Lagos‐Quintana, M, Rauhut, R, Lendeckel, W, Tuschl, T. Identification of novel genes coding for small expressed RNAs. Science 2001, 294:853–858.
He, L, Hannon, GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 2004, 5:522–531.
Lewis, BP, Burge, CB, Bartel, DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005, 120:15–20.
Alvarez‐Garcia, I, Miska, EA. MicroRNA functions in animal development and human disease. Development 2005, 132:4653–4662.
Shenoy, A, Blelloch, RH. Regulation of microRNA function in somatic stem cell proliferation and differentiation. Nat Rev Mol Cell Biol 2014, 15:565–576.
Rottiers, V, Naar, AM. MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol 2012, 13:239–250.
Roy, S, Sen, CK. MiRNA in innate immune responses: novel players in wound inflammation. Physiol Genomics 2011, 43:557–565.
Yang, W, Lee, DY, Ben‐David, Y. The roles of microRNAs in tumorigenesis and angiogenesis. Int J Physiol Pathophysiol Pharmacol 2011, 3:140–155.
Blachier, M, Leleu, H, Peck‐Radosavljevic, M, Valla, DC, Roudot‐Thoraval, F. The burden of liver disease in Europe: a review of available epidemiological data. J Hepatol 2013, 58:593–608.
Cohen, JC, Horton, JD, Hobbs, HH. Human fatty liver disease: old questions and new insights. Science 2011, 332:1519–1523.
Angulo, P. Nonalcoholic fatty liver disease. N Engl J Med 2002, 346:1221–1231.
Hebbard, L, George, J. Animal models of nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol 2011, 8:35–44.
Sass, DA, Chang, P, Chopra, KB. Nonalcoholic fatty liver disease: a clinical review. Dig Dis Sci 2005, 50:171–180.
McCullough, AJ. Pathophysiology of nonalcoholic steatohepatitis. J Clin Gastroenterol 2006, 40(Suppl 1):S17–S29.
Kleiner, DE, Brunt, EM, Van Natta, M, Behling, C, Contos, MJ, Cummings, OW, Ferrell, LD, Liu, YC, Torbenson, MS, Unalp‐Arida, A, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 2005, 41:1313–1321.
Day, CP, James, OF. Steatohepatitis: a tale of two “hits”? Gastroenterology 1998, 114:842–845.
Esau, C, Davis, S, Murray, SF, Yu, XX, Pandey, SK, Pear, M, Watts, L, Booten, SL, Graham, M, McKay, R, et al. miR‐122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 2006, 3:87–98.
Cheung, O, Puri, P, Eicken, C, Contos, MJ, Mirshahi, F, Maher, JW, Kellum, JM, Min, H, Luketic, VA, Sanyal, AJ. Nonalcoholic steatohepatitis is associated with altered hepatic MicroRNA expression. Hepatology 2008, 48:1810–1820.
Iliopoulos, D, Drosatos, K, Hiyama, Y, Goldberg, IJ, Zannis, VI. MicroRNA‐370 controls the expression of MicroRNA‐122 and Cpt1 alpha and affects lipid metabolism. J Lipid Res 2010, 51:1513–1523.
Horie, T, Nishino, T, Baba, O, Kuwabara, Y, Nakao, T, Nishiga, M, Usami, S, Izuhara, M, Sowa, N, Yahagi, N, et al. MicroRNA‐33 regulates sterol regulatory element‐binding protein 1 expression in mice. Nat Commun 2013, 4:2883.
Goedeke, L, Salerno, A, Ramirez, CM, Guo, L, Allen, RM, Yin, X, Langley, SR, Esau, C, Wanschel, A, Fisher, EA, et al. Long‐term therapeutic silencing of miR‐33 increases circulating triglyceride levels and hepatic lipid accumulation in mice. EMBO Mol Med 2014, 6:1133–1141.
