Clery, A, Blatter, M, Allain, FH. RNA recognition motifs: boring? Not quite. Curr Opin Struct Biol 2008, 18:290–298.
Lunde, BM, Moore, C, Varani, G. RNA‐binding proteins: modular design for efficient function. Nat Rev Mol Cell Biol 2007, 8:479–490.
Dyson, HJ, Wright, PE. Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 2005, 6:197–208.
Wright, PE, Dyson, HJ. Intrinsically disordered proteins in cellular signalling and regulation. Nat Rev Mol Cell Biol 2015, 16:18–29.
Biamonti, G, Riva, S. New insights into the auxiliary domains of eukaryotic RNA binding proteins. FEBS Lett 1994, 340:1–8.
Jarvelin, AI, Noerenberg, M, Davis, I, Castello, A. The new (dis)order in RNA regulation. Cell Commun Signal 2016, 14:9.
Kato, M, Han, TW, Xie, S, Shi, K, Du, X, Wu, LC, Mirzaei, H, Goldsmith, EJ, Longgood, J, Pei, J, et al. Cell‐free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 2012, 149:753–767.
Glisovic, T, Bachorik, JL, Yong, J, Dreyfuss, G. RNA‐binding proteins and post‐transcriptional gene regulation. FEBS Lett 2008, 582:1977–1986.
Keene, JD. Ribonucleoprotein infrastructure regulating the flow of genetic information between the genome and the proteome. Proc Natl Acad Sci USA 2001, 98:7018–7024.
Buratti, E, Baralle, FE. Another step forward for SELEXive splicing. Trends Mol Med 2005, 11:5–9.
Ule, J, Jensen, K, Mele, A, Darnell, RB. CLIP: a method for identifying protein‐RNA interaction sites in living cells. Methods 2005, 37:376–386.
Baltz, AG, Munschauer, M, Schwanhausser, B, Vasile, A, Murakawa, Y, Schueler, M, Youngs, N, Penfold‐Brown, D, Drew, K, Milek, M, et al. The mRNA‐bound proteome and its global occupancy profile on protein‐coding transcripts. Mol Cell 2012, 46:674–690.
Castello, A, Fischer, B, Eichelbaum, K, Horos, R, Beckmann, BM, Strein, C, Davey, NE, Humphreys, DT, Preiss, T, Steinmetz, LM, et al. Insights into RNA biology from an atlas of mammalian mRNA‐binding proteins. Cell 2012, 149:1393–1406.
Castello, A, Hentze, MW, Preiss, T. Metabolic enzymes enjoying new partnerships as RNA‐binding proteins. Trends Endocrinol Metab 2015, 26:746–757.
Keene, JD. RNA regulons: coordination of post‐transcriptional events. Nat Rev Genet 2007, 8:533–543.
Agnes, F, Perron, M. RNA‐binding proteins and neural development: a matter of targets and complexes. Neuroreport 2004, 15:2567–2570.
Zhou, H, Mangelsdorf, M, Liu, J, Zhu, L, Wu, JY. RNA‐binding proteins in neurological diseases. Sci China Life Sci 2014, 57:432–444.
Albert, ML, Darnell, RB. Paraneoplastic neurological degenerations: keys to tumour immunity. Nat Rev Cancer 2004, 4:36–44.
Buckanovich, RJ, Posner, JB, Darnell, RB. Nova, the paraneoplastic Ri antigen, is homologous to an RNA‐binding protein and is specifically expressed in the developing motor system. Neuron 1993, 11:657–672.
Zhang, C, Frias, MA, Mele, A, Ruggiu, M, Eom, T, Marney, CB, Wang, H, Licatalosi, DD, Fak, JJ, Darnell, RB. Integrative modeling defines the Nova splicing‐regulatory network and its combinatorial controls. Science 2010, 329:439–443.
Ule, J, Jensen, KB, Ruggiu, M, Mele, A, Ule, A, Darnell, RB. CLIP identifies Nova‐regulated RNA networks in the brain. Science 2003, 302:1212–1215.
