Dreyfus, M, Regnier, P. The poly(A) tail of mRNAs: bodyguard in eukaryotes, scavenger in bacteria. Cell 2002, 111:611–613.
Kushner, SR. mRNA decay in prokaryotes and eukaryotes: different approaches to a similar problem. IUBMB Life 2004, 56:585–594.
Slomovic, S, Portnoy, V, Liveanu, V, Schuster, G. RNA polyadenylation in prokaryotes and organelles; different tails tell different tales. CRC Crit Rev Plant Sci 2006, 25:65–77.
Ghosh, S, Deutscher, MP. Oligoribonuclease is an essential component of the mRNA decay pathway. Proc Natl Acad Sci U S A 1999, 96:4372–4377.
Edmonds, M. A history of poly A sequences: from formation to factors to function. Prog Nucleic Acid Res Mol Biol 2002, 71:285–389.
Sonenberg, N, Hinnebusch, AG. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 2009, 136:731–745.
Slomovic, S, Laufer, D, Geiger, D, Schuster, G. Polyadenylation and degradation of human mitochondrial RNA: the prokaryotic past leaves its mark. Mol Cell Biol 2005, 25:6427–6435.
Gagliardi, D, Stepien, PP, Temperley, RJ, Lightowlers, RN, Chrzanowska‐Lightowlers, ZM. Messenger RNA stability in mitochondria: different means to an end. Trends Genet 2004, 20:260–267.
Houseley, J, Tollervey, D. The many pathways of RNA degradation. Cell 2009, 136:763–776.
Marzluff, WF, Wagner, EJ, Duronio, RJ. Metabolism and regulation of canonical histone mRNAs: life without a poly(A) tail. Nat Rev Genet 2008, 9:843–854.
Wilusz, CJ, Wilusz, J. New ways to meet your (3′) end oligouridylation as a step on the path to destruction. Genes Dev 2008, 22:1–7.
Shcherbik, N, Wang, M, Lapik, YR, Srivastava, L, Pestov, DG. Polyadenylation and degradation of incomplete RNA polymerase I transcripts in mammalian cells. EMBO Rep 2010, 11:106–111.
Preker, P, Nielsen, J, Kammler, S, Lykke‐Andersen, S, Christensen, MS, Mapendano, CK, Schierup, MH, Jensen, TH. RNA exosome depletion reveals transcription upstream of active human promoters. Science 2008, 322:1851–1854.
Lykke‐Andersen, S, Jensen, TH. CUT it out: silencing of noise in the transcriptome. Nat Struct Mol Biol 2006, 13:860–861.
Wyers, F, Rougemaille, M, Badis, G, Rousselle, JC, Dufour, ME, Boulay, J, Regnault, B, Devaux, F, Namane, A, Seraphin, B, et al. Cryptic pol II transcripts are degraded by a nuclear quality control pathway involving a new poly(A) polymerase. Cell 2005, 121:725–737.
Arigo, JT, Eyler, DE, Carroll, KL, Corden, JL. Termination of cryptic unstable transcripts is directed by yeast RNA‐binding proteins Nrd1 and Nab3. Mol Cell 2006, 23:841–851.
Thiebaut, M, Kisseleva‐Romanova, E, Rougemaille, M, Boulay, J, Libri, D. Transcription termination and nuclear degradation of cryptic unstable transcripts: a role for the nrd1‐nab3 pathway in genome surveillance. Mol Cell 2006, 23:853–864.
Lykke‐Andersen, S, Brodersen, DE, Jensen, TH. Origins and activities of the eukaryotic exosome. J Cell Sci 2009, 122:1487–1494.
Slomovic, S, Portnoy, V, Yehudai‐Resheff, S, Bronshtein, E, Schuster, G. Polynucleotide phosphorylase and the archaeal exosome as poly(A)‐polymerases. Biochim Biophys Acta 2008, 1779:247–255.
Regnier, P, Hajnsdorf, E. Poly(A)‐assisted RNA decay and modulators of RNA stability. Prog Mol Biol Transl Sci 2009, 85:137–185.
Mohanty, BK, Kushner, SR. Polynucleotide phosphorylase functions both as a 3′ to 5′ exonuclease and a poly(A) polymerase in Escherichia coli. Proc Natl Acad Sci U S A 2000, 97:11966–11971.
