actbio.2017.11.053
Jiao,, Z., Song,, Y., Jin,, Y., Zhang,, C., Peng,, D., Chen,, Z., … Wang,, L. (2017). In vivo characterizations of the immune properties of Sericin: An ancient material with emerging value in biomedical applications. Macromolecular Bioscience, 17(12), 1700229. https://doi.org/10.1002/mabi.201700229
Jin,, H. J., Fridrikh,, S. V., Rutledge,, G. C., & Kaplan,, D. L. (2002). Electrospinning Bombyx mori silk with poly(ethylene oxide). Biomacromolecules, 3(6), 1233–1239.
Jin,, H. J., & Kaplan,, D. L. (2003). Mechanism of silk processing in insects and spiders. Nature, 424(6952), 1057–1061. https://doi.org/10.1038/nature01809
Kim,, D. K., In Kim,, J., Sim,, B. R., & Khang,, G. (2017). Bioengineered porous composite curcumin/silk scaffolds for cartilage regeneration. Materials Science %26 Engineering. C, Materials for Biological Applications, 78, 571–578. https://doi.org/10.1016/j.msec.2017.02.067
Kim,, H. H., Song,, D. W., Kim,, M. J., Ryu,, S. J., Um,, I. C., Ki,, C. S., & Park,, Y. H. (2016). Effect of silk fibroin molecular weight on physical property of silk hydrogel. Polymer, 90, 26–33.
Kim,, H. J., Kim,, M. K., Lee,, K. H., Nho,, S. K., Han,, M. S., & Um,, I. C. (2017). Effect of degumming methods on structural characteristics and properties of regenerated silk. International Journal of Biological Macromolecules, 104(Pt A), 294–302. https://doi.org/10.1016/j.ijbiomac.2017.06.019
Kim,, S. H., Nam,, Y. S., Lee,, T. S., & Park,, W. H. (2003). Silk fibroin nanofiber. Electrospinning, properties, and structure. Polymer Journal, 35(2), 185–190.
Kim,, U. J., Park,, J., Kim,, H. J., Wada,, M., & Kaplan,, D. L. (2005). Three‐dimensional aqueous‐derived biomaterial scaffolds from silk fibroin. Biomaterials, 26(15), 2775–2785. https://doi.org/10.1016/j.biomaterials.2004.07.044
Koh,, L.‐D., Cheng,, Y., Teng,, C.‐P., Khin,, Y.‐W., Loh,, X.‐J., Tee,, S.‐Y., … Han,, M.‐Y. (2015). Structures, mechanical properties and applications of silk fibroin materials. Progress in Polymer Science, 46, 86–110.
Kundu,, B., Kurland,, N. E., Bano,, S., Patra,, C., Engel,, F. B., Yadavalli,, V. K., & Kundu,, S. C. (2014). Silk proteins for biomedical applications: Bioengineering perspectives. Progress in Polymer Science, 39(2), 251–267.
Kundu,, B., Rajkhowa,, R., Kundu,, S. C., & Wang,, X. (2013). Silk fibroin biomaterials for tissue regenerations. Advanced Drug Delivery Reviews, 65(4), 457–470. https://doi.org/10.1016/j.addr.2012.09.043
Kundu,, S. C., Kundu,, B., Talukdar,, S., Bano,, S., Nayak,, S., Kundu,, J., … Ghosh,, A. K. (2012). Invited review nonmulberry silk biopolymers. Biopolymers, 97(6), 455–467. https://doi.org/10.1002/bip.22024
Kunz,, R. I., Brancalhao,, R. M. C., Ribeiro,, L. D. C., & Natali,, M. R. M. (2016). Silkworm sericin: Properties and biomedical applications. Biomed Research International, 2016, 8175701. https://doi.org/10.1155/2016/8175701
Li,, M., Ogiso,, M., & Minoura,, N. (2003). Enzymatic degradation behavior of porous silk fibroin sheets. Biomaterials, 24(2), 357–365.
Li,, X., Zhang,, J., Feng,, Y., Yan,, S., Zhang,, Q., & You,, R. (2018). Tuning the structure and performance of silk biomaterials by combining mulberry and non‐mulberry silk fibroin. Polymer Degradation and Stability, 147, 57–63.
