Alani,, A. W. G., Bae,, Y., Rao,, D. A., & Kwon,, G. S. (2010). Polymeric micelles for the pH‐dependent controlled, continuous low dose release of paclitaxel. Biomaterials, 31(7), 1765–1772.
Allen,, T. M., & Cullis,, P. R. (2004). Drug delivery systems: Entering the mainstream. Science, 303(5665), 1818–1822.
Alvarez‐Lorenzo,, C., Bromberg,, L., & Concheiro,, A. (2009). Light‐sensitive intelligent drug delivery systems. Photochemistry and Photobiology, 85(4), 848–860.
Aryal,, S., Hu,, C. M. J., & Zhang,, L. F. (2010). Polymer‐cisplatin conjugate nanoparticles for acid‐responsive drug delivery. ACS Nano, 4(1), 251–258.
Bae,, Y., Diezi,, T. A., Zhao,, A., & Kwon,, G. S. (2007). Mixed polymeric micelles for combination cancer chemotherapy through the concurrent delivery of multiple chemotherapeutic agents. Journal of Controlled Release, 122(3), 324–330.
Bae,, Y., Fukushima,, S., Harada,, A., & Kataoka,, K. (2003). Design of environment‐sensitive supramolecular assemblies for intracellular drug delivery: Polymeric micelles that are responsive to intracellular pH change. Angewandte Chemie‐International Edition, 42(38), 4640–4643.
Banik,, B. L., Fattahi,, P., & Brown,, J. L. (2016). Polymeric nanoparticles: The future of nanomedicine. Wiley Interdisciplinary Reviews‐Nanomedicine and Nanobiotechnology, 8(2), 271–299.
Bensaid,, F., du Boullay,, O. T., Amgoune,, A., Pradel,, C., Reddy,, L. H., Didier,, E., … Bourissou,, D. (2013). Y‐shaped mPEG‐PLA cabazitaxel conjugates: Well‐controlled synthesis by organocatalytic approach and self‐assembly into interface drug‐loaded core‐corona nanoparticles. Biomacromolecules, 14(4), 1189–1198.
Bertin,, P. A., Smith,, D. D., & Nguyen,, S. T. (2005). High‐density doxorubicin‐conjugated polymeric nanoparticles via ring‐opening metathesis polymerization. Chemical Communications, (30), 3793–3795.
Bertrand,, N., Wu,, J., Xu,, X. Y., Kamaly,, N., & Farokhzad,, O. C. (2014). Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Advanced Drug Delivery Reviews, 66, 2–25.
Cabral,, H., & Kataoka,, K. (2014). Progress of drug‐loaded polymeric micelles into clinical studies. Journal of Controlled Release, 190, 465–476.
Cabral,, H., Miyata,, K., Osada,, K., & Kataoka,, K. (2018). Block copolymer micelles in nanomedicine applications. Chemical Reviews, 118(14), 6844–6892.
Cai,, H., Wang,, X., Zhang,, H., Sun,, L., Pan,, D., Gong,, Q., … Luo,, K. (2018). Enzyme‐sensitive biodegradable and multifunctional polymeric conjugate as theranostic nanomedicine. Applied Materials Today, 11, 207–218.
Cao,, X. T., Le,, C. M. Q., Thi,, H. H. P., Kim,, G. D., Gal,, Y. S., & Lim,, K. T. (2017). Redox‐responsive core cross‐linked prodrug micelles prepared by click chemistry for pH‐triggered doxorubicin delivery. Express Polymer Letters, 11(10), 832–845.
Chen,, Q., Espey,, M. G., Sun,, A. Y., Pooput,, C., Kirk,, K. L., Krishna,, M. C., … Levine,, M. (2008). Pharmacologic doses of ascorbate act as a prooxidant and decrease growth of aggressive tumor xenografts in mice. Proceedings of the National Academy of Sciences of the United States of America, 105(32), 11105–11109.
Cheng,, R., Feng,, F., Meng,, F. H., Deng,, C., Feijen,, J., & Zhong,, Z. Y. (2011). Glutathione‐responsive nano‐vehicles as a promising platform for targeted intracellular drug and gene delivery. Journal of Controlled Release, 152(1), 2–12.
Cong,, Y. W., Xiao,, H. H., Xiong,, H. J., Wang,, Z. G., Ding,, J. X., Li,, C., … Huang,, Y. B. (2018). Dual drug backboned shattering polymeric theranostic nanomedicine for synergistic eradication of patient‐derived lung cancer. Advanced Materials, 30(11), 1706220.