Cheng, ZF, Deutscher, MP. An important role for RNase R in mRNA decay. Mol Cell 2005, 17:313–318.
Deutscher, MP, Reuven, NB. Enzymatic basis for hydrolytic versus phosphorolytic mRNA degradation in Escherichia coli and Bacillus subtilis. Proc Natl Acad Sci U S A 1991, 88:3277–3280.
Zuo, Y, Vincent, HA, Zhang, J, Wang, Y, Deutscher, MP, Malhotra, A. Structural basis for processivity and single‐strand specificity of RNase II. Mol Cell 2006, 24:149–156.
Cheng, ZF, Deutscher, MP. Purification and characterization of the Escherichia coli exoribonuclease RNase R. Comparison with RNase II. J Biol Chem 2002, 277:21624–21629.
Amblar, M, Barbas, A, Fialho, AM, Arraiano, CM. Characterization of the functional domains of Escherichia coli RNase II. J Mol Biol 2006, 360:921–933.
Vincent, HA, Deutscher, MP. Substrate recognition and catalysis by the exoribonuclease RNase R. J Biol Chem 2006, 281:29769–29775.
Marujo, PE, Hajnsdorf, E, Le Derout, J, Andrade, R, Arraiano, CM, Regnier, P. RNase II removes the oligo(A) tails that destabilize the rpsO mRNA of Escherichia coli. RNA 2000, 6:1185–1193.
Frazao, C, McVey, CE, Amblar, M, Barbas,‘A, Vonrhein, C, Arraiano, CM, Carrondo, MA. Unravelling the dynamics of RNA degradation by ribonuclease II and its RNA‐bound complex. Nature 2006, 443:110–114.
Amblar, M, Arraiano, CM. A single mutation in Escherichia coli ribonuclease II inactivates the enzyme without affecting RNA binding. FEBS J 2005, 272:363–374.
Ishii, R, Nureki, O, Yokoyama, S. Crystal structure of the tRNA processing enzyme RNase PH from Aquifex aeolicus. J Biol Chem 2003, 278:32397–32404.
Choi, JM, Park, EY, Kim, JH, Chang, SK, Cho, Y. Probing the functional importance of the hexameric ring structure of RNase PH. J Biol Chem 2004, 279:755–764.
Kelly, KO, Reuven, NB, Li, Z, Deutscher, MP. RNase PH is essential for tRNA processing and viability in RNase‐deficient Escherichia coli cells. J Biol Chem 1992, 267:16015–16018.
Grunberg‐Manago, M, Oritz, PJ, Ochoa, S. Enzymatic synthesis of nucleic acid‐like polynucleotides. Science 1955, 122:907–910.
Littauer, UZ, Soreq, H. Polynucleotide Phosphorylase. New York: Academic Press; 1982, 517–553.
Littauer, UZ, Grunberg‐Manago, M. Polynucleotide phosphorylase. In: Creighton, TE, ed. The Encyclopedia of Molecular Biology. New York: John Willy %26 Sons, Inc.; 1999, 1911–1918.
Grunberg‐Manago, M. Messenger RNA stability and its role in control of gene expression in bacteria and phages. Annu Rev Genet 1999, 33:193–227.
Mohanty, BK, Maples, VF, Kushner, SR. The Sm‐like protein Hfq regulates polyadenylation dependent mRNA decay in Escherichia coli. Mol Microbiol 2004, 54:905–920.
Liou, GG, Jane, WN, Cohen, SN, Lin, NS, Lin‐Chao, S. RNA degradosomes exist in vivo in Escherichia coli as multicomponent complexes associated with the cytoplasmic membrane via the N‐terminal region of ribonuclease E. Proc Natl Acad Sci U S A 2001, 98:63–68.
Symmons, MF, Williams, MG, Luisi, BF, Jones, GH, Carpousis, AJ. Running rings around RNA: a superfamily of phosphate‐dependent RNases. Trends Biochem Sci 2002, 27:11–18.
Coburn, GA, Mackie, GA. Degradation of mRNA in Escherichia coli: an old problem with some new twists. Prog Nucleic Acid Res Mol Biol 1999, 62:55–108.
Regnier, P, Arraiano, CM. Degradation of mRNA in bacteria: emergence of ubiquitous features. Bioessays 2000, 22:235–244.