Liu,, B., Song,, Y. W., Jin,, L., Wang,, Z. J., Pu,, D. Y., Lin,, S. Q., … Zhang,, Y. G. (2015). Silk structure and degradation. Colloids and Surfaces. B, Biointerfaces, 131, 122–128. https://doi.org/10.1016/j.colsurfb.2015.04.040
Lu,, Q., Feng,, Q., Hu,, K., & Cui,, F. (2008). Preparation of three‐dimensional fibroin/collagen scaffolds in various pH conditions. Journal of Materials Science. Materials in Medicine, 19(2), 629–634. https://doi.org/10.1007/s10856-007-3180-9
Mandal,, B. B., Priya,, A. S., & Kundu,, S. C. (2009). Novel silk sericin/gelatin 3‐D scaffolds and 2‐D films: Fabrication and characterization for potential tissue engineering applications. Acta Biomaterialia, 5(8), 3007–3020. https://doi.org/10.1016/j.actbio.2009.03.026
Maniglio,, D., Bonani,, W., Migliaresi,, C., & Motta,, A. (2018). Silk fibroin porous scaffolds by N. Journal of Biomaterials Science. Polymer Edition, 29(5), 491–506. https://doi.org/10.1080/09205063.2018.1423811
Marsh,, R. E., Corey,, R. B., & Pauling,, L. (1955). An investigation of the structure of silk fibroin. Biochimica et Biophysica Acta, 16(1), 1–34.
Melke,, J., Midha,, S., Ghosh,, S., Ito,, K., & Hofmann,, S. (2016). Silk fibroin as biomaterial for bone tissue engineering. Acta Biomaterialia, 31, 1–16. https://doi.org/10.1016/j.actbio.2015.09.005
Min,, B. M., Lee,, G., Kim,, S. H., Nam,, Y. S., Lee,, T. S., & Park,, W. H. (2004). Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials, 25(7–8), 1289–1297.
Nair,, L., & Laurencin,, C. (2007). Biodegradable polymers as biomaterials. Progress in Polymer Science, 32, 762–798.
Nultsch,, K., & Germershaus,, O. (2017). Silk fibroin degumming affects scaffold structure and release of macromolecular drugs. European Journal of Pharmaceutical Sciences, 106, 254–261. https://doi.org/10.1016/j.ejps.2017.06.012
Numata,, K., Cebe,, P., & Kaplan,, D. L. (2010). Mechanism of enzymatic degradation of beta‐sheet crystals. Biomaterials, 31(10), 2926–2933. https://doi.org/10.1016/j.biomaterials.2009.12.026
Numata,, K., & Kaplan,, D. L. (2010). Silk‐based delivery systems of bioactive molecules. Advanced Drug Delivery Reviews, 62(15), 1497–1508. https://doi.org/10.1016/j.addr.2010.03.009
Panilaitis,, B., Altman,, G. H., Chen,, J., Jin,, H. J., Karageorgiou,, V., & Kaplan,, D. L. (2003). Macrophage responses to silk. Biomaterials, 24(18), 3079–3085.
Park,, S. H., Gil,, E. S., Kim,, H. J., Lee,, K., & Kaplan,, D. L. (2010). Relationships between degradability of silk scaffolds and osteogenesis. Biomaterials, 31(24), 6162–6172. https://doi.org/10.1016/j.biomaterials.2010.04.028
Perez‐Rigueiro,, J., Viney,, C., Llorca,, J., & Elices,, M. (2000a). Mechanical properties of silkworm silk in liquid media. Polymer, 41(23), 8433–8439. https://doi.org/10.1016/S0032-3861(00)00179-8
Perez‐Rigueiro,, J., Viney,, C., Llorca,, J., & Elices,, M. (2000b). Mechanical properties of single‐Brin silkworm silk. Journal of Applied Polymer Science, 75, 1270–1277.
Pierschbacher,, M. D., & Ruoslahti,, E. (1984). Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature, 309(5963), 30–33.