Dai,, L. L., Cai,, R. S., Li,, M. H., Luo,, Z., Yu,, Y. L., Chen,, W. Z., … Cai,, K. Y. (2017). Dual‐targeted cascade‐responsive prodrug micelle system for tumor therapy in vivo. Chemistry of Materials, 29(16), 6976–6992.
Danson,, S., Ferry,, D., Alakhov,, V., Margison,, J., Kerr,, D., Jowle,, D., … Ranson,, M. (2004). Phase I dose escalation and pharmacokinetic study of pluronic polymer‐bound doxorubicin (SP 1049C) in patients with advanced cancer. British Journal of Cancer, 90(11), 2085–2091.
De Oliveira,, H., Thevenot,, J., & Lecommandoux,, S. (2012). Smart polymersomes for therapy and diagnosis: Fast progress toward multifunctional biomimetic nanomedicines. Wiley Interdisciplinary Reviews‐Nanomedicine and Nanobiotechnology, 4(5), 525–546.
Delplace,, V., Couvreur,, P., & Nicolas,, J. (2014). Recent trends in the design of anticancer polymer prodrug nanocarriers. Polymer Chemistry, 5(5), 1529–1544.
Dickinson,, B. C., & Chang,, C. J. (2011). Chemistry and biology of reactive oxygen species in signaling or stress responses. Nature Chemical Biology, 7(8), 504–511.
Du,, J. Z., Du,, X. J., Mao,, C. Q., & Wang,, J. (2011). Tailor‐made dual pH‐sensitive polymer‐doxorubicin nanoparticles for efficient anticancer drug delivery. Journal of the American Chemical Society, 133(44), 17560–17563.
Duan,, Z., Zhang,, Y., Zhu,, H., Sun,, L., Cai,, H., Li,, B., … Luo,, K. (2017). Stimuli‐sensitive biodegradable and amphiphilic block copolymer‐gemcitabine conjugates self‐assemble into a nanoscale vehicle for cancer therapy. ACS Applied Materials %26 Interfaces, 9(4), 3474–3486.
Duncan,, R. (2006). Polymer conjugates as anticancer nanomedicines. Nature Reviews Cancer, 6(9), 688–701.
Fang,, J., Deng,, D., Nakamura,, H., Akuta,, T., Qin,, H., Iyer,, A. K., … Maeda,, H. (2008). Oxystress inducing antitumor therapeutics via tumor‐targeted delivery of PEG‐conjugated D‐amino acid oxidase. International Journal of Cancer, 122(5), 1135–1144.
Forman,, H. J., Zhang,, H. Q., & Rinna,, A. (2009). Glutathione: Overview of its protective roles, measurement, and biosynthesis. Molecular Aspects of Medicine, 30(1–2), 1–12.
Gamcsik,, M. P., Kasibhatla,, M. S., Teeter,, S. D., & Colvin,, O. M. (2012). Glutathione levels in human tumors. Biomarkers, 17(8), 671–691.
Gao,, Y., Xiao,, Y., Liu,, S. Y., & Yu,, J. H. (2018). Camptothecin prodrug nanomicelle based on a boronate ester‐linked diblock copolymer as the carrier of doxorubicin with enhanced cellular uptake. Journal of Biomaterials Science‐Polymer Edition, 29(2), 160–180.
Ge,, Z. S., & Liu,, S. Y. (2013). Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site‐specific drug delivery and enhanced imaging performance. Chemical Society Reviews, 42(17), 7289–7325.
Gu,, Y. D., Zhong,, Y. N., Meng,, F. H., Cheng,, R., Deng,, C., & Zhong,, Z. Y. (2013). Acetal‐linked paclitaxel prodrug micellar nanoparticles as a versatile and potent platform for cancer therapy. Biomacromolecules, 14(8), 2772–2780.
Guo,, X., Shi,, C. L., Wang,, J., Di,, S. B., & Zhou,, S. B. (2013). pH‐triggered intracellular release from actively targeting polymer micelles. Biomaterials, 34(18), 4544–4554.
Heiden,, M. G. V., Cantley,, L. C., & Thompson,, C. B. (2009). Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science, 324(5930), 1029–1033.
Howard,, M. D., Ponta,, A., Eckman,, A., Jay,, M., & Bae,, Y. (2011). Polymer micelles with hydrazone‐ester dual linkers for tunable release of dexamethasone. Pharmaceutical Research, 28(10), 2435–2446.