Carpousis, AJ. The RNA degradosome of Escherichia coli: an mRNA‐degrading machine assembled on RNase E. Annu Rev Microbiol 2007, 61:71–87
Carpousis, AJ, Luisi, BF, McDowall, KJ. Endonucleolytic initiation of mRNA decay in Escherichia coli. Prog Mol Biol Transl Sci 2009, 85:91–135.
Liou, GG, Chang, HY, Lin, CS, Lin‐Chao, S. DEAD box RhlB RNA helicase physically associates with exoribonuclease PNPase to degrade double‐stranded RNA independent of the degradosome‐assembling region of RNase E. J Biol Chem 2002, 277:41157–41162.
Bollenbach, TJ, Schuster, G, Stern, DB. Cooperation of endo‐ and exoribonucleases in chloroplast mRNA turnover. Prog Nucleic Acid Res Mol Biol 2004, 78:305–337.
Schuster, G, Stern, D. RNA polyadenylation and decay in mitochondria and chloroplasts. Prog Mol Biol Transl Sci 2009, 85:393–422.
Leszczyniecka, M, Kang, DC, Sarkar, D, Su, ZZ, Holmes, M, Valerie, K, Fisher, PB. Identification and cloning of human polynucleotide phosphorylase, hPNPase old‐35, in the context of terminal differentiation and cellular senescence. Proc Natl Acad Sci U S A 2002, 99:16636–16641.
Sarkar, D, Leszczyniecka, M, Kang, DC, Lebedeva, IV, Valerie, K, Dhar, S, Pandita, TK, Fisher, PB. Down‐regulation of Myc as a potential target for growth arrest induced by human polynucleotide phosphorylase (hPNPaseold‐35) in human melanoma cells. J Biol Chem 2003, 278:24542–24551.
Sarkar, D, Park, ES, Emdad, L, Randolph, A, Valerie, K, Fisher, PB. Defining the domains of human polynucleotide phosphorylase (hPNPaseOLD‐35) mediating cellular senescence. Mol Cell Biol 2005, 25:7333–7343.
Yehudai‐Resheff, S, Hirsh, M, Schuster, G. Polynucleotide phosphorylase functions as both an exonuclease and a poly(A) polymerase in spinach chloroplasts. Mol Cell Biol 2001, 21:5408–5416.
Chen, HW, Rainey, RN, Balatoni, CE, Dawson, DW, Troke, JJ, Wasiak, S, Hong, JS, McBride, HM, Koehler, CM, Teitell, MA, et al. Mammalian polynucleotide phosphorylase is an intermembrane space RNase that maintains mitochondrial homeostasis. Mol Cell Biol 2006, 26:8475–8487.
Rainey, RN, Glavin, JD, Chen, HW, French, SW, Teitell, MA, Koehler, CM. A new function in translocation for the mitochondrial i‐AAA protease Yme1: import of polynucleotide phosphorylase into the intermembrane space. Mol Cell Biol 2006, 26:8488–8497.
Chen, HW, Koehler, CM, Teitell, MA. Human polynucleotide phosphorylase: location matters. Trends Cell Biol 2007, 17:600–608.
Portnoy, V, Palnizky, G, Yehudai‐Resheff, S, Glaser, F, Schuster, G. Analysis of the human polynucleotide phosphorylase (PNPase) reveals differences in RNA binding and response to phosphate compared to its bacterial and chloroplast counterparts. RNA 2008, 14:297–309.
Slomovic, S, Schuster, G. Stable PNPase RNAi silencing: its effect on the processing and adenylation of human mitochondrial RNA. RNA 2008, 14:310–323.
Leszczyniecka, M, DeSalle, R, Kang, DC, Fisher, PB. The origin of polynucleotide phosphorylase domains. Mol Phylogenet Evol 2004, 31:123–130.
Raijmakers, R, Egberts, WV, van Venrooij, WJ, Pruijn, GJ. Protein‐protein interactions between human exosome components support the assembly of RNase PH‐type subunits into a six‐membered PNPase‐like ring. J Mol Biol 2002, 323:653–663.
Symmons, MF, Jones, GH, Luisi, BF. A duplicated fold is the structural basis for polynucleotide phosphorylase catalytic activity, processivity, and regulation. Structure 2000, 8:1215–1226.
Zuo, Y, Deutscher, MP. Exoribonuclease superfamilies: structural analysis and phylogenetic distribution. Nucleic Acids Res 2001, 29:1017–1026.