Wang, XC, Zhan, XR, Li, XY, Yu, JJ, Liu, XM. MicroRNA‐185 regulates expression of lipid metabolism genes and improves insulin sensitivity in mice with non‐alcoholic fatty liver disease. World J Gastroenterol 2014, 20:17914–17923.
Zhong, D, Huang, G, Zhang, Y, Zeng, Y, Xu, Z, Zhao, Y, He, X, He, F. MicroRNA‐1 and microRNA‐206 suppress LXRalpha‐induced lipogenesis in hepatocytes. Cell Signal 2013, 25:1429–1437.
Zhong, D, Zhang, Y, Zeng, YJ, Gao, M, Wu, GZ, Hu, CJ, Huang, G, He, FT. MicroRNA‐613 represses lipogenesis in HepG2 cells by downregulating LXRalpha. Lipids Health Dis 2013, 12:32.
Miller, AM, Gilchrist, DS, Nijjar, J, Araldi, E, Ramirez, CM, Lavery, CA, Fernandez‐Hernando, C, McInnes, IB, Kurowska‐Stolarska, M. MiR‐155 has a protective role in the development of non‐alcoholic hepatosteatosis in mice. PLoS One 2013, 8:e72324.
Liu, W, Cao, H, Ye, C, Chang, C, Lu, M, Jing, Y, Zhang, D, Yao, X, Duan, Z, Xia, H, et al. Hepatic miR‐378 targets p110alpha and controls glucose and lipid homeostasis by modulating hepatic insulin signalling. Nat Commun 2014, 5:5684.
Vinciguerra, M, Sgroi, A, Veyrat‐Durebex, C, Rubbia‐Brandt, L, Buhler, LH, Foti, M. Unsaturated fatty acids inhibit the expression of tumor suppressor phosphatase and tensin homolog (PTEN) via microRNA‐21 up‐regulation in hepatocytes. Hepatology 2009, 49:1176–1184.
Ahn, J, Lee, H, Chung, CH, Ha, T. High fat diet induced downregulation of microRNA‐467b increased lipoprotein lipase in hepatic steatosis. Biochem Biophys Res Commun 2011, 414:664–669.
Mattis, AN, Song, GS, Hitchner, K, Kim, RY, Lee, AY, Sharma, AD, Malato, Y, McManus, MT, Esau, CC, Koller, E, et al. A screen in mice uncovers repression of lipoprotein lipase by MicroRNA‐29a as a mechanism for lipid distribution away from the liver. Hepatology 2015, 61:141–152.
Ahn, J, Lee, H, Jung, CH, Ha, T. Lycopene inhibits hepatic steatosis via microRNA‐21‐induced downregulation of fatty acid‐binding protein 7 in mice fed a high‐fat diet. Mol Nutr Food Res 2012, 56:1665–1674.
Zheng, L, Lv, GC, Sheng, JF, Yang, YD. Effect of miRNA‐10b in regulating cellular steatosis level by targeting PPAR‐alpha expression, a novel mechanism for the pathogenesis of NAFLD. J Gastroenterol Hepatol 2010, 25:156–163.
Li, B, Zhang, Z, Zhang, H, Quan, K, Lu, Y, Cai, D, Ning, G. Aberrant miR199a‐5p/caveolin1/PPARalpha axis in hepatic steatosis. J Mol Endocrinol 2014, 53:393–403.
Gerin, I, Clerbaux, LA, Haumont, O, Lanthier, N, Das, AK, Burant, CF, Leclercq, IA, MacDougald, OA, Bommer, GT. Expression of miR‐33 from an SREBP2 intron inhibits cholesterol export and fatty acid oxidation. J Biol Chem 2010, 285:33652–33661.
Davalos, A, Goedeke, L, Smibert, P, Ramirez, CM, Warrier, NP, Andreo, U, Cirera‐Salinas, D, Rayner, K, Suresh, U, Pastor‐Pareja, JC, et al. miR‐33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc Natl Acad Sci USA 2011, 108:9232–9237.