Qu,, J., Liu,, Y., Yu,, Y., Li,, J., Luo,, J., & Li,, M. (2014). Silk fibroin nanoparticles prepared by electrospray as controlled release carriers of cisplatin. Materials Science %26 Engineering. C, Materials for Biological Applications, 44, 166–174. https://doi.org/10.1016/j.msec.2014.08.034
Rajkhowa,, R., Hu,, X., Tsuzuki,, T., Kaplan,, D. L., & Wang,, X. (2012). Structure and biodegradation mechanism of milled Bombyx mori silk particles. Biomacromolecules, 13(8), 2503–2512. https://doi.org/10.1021/bm300736m
Rockwood,, D. N., Preda,, R. C., Yucel,, T., Wang,, X., Lovett,, M. L., & Kaplan,, D. L. (2011). Materials fabrication from Bombyx mori silk fibroin. Nature Protocols, 6(10), 1612–1631. https://doi.org/10.1038/nprot.2011.379
Romer,, L., & Scheibel,, T. (2008). The elaborate structure of spider silk: Structure and function of a natural high performance fiber. Prion, 2(4), 154–161.
Seo,, Y.‐K., Choi,, G.‐M., Kwon,, S.‐Y., Lee,, H.‐S., Park,, Y.‐S., Song,, K.‐Y., … Park,, J.‐K. (2007). The biocompatibility of silk scaffold for tissue engineered ligaments. Key Engineering Materials, 342, 73–76.
Shao,, Z. Z., & Vollrath,, F. (2002). Materials: Surprising strength of silkworm silk. Nature, 418(6899), 741–741. https://doi.org/10.1038/418741a
Sofia,, S., McCarthy,, M. B., Gronowicz,, G., & Kaplan,, D. L. (2001). Functionalized silk‐based biomaterials for bone formation. Journal of Biomedical Materials Research, 54(1), 139–148.
Srihanam,, P., & Simchuer,, W. (2009). Proteolytic degradation of silk fibroin scaffold by protease XXIII. The Open Macromolecules Journal, 3, 1–5.
Sukigara,, S., Gandhi,, M., Ayutsede,, J., Micklus,, M., & Ko,, F. (2003). Regeneration of Bombyx mori silk by electrospinning ‐ part 1: Processing parameters and geometric properties. Polymer, 44, 5721–5727.
Talukdar,, S., Nguyen,, Q. T., Chen,, A. C., Sah,, R. L., & Kundu,, S. C. (2011). Effect of initial cell seeding density on 3D‐engineered silk fibroin scaffolds for articular cartilage tissue engineering. Biomaterials, 32(34), 8927–8937. https://doi.org/10.1016/j.biomaterials.2011.08.027
Tamada,, Y. (2005). New process to form a silk fibroin porous 3‐D structure. Biomacromolecules, 6(6), 3100–3106. https://doi.org/10.1021/bm050431f
Teramoto,, H., Amano,, Y., Iraha,, F., Kojima,, K., Ito,, T., & Sakamoto,, K. (2018). Genetic code expansion of the silkworm Bombyx mori to functionalize silk fiber. ACS Synthetic Biology, 7(3), 801–806. https://doi.org/10.1021/acssynbio.7b00437
Thurber,, A. E., Omenetto,, F. G., & Kaplan,, D. L. (2015). In vivo bioresponses to silk proteins. Biomaterials, 71, 145–157. https://doi.org/10.1016/j.biomaterials.2015.08.039
Tian,, Y., Jiang,, X., Chen,, X., Shao,, Z., & Yang,, W. (2014). Doxorubicin‐loaded magnetic silk fibroin nanoparticles for targeted therapy of multidrug‐resistant cancer. Advanced Materials, 26(43), 7393–7398. https://doi.org/10.1002/adma.201403562
Unger,, R. E., Wolf,, M., Peters,, K., Motta,, A., Migliaresi,, C., & James Kirkpatrick,, C. (2004). Growth of human cells on a non‐woven silk fibroin net: A potential for use in tissue engineering. Biomaterials, 25(6), 1069–1075.