Yehudai‐Resheff, S, Portnoy, V, Yogev, S, Adir, N, Schuster, G. Domain analysis of the chloroplast polynucleotide phosphorylase reveals discrete functions in RNA degradation, polyadenylation, and sequence homology with exosome proteins. Plant Cell 2003, 15:2003–2019.
Jarrige, A, Brechemier‐Baey, D, Mathy, N, Duche, O, Portier, C. Mutational analysis of polynucleotide phosphorylase from Escherichia coli. J Mol Biol 2002, 321:397–409.
Nurmohamed, S, Vaidialingam, B, Callaghan, AJ, Luisi, BF. Crystal structure of Escherichia coli polynucleotide phosphorylase core bound to RNase E, RNA and manganese: implications for catalytic mechanism and RNA degradosome assembly. J Mol Biol 2009, 389:17–33.
Mitchel, P, Petfalski, E, Shevchenko, A, Mann, M, Tollervey, D. The exosome: a conserved eukaryotic RNA processing complex containing multiple 3′ to 5′ exoribonucleases. Cell 1997, 91:457–466.
van Hoof, A, Parker, R. The exosome: a proteasome for RNA? Cell 1999, 99:347–350.
Raijmakers, R, Schilders, G, Pruijn, GJ. The exosome, a molecular machine for controlled RNA degradation in both nucleus and cytoplasm. Eur J Cell Biol 2004, 83:175–183.
Houseley, J, LaCava, J, Tollervey, D. RNA‐quality control by the exosome. Nat Rev Mol Cell Biol 2006, 7:529–539.
Buttner, K, Wenig, K, Hopfner, KP. The exosome: a macromolecular cage for controlled RNA degradation. Mol Microbiol 2006, 61:1372–1379.
Chekanova, JA, Dutko, JA, Mian, IS, Belostotsky, DA. Arabidopsis thaliana exosome subunit AtRrp4p is a hydrolytic 3′ → 5′ exonuclease containing S1 and KH RNA‐binding domains. Nucleic Acids Res 2002, 30:695–700.
Estevez, AM, Kempf, T, Clayton, C. The exosome of Trypanosoma brucei. EMBO J 2001, 20:3831–3839.
Hernandez, H, Dziembowski, A, Taverner, T, Seraphin, B, Robinson, CV. Subunit architecture of multimeric complexes isolated directly from cells. EMBO Rep 2006, 7:605–610.
Lehner, B, Sanderson, CM. A protein interaction framework for human mRNA degradation. Genome Res 2004, 14:1315–1323.
Liu, Q, Greimann, JC, Lima, CD. Reconstitution, activities, and structure of the eukaryotic RNA exosome. Cell 2006, 127:1223–1237.
Dziembowski, A, Lorentzen, E, Conti, E, Seraphin, B. A single subunit, Dis3, is essentially responsible for yeast exosome core activity. Nat Struct Mol Biol 2007, 14:15–22.
Evguenieva‐Hackenberg, E, Walter, P, Hochleitner, E, Lottspeich, F, Klug, G. An exosome‐like complex in Sulfolobus solfataricus. EMBO Rep 2003, 4:889–893.
Lorentzen, E, Conti, E. Structural basis of 3′ end RNA recognition and exoribonucleolytic cleavage by an exosome RNase PH core. Mol Cell 2005, 20:473–481.
Lorentzen, E, Conti, E. The exosome and the proteasome: nano‐compartments for degradation. Cell 2006, 125:651–654.
Portnoy, V, Evguenieva‐Hackenberg, E, Klein, F, Walter, P, Lorentzen, E, Klug, G, Schuster, G. RNA polyadenylation in archaea: not observed in Haloferax while the exosome polyadenylates RNA in Sulfolobus. EMBO Rep 2005, 6:1188–1193.
Buttner, K, Wenig, K, Hopfner, KP. Structural framework for the mechanism of archaeal exosomes in RNA processing. Mol Cell 2005, 20:461–471.
Portnoy, V, Schuster, G. RNA polyadenylation and degradation in different archaea; roles of the exosome and RNase R. Nucleic Acids Res 2006, 34:5923–5931.
Koonin, EV, Wolf, YI, Aravind, L. Prediction of the archaeal exosome and its connections with the proteasome and the translation and transcription machineries by a comparative‐genomic approach. Genome Res 2001, 11:240–252.