Goedeke, L, Vales‐Lara, FM, Fenstermaker, M, Cirera‐Salinas, D, Chamorro‐Jorganes, A, Ramirez, CM, Mattison, JA, de Cabo, R, Suarez, Y, Fernandez‐Hernando, C. A regulatory role for microRNA 33* in controlling lipid metabolism gene expression. Mol Cell Biol 2013, 33:2339–2352.
Carrer, M, Liu, N, Grueter, CE, Williams, AH, Frisard, MI, Hulver, MW, Bassel‐Duby, R, Olson, EN. Control of mitochondrial metabolism and systemic energy homeostasis by microRNAs 378 and 378(star). Proc Natl Acad Sci USA 2012, 109:15330–15335.
Tsai, WC, Hsu, SD, Hsu, CS, Lai, TC, Chen, SJ, Shen, R, Huang, Y, Chen, HC, Lee, CH, Tsai, TF, et al. MicroRNA‐122 plays a critical role in liver homeostasis and hepatocarcinogenesis. J Clin Invest 2012, 122:2884–2897.
Soh, J, Iqbal, J, Queiroz, J, Fernandez‐Hernando, C, Hussain, MM. MicroRNA‐30c reduces hyperlipidemia and atherosclerosis in mice by decreasing lipid synthesis and lipoprotein secretion. Nat Med 2013, 19:892–900.
Chalasani, N, Younossi, Z, Lavine, JE, Diehl, AM, Brunt, EM, Cusi, K, Charlton, M, Sanyal, AJ. The diagnosis and management of non‐alcoholic fatty liver disease: practice guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology 2012, 55:2005–2023.
Hur, W, Lee, JH, Kim, SW, Kim, JH, Bae, SH, Kim, M, Hwang, D, Kim, YS, Park, T, Um, SJ, et al. Downregulation of microRNA‐451 in non‐alcoholic steatohepatitis inhibits fatty acid‐induced proinflammatory cytokine production through the AMPK/AKT pathway. Int J Biochem Cell Biol 2015, 64:265–276.
Jin, X, Ye, YF, Chen, SH, Yu, CH, Liu, J, Li, YM. MicroRNA expression pattern in different stages of nonalcoholic fatty liver disease. Dig Liver Dis 2009, 41:289–297.
Roderburg, C, Luedde, T. Circulating microRNAs as markers of liver inflammation, fibrosis and cancer. J Hepatol 2014, 61:1434–1437.
Gori, M, Arciello, M, Balsano, C. MicroRNAs in nonalcoholic fatty liver disease: novel biomarkers and prognostic tools during the transition from steatosis to hepatocarcinoma. Biomed Res Int 2014, 2014:741465.
Strable, MS, Ntambi, JM. Genetic control of de novo lipogenesis: role in diet‐induced obesity. Crit Rev Biochem Mol Biol 2010, 45:199–214.
Lodhi, IJ, Wei, X, Semenkovich, CF. Lipoexpediency: de novo lipogenesis as a metabolic signal transmitter. Trends Endocrinol Metab 2011, 22:1–8.
Foufelle, F, Ferre, P. New perspectives in the regulation of hepatic glycolytic and lipogenic genes by insulin and glucose: a role for the transcription factor sterol regulatory element binding protein‐1c. Biochem J 2002, 366:377–391.
Ulven, SM, Dalen, KT, Gustafsson, JA, Nebb, HI. LXR is crucial in lipid metabolism. Prostaglandins Leukot Essent Fatty Acids 2005, 73:59–63.
Chen, G, Liang, G, Ou, J, Goldstein, JL, Brown, MS. Central role for liver X receptor in insulin‐mediated activation of Srebp‐1c transcription and stimulation of fatty acid synthesis in liver. Proc Natl Acad Sci USA 2004, 101:11245–11250.
Dentin, R, Pegorier, JP, Benhamed, F, Foufelle, F, Ferre, P, Fauveau, V, Magnuson, MA, Girard, J, Postic, C. Hepatic glucokinase is required for the synergistic action of ChREBP and SREBP‐1c on glycolytic and lipogenic gene expression. J Biol Chem 2004, 279:20314–20326.