Wang, HY, Hsieh, PF, Huang, DF, Chin, PS, Chou, CH, Tung, CC, Chen, SY, Lee, LJ, Gau, SS, Huang, HS. RBFOX3/NeuN is required for hippocampal circuit balance and function. Sci Rep 2015, 5:17383.
Kim, KK, Nam, J, Mukouyama, YS, Kawamoto, S. Rbfox3‐regulated alternative splicing of Numb promotes neuronal differentiation during development. J Cell Biol 2013, 200:443–458.
Osborne, RJ, Thornton, CA. RNA‐dominant diseases. Hum Mol Genet 2006, 15 Spec No 2:R162‐9.
Jin, P, Warren, ST. Understanding the molecular basis of fragile X syndrome. Hum Mol Genet 2000, 9:901–908.
Garber, K, Smith, KT, Reines, D, Warren, ST. Transcription, translation and fragile X syndrome. Curr Opin Genet Dev 2006, 16:270–275.
Jung, H, Yoon, BC, Holt, CE. Axonal mRNA localization and local protein synthesis in nervous system assembly, maintenance and repair. Nat Rev Neurosci 2012, 13:308–324.
Cajigas, IJ, Tushev, G, Will, TJ, tom Dieck, S, Fuerst, N, Schuman, EM. The local transcriptome in the synaptic neuropil revealed by deep sequencing and high‐resolution imaging. Neuron 2012, 74:453–466.
Zukin, RS, Richter, JD, Bagni, C. Signals, synapses, and synthesis: how new proteins control plasticity. Front Neural Circ 2009, 3:14.
Krichevsky, AM, Kosik, KS. Neuronal RNA granules: a link between RNA localization and stimulation‐dependent translation. Neuron 2001, 32:683–696.
Zeitelhofer, M, Karra, D, Macchi, P, Tolino, M, Thomas, S, Schwarz, M, Kiebler, M, Dahm, R. Dynamic interaction between P‐bodies and transport ribonucleoprotein particles in dendrites of mature hippocampal neurons. J Neurosci 2008, 28:7555–7562.
Kiebler, MA, Bassell, GJ. Neuronal RNA granules: movers and makers. Neuron 2006, 51:685–690.
Thomas, MG, Pascual, ML, Maschi, D, Luchelli, L, Boccaccio, GL. Synaptic control of local translation: the plot thickens with new characters. Cell Mol Life Sci 2014, 71:2219–2239.
Alami, NH, Smith, RB, Carrasco, MA, Williams, LA, Winborn, CS, Han, SS, Kiskinis, E, Winborn, B, Freibaum, BD, Kanagaraj, A, et al. Axonal transport of TDP‐43 mRNA granules is impaired by ALS‐causing mutations. Neuron 2014, 81:536–543.
Anderson, P, Kedersha, N, Ivanov, P. Stress granules, P‐bodies and cancer. Biochim Biophys Acta 2015, 1849:861–870.
Sephton, CF, Yu, G. The function of RNA‐binding proteins at the synapse: implications for neurodegeneration. Cell Mol Life Sci 2015, 72:3621–3635.
Morimoto, RI. The heat shock response: systems biology of proteotoxic stress in aging and disease. Cold Spring Harb Symp Quant Biol 2011, 76:91–99.
Lindquist, S. Regulation of protein synthesis during heat shock. Nature 1981, 293:311–314.
Kedersha, N, Stoecklin, G, Ayodele, M, Yacono, P, Lykke‐Andersen, J, Fritzler, MJ, Scheuner, D, Kaufman, RJ, Golan, DE, Anderson, P. Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J Cell Biol 2005, 169:871–884.
Buchan, JR, Parker, R. Eukaryotic stress granules: the ins and outs of translation. Mol Cell 2009, 36:932–941.
Wolozin, B. Regulated protein aggregation: stress granules and neurodegeneration. Mol Neurodegener 2012, 7:56.