Chekanova, JA, Gregory, BD, Reverdatto, SV, Chen, H, Kumar, R, Hooker, T, Yazaki, J, Li, P, Skiba, N, Peng, Q. Genome‐wide high‐resolution mapping of exosome substrates reveals hidden features in the Arabidopsis transcriptome. Cell 2007, 131:1340–1353.
Schaeffer, D, Tsanova, B, Barbas, A, Reis, FP, Dastidar, EG, Sanchez‐Rotunno, M, Arraiano, CM, van Hoof, A. The exosome contains domains with specific endoribonuclease, exoribonuclease and cytoplasmic mRNA decay activities. Nat Struct Mol Biol 2009, 16:56–62.
Schneider, C, Leung, E, Brown, J, Tollervey, D. The N‐terminal PIN domain of the exosome subunit Rrp44 harbors endonuclease activity and tethers Rrp44 to the yeast core exosome. Nucleic Acids Res 2009, 37:1127–1140.
Lebreton, A, Tomecki, R, Dziembowski, A, Seraphin, B. Endonucleolytic RNA cleavage by a eukaryotic exosome. Nature 2008, 456:993–996.
Bonneau, F, Basquin, J, Ebert, J, Lorentzen, E, Conti, E. The yeast exosome functions as a macromolecular cage to channel RNA substrates for degradation. Cell 2009, 139:547–559.
Briggs, MW, Burkard, KT, Butler, JS. Rrp6p, the yeast homologue of the human PM‐Scl 100‐kDa autoantigen, is essential for efficient 5.8S rRNA 3′ end formation. J Biol Chem 1998, 273:13255–13263.
Mitchell, P, Petfalski, E, Houalla, R, Podtelejnikov, A, Mann, M, Tollervey, D. Rrp47p is an exosome‐associated protein required for the 3′ processing of stable RNAs. Mol Cell Biol 2003, 23:6982–6992.
Chen, CY, Gherzi, R, Ong, SE, Chan, EL, Raijmakers, R, Pruijn, GJ, Stoecklin, G, Moroni, C, Mann, M, Karin, M. AU binding proteins recruit the exosome to degrade ARE‐containing mRNAs. Cell 2001, 107:451–464.
Midtgaard, SF, Assenholt, J, Jonstrup, AT, Van, LB, Jensen, TH, Brodersen, DE. Structure of the nuclear exosome component Rrp6p reveals an interplay between the active site and the HRDC domain. Proc Natl Acad Sci U S A 2006, 103:11898–11903.
Stead, JA, Costello, JL, Livingstone, MJ, Mitchell, P. The PMC2NT domain of the catalytic exosome subunit Rrp6p provides the interface for binding with its cofactor Rrp47p, a nucleic acid‐binding protein. Nucleic Acids Res 2007, 35:5556–5567.
Milligan, L, Decourty, L, Saveanu, C, Rappsilber, J, Ceulemans, H, Jacquier, A, Tollervey, D. A yeast exosome cofactor, Mpp6, functions in RNA surveillance and in the degradation of noncoding RNA transcripts. Mol Cell Biol 2008, 28:5446–5457.
Schilders, G, Raijmakers, R, Raats, JM, Pruijn, GJ. MPP6 is an exosome‐associated RNA‐binding protein involved in 5.8S rRNA maturation. Nucleic Acids Res 2005, 33:6795–6804.
van Dijk, EL, Schilders, G, Pruijn, GJ. Human cell growth requires a functional cytoplasmic exosome, which is involved in various mRNA decay pathways. RNA 2007, 13:1027–1035.
Cohen, SN, McDowall, KJ. RNase E: still a wonderfully mysterious enzyme. Mol Microbiol 1997, 23:1099–1106.
Kushner, SR. mRNA decay in Escherichia coli comes of age. J Bacteriol 2002, 184:4658–4665.
Condon, C. Maturation and degradation of RNA in bacteria. Curr Opin Microbiol 2007, 10:271–278.
Deutscher, MP. Degradation of RNA in bacteria: comparison of mRNA and stable RNA. Nucleic Acids Res 2006, 34:659–666.
Worrall, JA, Luisi, BF. Information available at cut rates: structure and mechanism of ribonucleases. Curr Opin Struct Biol 2007, 17:128–137.