Ferre, P, Foufelle, F. Hepatic steatosis: a role for de novo lipogenesis and the transcription factor SREBP‐1c. Diabetes Obes Metab 2010, 12(Suppl 2):83–92.
Ameer, F, Scandiuzzi, L, Hasnain, S, Kalbacher, H, Zaidi, N. De novo lipogenesis in health and disease. Metabolism 2014, 63:895–902.
Donnelly, KL, Smith, CI, Schwarzenberg, SJ, Jessurun, J, Boldt, MD, Parks, EJ. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest 2005, 115:1343–1351.
Krutzfeldt, J, Rajewsky, N, Braich, R, Rajeev, KG, Tuschl, T, Manoharan, M, Stoffel, M. Silencing of microRNAs in vivo with `antagomirs`. Nature 2005, 438:685–689.
Vickers, KC, Remaley, AT. MicroRNAs in atherosclerosis and lipoprotein metabolism. Curr Opin Endocrinol Diabetes Obes 2010, 17:150–155.
Lagos‐Quintana, M, Rauhut, R, Yalcin, A, Meyer, J, Lendeckel, W, Tuschl, T. Identification of tissue‐specific microRNAs from mouse. Curr Biol 2002, 12:735–739.
Fernandez‐Hernando, C, Moore, KJ. MicroRNA modulation of cholesterol homeostasis. Arterioscler Thromb Vasc Biol 2011, 31:2378–2382.
Najafi‐Shoushtari, SH, Kristo, F, Li, Y, Shioda, T, Cohen, DE, Gerszten, RE, Naar, AM. MicroRNA‐33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science 2010, 328:1566–1569.
Takahashi, Y, Forrest, AR, Maeno, E, Hashimoto, T, Daub, CO, Yasuda, J. MiR‐107 and MiR‐185 can induce cell cycle arrest in human non small cell lung cancer cell lines. PLoS One 2009, 4:e6677.
Xiang, Y, Ma, N, Wang, D, Zhang, Y, Zhou, J, Wu, G, Zhao, R, Huang, H, Wang, X, Qiao, Y, et al. MiR‐152 and miR‐185 co‐contribute to ovarian cancer cells cisplatin sensitivity by targeting DNMT1 directly: a novel epigenetic therapy independent of decitabine. Oncogene 2014, 33:378–386.
Yang, M, Liu, W, Pellicane, C, Sahyoun, C, Joseph, BK, Gallo‐Ebert, C, Donigan, M, Pandya, D, Giordano, C, Bata, A, et al. Identification of miR‐185 as a regulator of de novo cholesterol biosynthesis and low density lipoprotein uptake. J Lipid Res 2014, 55:226–238.
Li, X, Chen, YT, Josson, S, Mukhopadhyay, NK, Kim, J, Freeman, MR, Huang, WC. MicroRNA‐185 and 342 inhibit tumorigenicity and induce apoptosis through blockade of the SREBP metabolic pathway in prostate cancer cells. PLoS One 2013, 8:e70987.
Jiang, S, Zhang, LF, Zhang, HW, Hu, S, Lu, MH, Liang, S, Li, B, Li, Y, Li, D, Wang, ED, et al. A novel miR‐155/miR‐143 cascade controls glycolysis by regulating hexokinase 2 in breast cancer cells. EMBO J 2012, 31:1985–1998.
Zhang, P, Bill, K, Liu, J, Young, E, Peng, T, Bolshakov, S, Hoffman, A, Song, Y, Demicco, EG, Terrada, DL, et al. MiR‐155 is a liposarcoma oncogene that targets casein kinase‐1alpha and enhances beta‐catenin signaling. Cancer Res 2012, 72:1751–1762.
Li, S, Chen, T, Zhong, Z, Wang, Y, Li, Y, Zhao, X. microRNA‐155 silencing inhibits proliferation and migration and induces apoptosis by upregulating BACH1 in renal cancer cells. Mol Med Rep 2012, 5:949–954.