Colombrita, C, Zennaro, E, Fallini, C, Weber, M, Sommacal, A, Buratti, E, Silani, V, Ratti, A. TDP‐43 is recruited to stress granules in conditions of oxidative insult. J Neurochem 2009, 111:1051–1061.
Andersson, MK, Stahlberg, A, Arvidsson, Y, Olofsson, A, Semb, H, Stenman, G, Nilsson, O, Aman, P. The multifunctional FUS, EWS and TAF15 proto‐oncoproteins show cell type‐specific expression patterns and involvement in cell spreading and stress response. BMC Cell Biol 2008, 9:37.
Dewey, CM, Cenik, B, Sephton, CF, Dries, DR, Mayer, P 3rd, Good, SK, Johnson, BA, Herz, J, Yu, G. TDP‐43 is directed to stress granules by sorbitol, a novel physiological osmotic and oxidative stressor. Mol Cell Biol 2011, 31:1098–1108.
Maniecka, Z, Polymenidou, M. From nucleation to widespread propagation: a prion‐like concept for ALS. Virus Res 2015, 207:94–105.
Liu‐Yesucevitz, L, Bilgutay, A, Zhang, YJ, Vanderweyde, T, Citro, A, Mehta, T, Zaarur, N, McKee, A, Bowser, R, Sherman, M, et al. Tar DNA binding protein‐43 (TDP‐43) associates with stress granules: analysis of cultured cells and pathological brain tissue. PLoS One 2010, 5:e13250.
Dormann, D, Rodde, R, Edbauer, D, Bentmann, E, Fischer, I, Hruscha, A, Than, ME, Mackenzie, IR, Capell, A, Schmid, B, et al. ALS‐associated fused in sarcoma (FUS) mutations disrupt Transportin‐mediated nuclear import. EMBO J 2010, 29:2841–2857.
Jucker, M, Walker, LC. Self‐propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 2013, 501:45–51.
Eschbach, J, Danzer, KM. α‐Synuclein in Parkinson`s disease: pathogenic function and translation into animal models. Neurodegener Dis 2014, 14:1–17.
Breydo, L, Wu, JW, Uversky, VN. α‐synuclein misfolding and Parkinson`s disease. Biochim Biophys Acta 2012, 1822:261–285.
Munch, C, Bertolotti, A. Exposure of hydrophobic surfaces initiates aggregation of diverse ALS‐causing superoxide dismutase‐1 mutants. J Mol Biol 2010, 399:512–525.
Bandyopadhyay, U, Cuervo, AM. Chaperone‐mediated autophagy in aging and neurodegeneration: lessons from α‐synuclein. Exp Gerontol 2007, 42:120–128.
Cooper, TA, Wan, L, Dreyfuss, G. RNA and disease. Cell 2009, 136:777–793.
DeJesus‐Hernandez, M, Mackenzie, IR, Boeve, BF, Boxer, AL, Baker, M, Rutherford, NJ, Nicholson, AM, Finch, NA, Flynn, H, Adamson, J, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p‐linked FTD and ALS. Neuron 2011, 72:245–256.
Renton, AE, Majounie, E, Waite, A, Simon‐Sanchez, J, Rollinson, S, Gibbs, JR, Schymick, JC, Laaksovirta, H, van Swieten, JC, Myllykangas, L, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21‐linked ALS‐FTD. Neuron 2011, 72:257–268.
Neumann, M, Sampathu, DM, Kwong, LK, Truax, AC, Micsenyi, MC, Chou, TT, Bruce, J, Schuck, T, Grossman, M, Clark, CM, et al. Ubiquitinated TDP‐43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 2006, 314:130–133.
Banks, GT, Kuta, A, Isaacs, AM, Fisher, EM. TDP‐43 is a culprit in human neurodegeneration, and not just an innocent bystander. Mamm Genome 2008, 19:299–305.