Valluzzi,, R., Winkler,, S., Wilson,, D., & Kaplan,, D. L. (2002). Silk: Molecular organization and control of assembly. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 357(1418), 165–167. https://doi.org/10.1098/rstb.2001.1032
Vepari,, C., & Kaplan,, D. L. (2007). Silk as a biomaterial. Progress in Polymer Science, 32(8–9), 991–1007. https://doi.org/10.1016/j.progpolymsci.2007.05.013
Vollrath,, F., Madsen,, B., & Shao,, Z. (2001). The effect of spinning conditions on the mechanics of a spider`s dragline silk. Proceedings of the Biological Sciences, 268(1483), 2339–2346. https://doi.org/10.1098/rspb.2001.1590
Wang,, H., Ma,, L., Yang,, S., Shao,, Z., Meng,, C., Duan,, D., & Li,, Y. (2009). Effect of RGD‐modified silk material on the adhesion and proliferation of bone marrow‐derived mesenchymal stem cells. Journal of Huazhong University of Science and Technology. Medical Sciences, 29(1), 80–83. https://doi.org/10.1007/s11596-009-0117-1
Wang,, H.‐Y., & Zhang,, Y.‐Q. (2013). Effect of regeneration of liquid silk fibroin on its structure and characterization. Soft Matter, 9, 138–145.
Wang,, X., Yucel,, T., Lu,, Q., Hu,, X., & Kaplan,, D. L. (2010). Silk nanospheres and microspheres from silk/pva blend films for drug delivery. Biomaterials, 31(6), 1025–1035. https://doi.org/10.1016/j.biomaterials.2009.11.002
Wang,, Y., Kim,, H. J., Vunjak‐Novakovic,, G., & Kaplan,, D. L. (2006). Stem cell‐based tissue engineering with silk biomaterials. Biomaterials, 27(36), 6064–6082. https://doi.org/10.1016/j.biomaterials.2006.07.008
Wang,, Y., Rudym,, D. D., Walsh,, A., Abrahamsen,, L., Kim,, H. J., Kim,, H. S., … Kaplan,, D. L. (2008). In vivo degradation of three‐dimensional silk fibroin scaffolds. Biomaterials, 29(24–25), 3415–3428. https://doi.org/10.1016/j.biomaterials.2008.05.002
Włodarczyk‐Biegun,, M. K., & Del Campo,, A. (2017). 3D bioprinting of structural proteins. Biomaterials, 134, 180–201. https://doi.org/10.1016/j.biomaterials.2017.04.019
Wohlrab,, S., Müller,, S., Schmidt,, A., Neubauer,, S., Kessler,, H., Leal‐Egaña,, A., & Scheibel,, T. (2012). Cell adhesion and proliferation on RGD‐modified recombinant spider silk proteins. Biomaterials, 33(28), 6650–6659. https://doi.org/10.1016/j.biomaterials.2012.05.069
Wu,, P., Liu,, Q., Li,, R., Wang,, J., Zhen,, X., Yue,, G., … Liu,, B. (2013). Facile preparation of paclitaxel loaded silk fibroin nanoparticles for enhanced antitumor efficacy by locoregional drug delivery. ACS Applied Materials %26 Interfaces, 5(23), 12638–12645. https://doi.org/10.1021/am403992b
Xiao,, L., Liu,, S., Yao,, D., Ding,, Z., Fan,, Z., Lu,, Q., & Kaplan,, D. L. (2017). Fabrication of silk scaffolds with Nanomicroscaled structures and tunable stiffness. Biomacromolecules, 18(7), 2073–2079. https://doi.org/10.1021/acs.biomac.7b00406
Yamada,, H., Nakao,, H., Takasu,, Y., & Tsubouchi,, K. (2001). Preparation of undegraded native molecular fibroin solution from silkworm cocoons. Materials Science and Engineering C, 14, 41–46.
Yang,, Y., Chen,, X., Ding,, F., Zhang,, P., Liu,, J., & Gu,, X. (2007). Biocompatibility evaluation of silk fibroin with peripheral nerve tissues and cells in vitro. Biomaterials, 28(9), 1643–1652. https://doi.org/10.1016/j.biomaterials.2006.12.004
Zhang,, Q., Yan,, S., & Li,, M. (2009). Silk fibroin based porous materials. Materials, 2(4), 2276–2295.
Zheng,, Z., Wu,, J., Liu,, M., Wang,, H., Li,, C., Rodriguez,, M. J., … Kaplan,, D. L. (2018). 3D bioprinting of self‐standing silk‐based bioink. Advanced Healthcare Materials, 7, 1701026. https://doi.org/10.1002/adhm.201701026