Wong, RH, Sul, HS. Insulin signaling in fatty acid and fat synthesis: a transcriptional perspective. Curr Opin Pharmacol 2010, 10:684–691.
Timlin, MT, Parks, EJ. Temporal pattern of de novo lipogenesis in the postprandial state in healthy men. Am J Clin Nutr 2005, 81:35–42.
Leavens, KF, Birnbaum, MJ. Insulin signaling to hepatic lipid metabolism in health and disease. Crit Rev Biochem Mol Biol 2011, 46:200–215.
Postic, C, Girard, J. Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. J Clin Invest 2008, 118:829–838.
Taniguchi, CM, Emanuelli, B, Kahn, CR. Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 2006, 7:85–96.
Kadowaki, T, Ueki, K, Yamauchi, T, Kubota, N. SnapShot: Insulin signaling pathways. Cell 2012, 148:624–624.e621.
Chattopadhyay, M, Selinger, ES, Ballou, LM, Lin, RZ. Ablation of PI3K p110‐alpha prevents high‐fat diet‐induced liver steatosis. Diabetes 2011, 60:1483–1492.
Maehama, T, Dixon, JE. PTEN: a tumour suppressor that functions as a phospholipid phosphatase. Trends Cell Biol 1999, 9:125–128.
Watanabe, S, Horie, Y, Suzuki, A. Hepatocyte‐specific Pten‐deficient mice as a novel model for nonalcoholic steatohepatitis and hepatocellular carcinoma. Hepatol Res 2005, 33:161–166.
Lafontan, M, Langin, D. Lipolysis and lipid mobilization in human adipose tissue. Prog Lipid Res 2009, 48:275–297.
Fielding, BA, Callow, J, Owen, RM, Samra, JS, Matthews, DR, Frayn, KN. Postprandial lipemia: the origin of an early peak studied by specific dietary fatty acid intake during sequential meals. Am J Clin Nutr 1996, 63:36–41.
Heeren, J, Niemeier, A, Merkel, M, Beisiegel, U. Endothelial‐derived lipoprotein lipase is bound to postprandial triglyceride‐rich lipoproteins and mediates their hepatic clearance in vivo. J Mol Med (Berl) 2002, 80:576–584.
Musso, G, Gambino, R, Cassader, M. Recent insights into hepatic lipid metabolism in non‐alcoholic fatty liver disease (NAFLD). Prog Lipid Res 2009, 48:1–26.
Karpe, F, Dickmann, JR, Frayn, KN. Fatty acids, obesity, and insulin resistance: time for a reevaluation. Diabetes 2011, 60:2441–2449.
Jacome‐Sosa, MM, Parks, EJ. Fatty acid sources and their fluxes as they contribute to plasma triglyceride concentrations and fatty liver in humans. Curr Opin Lipidol 2014, 25:213–220.
Davies, BS, Beigneux, AP, Fong, LG, Young, SG. New wrinkles in lipoprotein lipase biology. Curr Opin Lipidol 2012, 23:35–42.
Pardina, E, Baena‐Fustegueras, JA, Llamas, R, Catalan, R, Galard, R, Lecube, A, Fort, JM, Llobera, M, Allende, H, Vargas, V, et al. Lipoprotein lipase expression in livers of morbidly obese patients could be responsible for liver steatosis. Obes Surg 2009, 19:608–616.
Kim, JK, Fillmore, JJ, Chen, Y, Yu, C, Moore, IK, Pypaert, M, Lutz, EP, Kako, Y, Velez‐Carrasco, W, Goldberg, IJ, et al. Tissue‐specific overexpression of lipoprotein lipase causes tissue‐specific insulin resistance. Proc Natl Acad Sci USA 2001, 98:7522–7527.
Chiu, HK, Qian, K, Ogimoto, K, Morton, GJ, Wisse, BE, Agrawal, N, McDonald, TO, Schwartz, MW, Dichek, HL. Mice lacking hepatic lipase are lean and protected against diet‐induced obesity and hepatic steatosis. Endocrinology 2010, 151:993–1001.