Hu,, J. M., Zhang,, G. Q., & Liu,, S. Y. (2012). Enzyme‐responsive polymeric assemblies, nanoparticles and hydrogels. Chemical Society Reviews, 41(18), 5933–5949.
Hu,, Q. Y., Katti,, P. S., & Gu,, Z. (2014). Enzyme‐responsive nanomaterials for controlled drug delivery. Nanoscale, 6(21), 12273–12286.
Hu,, X. L., Hu,, J. M., Tian,, J., Ge,, Z. S., Zhang,, G. Y., Luo,, K. F., & Liu,, S. Y. (2013). Polyprodrug amphiphiles: Hierarchical assemblies for shape‐regulated cellular internalization, trafficking, and drug delivery. Journal of the American Chemical Society, 135(46), 17617–17629.
Hu,, X. L., Tian,, J., Liu,, T., Zhang,, G. Y., & Liu,, S. Y. (2013). Photo‐triggered release of caged camptothecin prodrugs from dually responsive shell cross‐linked micelles. Macromolecules, 46(15), 6243–6256.
Hu,, X. L., Zhai,, S. D., Liu,, G. H., Xing,, D., Liang,, H. J., & Liu,, S. Y. (2018). Concurrent drug unplugging and permeabilization of polyprodrug‐gated crosslinked vesicles for cancer combination chemotherapy. Advanced Materials, 30(21), 1706307.
Jia,, Z. F., Wong,, L. J., Davis,, T. P., & Bulmus,, V. (2008). One‐pot conversion of RAFT‐generated multifunctional block copolymers of HPMA to doxorubicin conjugated acid‐ and reductant‐sensitive crosslinked micelles. Biomacromolecules, 9(11), 3106–3113.
Joshi‐Barr,, S., Lux,, C. D., Mahmoud,, E., & Almutairi,, A. (2014). Exploiting oxidative microenvironments in the body as triggers for drug delivery systems. Antioxidants %26 Redox Signaling, 21(5), 730–754.
Kamaly,, N., Yameen,, B., Wu,, J., & Farokhzad,, O. C. (2016). Degradable controlled‐release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chemical Reviews, 116(4), 2602–2663.
Ke,, W. D., Li,, J., Mohammed,, F., Wang,, Y., Tou,, K., Liu,, X., … Ge,, Z. (2019). Therapeutic polymersome nanoreactors with tumor‐specific activable cascade reactions for cooperative cancer therapy. ACS Nano, 13(2), 2357–2369.
Ke,, W. D., Yin,, W., Zha,, Z. S., Mukerabigwi,, J. F., Chen,, W. J., Wang,, Y. H., … Ge,, Z. S. (2018). A robust strategy for preparation of sequential stimuli‐responsive block copolymer prodrugs via thiolactone chemistry to overcome multiple anticancer drug delivery barriers. Biomaterials, 154, 261–274.
Kim,, S. C., Kim,, D. W., Shim,, Y. H., Bang,, J. S., Oh,, H. S., Kim,, S. W., & Seo,, M. H. (2001). In vivo evaluation of polymeric micellar paclitaxel formulation: Toxicity and efficacy. Journal of Controlled Release, 72(1–3), 191–202.
Kopecek,, J. (2013). Polymer‐drug conjugates: Origins, progress to date and future directions. Advanced Drug Delivery Reviews, 65(1), 49–59.
Lee,, S. H., Gupta,, M. K., Bang,, J. B., Bae,, H., & Sung,, H. J. (2013). Current progress in reactive oxygen species (ROS)‐responsive materials for biomedical applications. Advanced Healthcare Materials, 2(6), 908–915.
Li,, J. J., Ke,, W. D., Wang,, L., Huang,, M. M., Yin,, W., Zhang,, P., … Ge,, Z. S. (2016). Self‐sufficing H2O2‐responsive nanocarriers through tumor‐specific H2O2 production for synergistic oxidation‐chemotherapy. Journal of Controlled Release, 225, 64–74.
Li,, J. J., Li,, Y. F., Wang,, Y. H., Ke,, W. D., Chen,, W. J., Wang,, W. P., & Ge,, Z. S. (2017). Polymer prodrug‐based nanoreactors activated by tumor acidity for orchestrated oxidation/chemotherapy. Nano Letters, 17(11), 6983–6990.
Li,, Z. J., Sun,, J. J., Huang,, Y. X., Liu,, Y. H., Xu,, J. N., Chen,, Y. C., … Zhou,, K. C. (2018). A nanomicellar prodrug carrier based on ibuprofen‐conjugated polymer for co‐delivery of doxorubicin. Frontiers in Pharmacology, 9, 781.