Aguzzi, A, Rajendran, L. The transcellular spread of cytosolic amyloids, prions, and prionoids. Neuron 2009, 64:783–790.
Brundin, P, Li, JY, Holton, JL, Lindvall, O, Revesz, T. Research in motion: the enigma of Parkinson`s disease pathology spread. Nat Rev Neurosci 2008, 9:741–745.
Desplats, P, Lee, HJ, Bae, EJ, Patrick, C, Rockenstein, E, Crews, L, Spencer, B, Masliah, E, Lee, SJ. Inclusion formation and neuronal cell death through neuron‐to‐neuron transmission of α‐synuclein. Proc Natl Acad Sci USA 2009, 106:13010–13015.
Lee, HJ, Suk, JE, Bae, EJ, Lee, JH, Paik, SR, Lee, SJ. Assembly‐dependent endocytosis and clearance of extracellular α‐synuclein. Int J Biochem Cell Biol 2008, 40:1835–1849.
Ren, PH, Lauckner, JE, Kachirskaia, I, Heuser, JE, Melki, R, Kopito, RR. Cytoplasmic penetration and persistent infection of mammalian cells by polyglutamine aggregates. Nat Cell Biol 2009, 11:219–225.
Gousset, K, Schiff, E, Langevin, C, Marijanovic, Z, Caputo, A, Browman, DT, Chenouard, N, de Chaumont, F, Martino, A, Enninga, J, et al. Prions hijack tunnelling nanotubes for intercellular spread. Nat Cell Biol 2009, 11:328–336.
Brundin, P, Melki, R, Kopito, R. Prion‐like transmission of protein aggregates in neurodegenerative diseases. Nat Rev Mol Cell Biol 2010, 11:301–307.
Gitler, AD, Shorter, J. RNA‐binding proteins with prion‐like domains in ALS and FTLD‐U. Prion 2011, 5:179–187.
King, OD, Gitler, AD, Shorter, J. The tip of the iceberg: RNA‐binding proteins with prion‐like domains in neurodegenerative disease. Brain Res 2012, 1462:61–80.
Li, YR, King, OD, Shorter, J, Gitler, AD. Stress granules as crucibles of ALS pathogenesis. J Cell Biol 2013, 201:361–372.
Chia, R, Tattum, MH, Jones, S, Collinge, J, Fisher, EM, Jackson, GS. Superoxide dismutase 1 and tgSOD1 mouse spinal cord seed fibrils, suggesting a propagative cell death mechanism in amyotrophic lateral sclerosis. PLoS One 2010, 5:e10627.
Johnson, BS, Snead, D, Lee, JJ, McCaffery, JM, Shorter, J, Gitler, AD. TDP‐43 is intrinsically aggregation‐prone, and amyotrophic lateral sclerosis‐linked mutations accelerate aggregation and increase toxicity. J Biol Chem 2009, 284:20329–20339.
Zhou, Y, Liu, S, Liu, G, Ozturk, A, Hicks, GG. ALS‐associated FUS mutations result in compromised FUS alternative splicing and autoregulation. PLoS Genet 2013, 9:e1003895.
Furukawa, Y, Kaneko, K, Watanabe, S, Yamanaka, K, Nukina, N. A seeding reaction recapitulates intracellular formation of Sarkosyl‐insoluble transactivation response element (TAR) DNA‐binding protein‐43 inclusions. J Biol Chem 2011, 286:18664–18672.
Nomura, T, Watanabe, S, Kaneko, K, Yamanaka, K, Nukina, N, Furukawa, Y. Intranuclear aggregation of mutant FUS/TLS as a molecular pathomechanism of amyotrophic lateral sclerosis. J Biol Chem 2014, 289:1192–1202.
Guo, W, Chen, Y, Zhou, X, Kar, A, Ray, P, Chen, X, Rao, EJ, Yang, M, Ye, H, Zhu, L, et al. An ALS‐associated mutation affecting TDP‐43 enhances protein aggregation, fibril formation and neurotoxicity. Nat Struct Mol Biol 2011, 18:822–830.