Baginsky, S, Shteiman‐Kotler, A, Liveanu, V, Yehudai‐Resheff, S, Bellaoui, M, Settlage, RE, Shabanowitz, J, Hunt, DF, Schuster, G, Gruissem, W. Chloroplast PNPase exists as a homo‐multimer enzyme complex that is distinct from the Escherichia coli degradosome. RNA 2001, 7:1464–1475.
Rott, R, Zipor, G, Portnoy, V, Liveanu, V, Schuster, G. RNA polyadenylation and degradation in cyanobacteria are similar to the chloroplast but different from Escherichia coli. J Biol Chem 2003, 278:15771–15777.
Lee, K, Cohen, SN. A Streptomyces coelicolor functional orthologue of Escherichia coli RNase E shows shuffling of catalytic and PNPase‐binding domains. Mol Microbiol 2003, 48:349–360.
Kime, L, Jourdan, SS, Stead, JA, Hidalgo‐Sastre, A, McDowall, KJ. Rapid cleavage of RNA by RNase E in the absence of 5′‐monophosphate stimulation. Mol Microbiol 2010, 76:590–604.
Deana, A, Celesnik, H, Belasco, JG. The bacterial enzyme RppH triggers messenger RNA degradation by 5′ pyrophosphate removal. Nature 2008, 451:355–358.
Callaghan, AJ, Marcaida, MJ, Stead, JA, McDowall, KJ, Scott, WG, Luisi, BF. Structure of Escherichia coli RNase E catalytic domain and implications for RNA turnover. Nature 2005, 437:1187–1191.
Shahbabian, K, Jamalli, A, Zig, L, Putzer, H. RNase Y, a novel endoribonuclease, initiates riboswitch turnover in Bacillus subtilis. EMBO J 2009, 28:3523–3533.
Even, S, Pellegrini, O, Zig, L, Labas, V, Vinh, J, Brechemmier‐Baey, D, Putzer, H. Ribonucleases J1 and J2: two novel endoribonucleases in B.subtilis with functional homology to E.coli RNase E. Nucleic Acids Res 2005, 33:2141–2152.
Britton, RA, Wen, T, Schaefer, L, Pellegrini, O, Uicker, WC, Mathy, N, Tobin, C, Daou, R, Szyk, J, Condon, C. Maturation of the 5′ end of Bacillus subtilis 16S rRNA by the essential ribonuclease YkqC/RNase J1. Mol Microbiol 2007, 63:127–138.
Deikus, G, Bechhofer, DH. Bacillus subtilis trp leader RNA: Specificity of RNase J1 endonuclease cleavage and PNPase processing. J Biol Chem 2009, 284:26394–401.
Deikus, G, Condon, C, Bechhofer, DH. Role of Bacillus subtilis RNase J1 endonuclease and 5′ exonuclease activities in trp leader RNA turnover. J Biol Chem 2008, 283:17158–87.
Mathy, N, Benard, L, Pellegrini, O, Daou, R, Wen, T, Condon, C. 5′‐to‐3′ exoribonuclease activity in bacteria: role of RNase J1 in rRNA maturation and 5′ stability of mRNA. Cell 2007, 129:681–692.
Mandel, CR, Kaneko, S, Zhang, H, Gebauer, D, Vethantham, V, Manley, JL, Tong, L. Polyadenylation factor CPSF‐73 is the pre‐mRNA 3′‐end‐processing endonuclease. Nature 2006, 444:953–956.
de la Sierra‐Gallay, IL, Zig, L, Jamalli, A, Putzer, H. Structural insights into the dual activity of RNase J. Nat Struct Mol Biol 2008, 15:206–212.
Slomovic, S, Fremder, E, Staals, RH, Pruijn, GJ, Schuster, G. Addition of poly(A) and poly(A)‐rich tails during RNA degradation in the cytoplasm of human cells. Proc Natl Acad Sci U S A 2010, 107:7407–7412.
Campos‐Guillen, J, Bralley, P, Jones, GH, Bechhofer, DH, Olmedo‐Alvarez, G. Addition of poly(A) and heteropolymeric 3′ ends in Bacillus subtilis wild‐type and polynucleotide phosphorylase‐deficient strains. J Bacteriol 2005, 187:4698–4706.
Partensky, F, Hess, WR, Vaulot, D. Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol Mol Biol Rev 1999, 63:106–127.