Lin,, H. M., Wang,, W. K., Hsiung,, P. A., & Shyu,, S. G. (2010). Light‐sensitive intelligent drug delivery systems of coumarin‐modified mesoporous bioactive glass. Acta Biomaterialia, 6(8), 3256–3263.
Liu,, J., Ai,, X., Zhang,, H. P., Zhuo,, W. L., & Mi,, P. (2019). Polymeric micelles with endosome escape and redox‐responsive functions for enhanced intracellular drug delivery. Journal of Biomedical Nanotechnology, 15(2), 373–381.
Liu,, J., Huang,, Y. R., Kumar,, A., Tan,, A., Jin,, S. B., Mozhi,, A., & Liang,, X. J. (2014). pH‐sensitive nano‐systems for drug delivery in cancer therapy. Biotechnology Advances, 32(4), 693–710.
Liu,, J. Y., Liu,, W. E., Weitzhandler,, I., Bhattacharyya,, J., Li,, X. H., Wang,, J., … Chilkoti,, A. (2015). Ring‐opening polymerization of prodrugs: A versatile approach to prepare well‐defined drug‐loaded nanoparticles. Angewandte Chemie‐International Edition, 54(3), 1002–1006.
Lukyanov,, A. N., & Torchilin,, V. P. (2004). Micelles from lipid derivatives of water‐soluble polymers as delivery systems for poorly soluble drugs. Advanced Drug Delivery Reviews, 56(9), 1273–1289.
Mai,, Y. Y., & Eisenberg,, A. (2012). Self‐assembly of block copolymers. Chemical Society Reviews, 41(18), 5969–5985.
Mao,, J., Li,, Y., Wu,, T., Yuan,, C. H., Zeng,, B. R., Xu,, Y. T., & Dai,, L. Z. (2016). A simple dual‐pH responsive prodrug‐based polymeric micelles for drug delivery. ACS Applied Materials %26 Interfaces, 8(27), 17109–17117.
Mi,, P., Yanagie,, H., Dewi,, N., Yen,, H. C., Liu,, X. Y., Suzuki,, M., … Nishiyama,, N. (2017). Block copolymer‐boron cluster conjugate for effective boron neutron capture therapy of solid tumors. Journal of Controlled Release, 254, 1–9.
Miller,, W. H., Schipper,, H. M., Lee,, J. S., Singer,, J., & Waxman,, S. (2002). Mechanisms of action of arsenic trioxide. Cancer Research, 62(14), 3893–3903.
Min,, Y. Z., Caster,, J. M., Eblan,, M. J., & Wang,, A. Z. (2015). Clinical translation of nanomedicine. Chemical Reviews, 115(19), 11147–11190.
Movassaghian,, S., Merkel,, O. M., & Torchilin,, V. P. (2015). Applications of polymer micelles for imaging and drug delivery. Wiley Interdisciplinary Reviews‐Nanomedicine and Nanobiotechnology, 7(5), 691–707.
Mura,, S., Nicolas,, J., & Couvreur,, P. (2013). Stimuli‐responsive nanocarriers for drug delivery. Nature Materials, 12(11), 991–1003.
Oberley,, T. D., & Oberley,, L. W. (1997). Antioxidant enzyme levels in cancer. Histology and Histopathology, 12(2), 525–535.
Quader,, S., Cabral,, H., Mochida,, Y., Ishii,, T., Liu,, X., Toh,, K., … Kataoka,, K. (2014). Selective intracellular delivery of proteasome inhibitors through pH‐sensitive polymeric micelles directed to efficient antitumor therapy. Journal of Controlled Release, 188, 67–77.
Quader,, S., Liu,, X., Chen,, Y., Mi,, P., Chida,, T., Ishii,, T., … Kataoka,, K. (2017). cRGD peptide‐installed epirubicin‐loaded polymeric micelles for effective targeted therapy against brain tumors. Journal of Controlled Release, 258, 56–66.
Quinn,, J. F., Whittaker,, M. R., & Davis,, T. P. (2017). Glutathione responsive polymers and their application in drug delivery systems. Polymer Chemistry, 8(1), 97–126.
Ringsdorf,, H. (1975). Structure and properties of pharmacologically active polymers. Journal of Polymer Science Part C‐Polymer Symposium, 51, 135–153.