Budini, M, Buratti, E, Stuani, C, Guarnaccia, C, Romano, V, De Conti, L, Baralle, FE. Cellular model of TAR DNA‐binding protein 43 (TDP‐43) aggregation based on its C‐terminal Gln/Asn‐rich region. J Biol Chem 2012, 287:7512–7525.
Grad, LI, Guest, WC, Yanai, A, Pokrishevsky, E, O`Neill, MA, Gibbs, E, Semenchenko, V, Yousefi, M, Wishart, DS, Plotkin, SS, et al. Intermolecular transmission of superoxide dismutase 1 misfolding in living cells. Proc Natl Acad Sci USA 2011, 108:16398–16403.
Nonaka, T, Masuda‐Suzukake, M, Arai, T, Hasegawa, Y, Akatsu, H, Obi, T, Yoshida, M, Murayama, S, Mann, DM, Akiyama, H, et al. Prion‐like properties of pathological TDP‐43 aggregates from diseased brains. Cell Rep 2013, 4:124–134.
Ayers, JI, Fromholt, S, Koch, M, DeBosier, A, McMahon, B, Xu, G, Borchelt, DR. Experimental transmissibility of mutant SOD1 motor neuron disease. Acta Neuropathol 2014, 128:791–803.
Deng, HX, Shi, Y, Furukawa, Y, Zhai, H, Fu, R, Liu, E, Gorrie, GH, Khan, MS, Hung, WY, Bigio, EH, et al. Conversion to the amyotrophic lateral sclerosis phenotype is associated with intermolecular linked insoluble aggregates of SOD1 in mitochondria. Proc Natl Acad Sci U S A 2006, 103:7142–7147.
Pullmann, R Jr, Kim, HH, Abdelmohsen, K, Lal, A, Martindale, JL, Yang, X, Gorospe, M. Analysis of turnover and translation regulatory RNA‐binding protein expression through binding to cognate mRNAs. Mol Cell Biol 2007, 27:6265–6278.
Ayala, YM, De Conti, L, Avendano‐Vazquez, SE, Dhir, A, Romano, M, D`Ambrogio, A, Tollervey, J, Ule, J, Baralle, M, Buratti, E, et al. TDP‐43 regulates its mRNA levels through a negative feedback loop. EMBO J 2011, 30:277–288.
Swarup, V, Phaneuf, D, Dupre, N, Petri, S, Strong, M, Kriz, J, Julien, JP. Deregulation of TDP‐43 in amyotrophic lateral sclerosis triggers nuclear factor kappaB‐mediated pathogenic pathways. J Exp Med 2011, 208:2429–2447.
Verma, A. Protein aggregates and regional disease spread in ALS is reminiscent of prion‐like pathogenesis. Neurol India 2013, 61:107–110.
Braak, H, Brettschneider, J, Ludolph, AC, Lee, VM, Trojanowski, JQ, Del Tredici, K. Amyotrophic lateral sclerosis—a model of corticofugal axonal spread. Nat Rev Neurol 2013, 9:708–714.
Brettschneider, J, Del Tredici, K, Toledo, JB, Robinson, JL, Irwin, DJ, Grossman, M, Suh, E, Van Deerlin, VM, Wood, EM, Baek, Y, et al. Stages of pTDP‐43 pathology in amyotrophic lateral sclerosis. Ann Neurol 2013, 74:20–38.
Ravits, J. Focality, stochasticity and neuroanatomic propagation in ALS pathogenesis. Exp Neurol 2014, 262(Pt B):121–126.
Ciechanover, A, Kwon, YT. Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies. Exp Mol Med 2015, 47:e147.
Takalo, M, Salminen, A, Soininen, H, Hiltunen, M, Haapasalo, A. Protein aggregation and degradation mechanisms in neurodegenerative diseases. Am J Neurodegener Dis 2013, 2:1–14.