Jiang, H, Zhang, G, Wu, JH, Jiang, CP. Diverse roles of miR‐29 in cancer (review). Oncol Rep 2014, 31:1509–1516.
Storch, J, Corsico, B. The emerging functions and mechanisms of mammalian fatty acid‐binding proteins. Annu Rev Nutr 2008, 28:73–95.
Halliwell, KJ, Fielding, BA, Samra, JS, Humphreys, SM, Frayn, KN. Release of individual fatty acids from human adipose tissue in vivo after an overnight fast. J Lipid Res 1996, 37:1842–1848.
Frayn, KN, Arner, P, Yki‐Jarvinen, H. Fatty acid metabolism in adipose tissue, muscle and liver in health and disease. Essays Biochem 2006, 42:89–103.
Eaton, S, Bartlett, K, Pourfarzam, M. Mammalian mitochondrial beta‐oxidation. Biocheml J 1996, 320:345–357.
Gibbons, GF, Islam, K, Pease, RJ. Mobilisation of triacylglycerol stores. Biochim Biophys Acta 2000, 1483:37–57.
Reddy, JK, Hashimoto, T. Peroxisomal beta‐oxidation and peroxisome proliferator‐activated receptor alpha: an adaptive metabolic system. Annu Rev Nutr 2001, 21:193–230.
Kersten, S, Seydoux, J, Peters, JM, Gonzalez, FJ, Desvergne, B, Wahli, W. Peroxisome proliferator‐activated receptor alpha mediates the adaptive response to fasting. J Clin Invest 1999, 103:1489–1498.
Leone, TC, Weinheimer, CJ, Kelly, DP. A critical role for the peroxisome proliferator‐activated receptor alpha (PPAR alpha) in the cellular fasting response: the PPAR alpha‐ mouse as a model of fatty acid oxidation disorders. Proc Natl Acad Sci USA 1999, 96:7473–7478.
Hashimoto, T, Cook, WS, Qi, C, Yeldandi, AV, Reddy, JK, Rao, MS. Defect in peroxisome proliferator‐activated receptor alpha‐inducible fatty acid oxidation determines the severity of hepatic steatosis in response to fasting. J Biol Chem 2000, 275:28918–28928.
Abu‐Elheiga, L, Oh, WK, Kordari, P, Wakil, SJ. Acetyl‐CoA carboxylase 2 mutant mice are protected against obesity and diabetes induced by high‐fat/high‐carbohydrate diets. Proc Natl Acad Sci USA 2003, 100:10207–10212.
Zhao, C, Zhang, T, Shi, Z, Ding, H, Ling, X. MicroRNA‐518d regulates PPARalpha protein expression in the placentas of females with gestational diabetes mellitus. Mol Med Rep 2014, 9:2085–2090.
Sahasrabuddhe, NA, Huang, TC, Ahmad, S, Kim, MS, Yang, Y, Ghosh, B, Leach, SD, Gowda, H, Somani, BL, Chaerkady, R, et al. Regulation of PPAR‐alpha pathway by Dicer revealed through proteomic analysis. J Proteomics 2014, 108:306–315.
Fernandez‐Rojo, MA, Gongora, M, Fitzsimmons, RL, Martel, N, Martin, SD, Nixon, SJ, Brooks, AJ, Ikonomopoulou, MP, Martin, S, Lo, HP, et al. Caveolin‐1 is necessary for hepatic oxidative lipid metabolism: evidence for crosstalk between caveolin‐1 and bile acid signaling. Cell Rep 2013, 4:238–247.
Lin, JD, Handschin, C, Spiegelman, BM. Metabolic control through the PGC‐1 family of transcription coactivators. Cell Metab 2005, 1:361–370.
Abu‐Elheiga, L, Matzuk, MM, Abo‐Hashema, KAH, Wakil, SJ. Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl‐CoA carboxylase 2. Science 2001, 291:2613–2616.