Portnoy, V, Schuster, G. Mycoplasma gallisepticum as the first analyzed bacterium in which RNA is not polyadenylated. FEMS Microbiol Lett 2008, 283:97–103.
Zimmer, SL, Schein, A, Zipor, G, Stern, DB, Schuster, G. Polyadenylation in Arabidopsis and Chlamydomonas organelles: the input of nucleotidyltransferases, poly(A) polymerases and polynucleotide phosphorylase. Plant J 2009, 59:88–99.
Drager, RG, Higgs, DC, Kindle, KL, Stern, DB. 5′ to 3′ exoribonucleolytic activity is a normal component of chloroplast mRNA decay pathways. Plant J 1999, 19:521–531.
Drager, RG, Girard‐Bascou, J, Choquet, Y, Kindle, KL, Stern, DB. In vivo evidence for 5′ → 3′ exoribonuclease degradation of an unstable chloroplast mRNA. Plant J 1998, 13:85–96.
Lange, H, Sement, FM, Canaday, J, Gagliardi, D. Polyadenylation‐assisted RNA degradation processes in plants. Trends Plant Sci 2009, 14:497–504.
Mullen, TE, Marzluff, WF. Degradation of histone mRNA requires oligouridylation followed by decapping and simultaneous degradation of the mRNA both 5′ to 3′ and 3′ to 5′. Genes Dev 2008, 22:50–65.
Wickens, M, Kwak, JE. Molecular biology. A tail tale for U. Science 2008, 319:1344–1345.
Kwak, JE, Wickens, M. A family of poly(U) polymerases. RNA 2007, 13:860–867.
Rissland, OS, Norbury, CJ. Decapping is preceded by 3′ uridylation in a novel pathway of bulk mRNA turnover. Nat Struct Mol Biol 2009, 16:616–623.
Rissland, OS, Norbury, CJ. The Cid1 poly(U) polymerase. Biochim Biophys Acta 2008, 1779:286–294.
Dziembowski, A, Piwowarski, J, Hoser, R, Minczuk, M, Dmochowska, A, Siep, M, van der Spek, H, Grivell, L, Stepien, PP. The yeast mitochondrial degradosome. Its composition, interplay between RNA helicase and RNase activities and the role in mitochondrial RNA metabolism. J Biol Chem 2003, 278:1603–1611.
Simpson, L, Sbicego, S, Aphasizhev, R. Uridine insertion/deletion RNA editing in trypanosome mitochondria: a complex business. RNA 2003, 9:265–276.
Kao, CY, Read, LK. Opposing effects of polyadenylation on the stability of edited and unedited mitochondrial RNAs in Trypanosoma brucei. Mol Cell Biol 2005, 25:1634–1644.
Etheridge, RD, Aphasizheva, I, Gershon, PD, Aphasizhev, R. 3′ adenylation determines mRNA abundance and monitors completion of RNA editing in T. brucei mitochondria. EMBO J 2008, 27:1596–1608.
Kao, CY, Read, LK. Targeted depletion of a mitochondrial nucleotidyltransferase suggests the presence of multiple enzymes that polymerize mRNA 3′ tails in Trypanosoma brucei mitochondria. Mol Biochem Parasitol 2007, 154:158–169.
Ojala, D, Montoya, J, Attardi, G. tRNA punctuation model of RNA processing in human mitochondria. Nature 1981, 290:470–474.
Holzmann, J, Frank, P, Loffler, E, Bennett, K, Gerner, C, Rossmanith, W. RNase P without RNA: identification and functional reconstitution of the human mitochondrial tRNA processing enzyme. Cell 2008, 135:462–474.
Tomecki, R, Dmochowska, A, Gewartowski, K, Dziembowski, A, Stepien, PP. Identification of a novel human nuclear‐encoded mitochondrial poly(A) polymerase. Nucleic Acids Res 2004, 32:6001–6014.
Nagaike, T, Suzuki, T, Katoh, T, Ueda, T. Human mitochondrial mRNAs are stabilized with polyadenylation regulated by mitochondria‐specific poly(A) polymerase and polynucleotide phosphorylase. J Biol Chem 2005, 280:19721–19727.
Neil, H, Malabat, C, d’Aubenton‐Carafa, Y, Xu, Z, Steinmetz, LM, Jacquier, A. Widespread bidirectional promoters are the major source of cryptic transcripts in yeast. Nature 2009, 457:1038–1042.