Rosler,, A., Vandermeulen,, G. W. M., & Klok,, H. A. (2012). Advanced drug delivery devices via self‐assembly of amphiphilic block copolymers. Advanced Drug Delivery Reviews, 64, 270–279.
Sawa,, T., Wu,, J., Akaike,, T., & Maeda,, H. (2000). Tumor‐targeting chemotherapy by a xanthine oxidase‐polymer conjugate that generates oxygen‐free radicals in tumor tissue. Cancer Research, 60(3), 666–671.
Scarano,, W., Duong,, H. T. T., Lu,, H. X., De Souza,, P. L., & Stenzel,, M. H. (2013). Folate conjugation to polymeric micelles via boronic acid ester to deliver platinum drugs to ovarian cancer cell lines. Biomacromolecules, 14(4), 962–975.
Seidi,, F., Jenjob,, R., & Crespy,, D. (2018). Designing smart polymer conjugates for controlled release of payloads. Chemical Reviews, 118(7), 3965–4036.
Senevirathne,, S. A., Washington,, K. E., Biewer,, M. C., & Stefan,, M. C. (2016). PEG based anti‐cancer drug conjugated prodrug micelles for the delivery of anti‐cancer agents. Journal of Materials Chemistry B, 4(3), 360–370.
Shen,, W., Liu,, W. G., Yang,, H. L., Zhang,, P., Xiao,, C. S., & Chen,, X. S. (2018). A glutathione‐responsive sulfur dioxide polymer prodrug as a nanocarrier for combating drug‐resistance in cancer chemotherapy. Biomaterials, 178, 706–719.
Song,, C. C., Du,, F. S., & Li,, Z. C. (2014). Oxidation‐responsive polymers for biomedical applications. Journal of Materials Chemistry B, 2(22), 3413–3426.
Summa,, J., LoRusso,, P. M., Eisenberg,, P., Hrkach,, J., Schnipper,, E., & Von Hoff,, D. (2012). A phase I, open label, safety, pharmacokinetic and pharmacodynamic dose escalation study of BIND‐014 given by IV infusion to patients with advanced or metastatic cancer. Cancer Research, 72(8), LB‐452.
Sun,, C. Y., Dou,, S., Du,, J. Z., Yang,, X. Z., Li,, Y. P., & Wang,, J. (2014). Doxorubicin conjugate of poly(ethylene glycol)‐block polyphosphoester for cancer therapy. Advanced Healthcare Materials, 3(2), 261–272.
Sun,, Q. H., Zhou,, Z. X., Qiu,, N. S., & Shen,, Y. Q. (2017). Rational design of cancer nanomedicine: Nanoproperty integration and synchronization. Advanced Materials, 29(14), https://doi.org/10.1002/adma.201606628.
Talelli,, M., Iman,, M., Varkouhi,, A. K., Rijcken,, C. J. F., Schiffelers,, R. M., Etrych,, T., … Hennink,, W. E. (2010). Core‐crosslinked polymeric micelles with controlled release of covalently entrapped doxorubicin. Biomaterials, 31(30), 7797–7804.
van der Vlies,, A. J., Hasegawa,, U., & Hubbell,, J. A. (2012). Reduction‐sensitive tioguanine prodrug micelles. Molecular Pharmaceutics, 9(10), 2812–2818.
Wang,, J. Q., Mao,, W. W., Lock,, L. L., Tang,, J. B., Sui,, M. H., Sun,, W. L., … Shen,, Y. Q. (2015). The role of micelle size in tumor accumulation, penetration, and treatment. ACS Nano, 9(7), 7195–7206.
Wang,, S., Yu,, G. C., Wang,, Z. T., Jacobson,, O., Tian,, R., Lin,, L. S., … Chen,, X. Y. (2018). Hierarchical tumor microenvironment‐responsive nanomedicine for programmed delivery of chemotherapeutics. Advanced Materials, 30(40), 1803926.
Wang,, W. H., Liang,, G. H., Zhang,, W. J., Xing,, D., & Hu,, X. L. (2018). Cascade‐promoted photo‐chemotherapy against resistant cancers by enzyme‐responsive polyprodrug nanoplatforms. Chemistry of Materials, 30(10), 3486–3498.
Xiao,, H., Song,, H., Yang,, Q., Cai,, H., Qi,, R., Yan,, L., … Jing,, X. (2012). A prodrug strategy to deliver cisplatin(IV) and paclitaxel in nanomicelles to improve efficacy and tolerance. Biomaterials, 33(27), 6507–6519.