Tiwari, S, Siddiqi, SA. Intracellular trafficking and secretion of VLDL. Arterioscler Thromb Vasc Biol 2012, 32:1079–1086.
Raabe, M, Veniant, MM, Sullivan, MA, Zlot, CH, Bjorkegren, J, Nielsen, LB, Wong, JS, Hamilton, RL, Young, SG. Analysis of the role of microsomal triglyceride transfer protein in the liver of tissue‐specific knockout mice. J Clin Invest 1999, 103:1287–1298.
Chen, Z, Fitzgerald, RL, Averna, MR, Schonfeld, G. A targeted apolipoprotein B‐38.9‐producing mutation causes fatty livers in mice due to the reduced ability of apolipoprotein B‐38.9 to transport triglycerides. J Biol Chem 2000, 275:32807–32815.
Schonfeld, G, Lin, X, Yue, P. Familial hypobetalipoproteinemia: genetics and metabolism. Cell Mol Life Sci 2005, 62:1372–1378.
Berriot‐Varoqueaux, N, Aggerbeck, LP, Samson‐Bouma, M, Wetterau, JR. The role of the microsomal triglygeride transfer protein in abetalipoproteinemia. Annu Rev Nutr 2000, 20:663–697.
Yang, Y, Cao, J, Shi, Y. Identification and characterization of a gene encoding human LPGAT1, an endoplasmic reticulum‐associated lysophosphatidylglycerol acyltransferase. J Biol Chem 2004, 279:55866–55874.
Mangravite, LM, Dawson, K, Davis, RR, Gregg, JP, Krauss, RM. Fatty acid desaturase regulation in adipose tissue by dietary composition is independent of weight loss and is correlated with the plasma triacylglycerol response. Am J Clin Nutr 2007, 86:759–767.
van Rooij, E, Purcell, AL, Levin, AA. Developing microRNA therapeutics. Circ Res 2012, 110:496–507.
Shah, N, Nelson, JE, Kowdley, KV. MicroRNAs in liver disease: bench to bedside. J Clin Exp Hepatol 2013, 3:231–242.
Qiu, Z, Dai, Y. Roadmap of miR‐122‐related clinical application from bench to bedside. Expert Opin Investig Drugs 2014, 23:347–355.
van Rooij, E, Kauppinen, S. Development of microRNA therapeutics is coming of age. EMBO Mol Med 2014, 6:851–864.
Agostini, M, Knight, RA. miR‐34: from bench to bedside. Oncotarget 2014, 5:872–881.
Lanford, RE, Hildebrandt‐Eriksen, ES, Petri, A, Persson, R, Lindow, M, Munk, ME, Kauppinen, S, Orum, H. Therapeutic silencing of microRNA‐122 in primates with chronic hepatitis C virus infection. Science 2010, 327:198–201.
Rayner, KJ, Esau, CC, Hussain, FN, McDaniel, AL, Marshall, SM, van Gils, JM, Ray, TD, Sheedy, FJ, Goedeke, L, Liu, X, et al. Inhibition of miR‐33a/b in non‐human primates raises plasma HDL and lowers VLDL triglycerides. Nature 2011, 478:404–407.
Montgomery, RL, Hullinger, TG, Semus, HM, Dickinson, BA, Seto, AG, Lynch, JM, Stack, C, Latimer, PA, Olson, EN, van Rooij, E. Therapeutic inhibition of miR‐208a improves cardiac function and survival during heart failure. Circulation 2011, 124:1537–1547.
Liu, G, Friggeri, A, Yang, Y, Milosevic, J, Ding, Q, Thannickal, VJ, Kaminski, N, Abraham, E. miR‐21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J Exp Med 2010, 207:1589–1597.
Janssen, HL, Reesink, HW, Lawitz, EJ, Zeuzem, S, Rodriguez‐Torres, M, Patel, K, van der Meer, AJ, Patick, AK, Chen, A, Zhou, Y, et al. Treatment of HCV infection by targeting microRNA. N Engl J Med 2013, 368:1685–1694.