Xiao,, H. H., Qi,, R. G., Liu,, S., Hu,, X. L., Duan,, T. C., Zheng,, Y. H., … Jing,, X. B. (2011). Biodegradable polymer‐cisplatin(IV) conjugate as a pro‐drug of cisplatin(II). Biomaterials, 32(30), 7732–7739.
Xu,, Q. H., He,, C. L., Xiao,, C. S., & Chen,, X. S. (2016). Reactive oxygen species (ROS) responsive polymers for biomedical applications. Macromolecular Bioscience, 16(5), 635–646.
Xu,, X. D., Saw,, P. E., Tao,, W., Li,, Y. J., Ji,, X. Y., Bhasin,, S., … Farokhzad,, O. C. (2017). ROS‐responsive polyprodrug nanoparticles for triggered drug delivery and effective cancer therapy. Advanced Materials, 29(33), https://doi.org/10.1002/adma.201700141.
Xu,, Z. G., Zhang,, K. L., Hou,, C. L., Wang,, D. D., Liu,, X. Y., Guan,, X. J., … Zhang,, H. X. (2014). A novel nanoassembled doxorubicin prodrug with a high drug loading for anticancer drug delivery. Journal of Materials Chemistry B, 2(22), 3433–3437.
Yen,, H. C., Cabral,, H., Mi,, P., Toh,, K., Matsumoto,, Y., Liu,, X., … Kataoka,, K. (2014). Light‐induced cytosolic activation of reduction‐sensitive camptothecin‐loaded polymeric micelles for spatiotemporally controlled in vivo chemotherapy. ACS Nano, 8(11), 11591–11602.
Yin,, W., Ke,, W. D., Chen,, W. J., Xi,, L. C., Zhou,, Q. H., Mukerabigwi,, J. F., & Ge,, Z. S. (2019). Integrated block copolymer prodrug nanoparticles for combination of tumor oxidative stress amplification and ROS‐responsive drug release. Biomaterials, 195, 63–74.
Zhang,, L., Fu,, J. Y., Xia,, Z. X., Wu,, P., & Zhang,, X. F. (2011). Synthesis and characterization of a well‐defined amphiphilic block copolymer and its paclitaxel prodrug from methoxy poly(ethylene glycol) and oligomer of glycolic acid. Journal of Applied Polymer Science, 122(2), 758–766.
Zhang,, P., Zhang,, H. Y., He,, W. X., Zhao,, D. J., Song,, A. X., & Luan,, Y. X. (2016). Disulfide‐linked amphiphilic polymer‐docetaxel conjugates assembled redox‐sensitive micelles for efficient antitumor drug delivery. Biomacromolecules, 17(5), 1621–1632.
Zhang,, Q. Q., He,, J. L., Zhang,, M. Z., & Ni,, P. H. (2015). A polyphosphoester‐conjugated camptothecin prodrug with disulfide linkage for potent reduction‐triggered drug delivery. Journal of Materials Chemistry B, 3(24), 4922–4932.
Zhang,, S. Y., Zou,, J., Elsabahy,, M., Karwa,, A., Li,, A., Moore,, D. A., … Wooley,, K. L. (2013). Poly(ethylene oxide)‐block‐polyphosphester‐based paclitaxel conjugates as a platform for ultra‐high paclitaxel‐loaded multifunctional nanoparticles. Chemical Science, 4(5), 2122–2126.
Zhang,, X. L., Zhang,, M. K., Wang,, M. Q., Peng,, H., Hua,, Q., Ma,, L. W., … Wei,, H. (2018). Facile fabrication of 10‐hydroxycamptothecin‐backboned amphiphilic polyprodrug with precisely tailored drug loading content for controlled release. Bioconjugate Chemistry, 29(7), 2239–2247.
Zhang,, Y. Y., Teh,, C., Li,, M. H., Ang,, C. Y., Tan,, S. Y., Qu,, Q. Y., … Zhao,, Y. L. (2016). Acid‐responsive polymeric doxorubicin prodrug nanoparticles encapsulating a near‐infrared dye for combined photothermal‐chemotherapy. Chemistry of Materials, 28(19), 7039–7050.
Zhu,, J. H., Huo,, Q., Xu,, M., Yang,, F., Li,, Y., Shi,, H. H., … Liu,, Y. (2018). Bortezomib‐catechol conjugated prodrug micelles: Combining bone targeting and aryl boronate‐based pH‐responsive drug release for cancer bone‐metastasis therapy. Nanoscale, 10(38), 18387–18397.