Fodor, SP, Read, JL, Pirrung, MC, Stryer, L, Lu, AT, Solas, D. Light‐directed, spatially addressable parallel chemical synthesis. Science 1991, 251:767–773.
Lennon, GG, Lehrach, H. Hybridization analyses of arrayed cDNA libraries. Trends Genet 1991, 7:314–317.
Southern, EM, Maskos, U, Elder, JK. Analyzing and comparing nucleic acid sequences by hybridization to arrays of oligonucleotides: evaluation using experimental models. Genomics 1992, 13:1008–1017.
Berretta, J, Morillon, A. Pervasive transcription constitutes a new level of eukaryotic genome regulation. EMBO Rep 2009, 10:973–982.
Kapranov, P, Willingham, AT, Gingeras, TR. Genome‐wide transcription and the implications for genomic organization. Nat Rev Genet 2007, 8:413–423.
Metzker, ML. Sequencing technologies—the next generation. Nat Rev Genet 2010, 11:31–46.
van Vliet, AH. Next generation sequencing of microbial transcriptomes: challenges and opportunities. FEMS Microbiol Lett 2010, 302:1–7.
Wang, Z, Gerstein, M, Snyder, M. RNA‐Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009, 10:57–63.
Ozsolak, F, Platt, AR, Jones, DR, Reifenberger, JG, Sass, LE, McInerney, P, Thompson, JF, Bowers, J, Jarosz, M, Milos, PM. Direct RNA sequencing. Nature 2009, 461:814–818.
Gubler, U. Second‐strand cDNA synthesis: mRNA fragments as primers. Methods Enzymol 1987, 152:330–335.
Spiegelman, S, Burny, A, Das, MR, Keydar, J, Schlom, J, Travnicek, M, Watson, K. DNA‐directed DNA polymerase activity in oncogenic RNA viruses. Nature 1970, 227:1029–1031.
Wu, JQ, Du, J, Rozowsky, J, Zhang, Z, Urban, AE, Euskirchen, G, Weissman, S, Gerstein, M, Snyder, M. Systematic analysis of transcribed loci in ENCODE regions using RACE sequencing reveals extensive transcription in the human genome. Genome Biol 2008, 9:R3.
Perocchi, F, Xu, Z, Clauder‐Munster, S, Steinmetz, LM. Antisense artifacts in transcriptome microarray experiments are resolved by actinomycin D. Nucleic Acids Res 2007, 35:e128.
He, Y, Vogelstein, B, Velculescu, VE, Papadopoulos, N, Kinzler, KW. The antisense transcriptomes of human cells. Science 2008, 322:1855–1857.
Mamanova, L, Andrews, RM, James, KD, Sheridan, EM, Ellis, PD, Langford, CF, Ost, TW, Collins, JE, Turner, DJ. FRT‐seq: amplification‐free, strand‐specific transcriptome sequencing. Nat Methods 2010, 7:130–132.
Parkhomchuk, D, Borodina, T, Amstislavskiy, V, Banaru, M, Hallen, L, Krobitsch, S, Lehrach, H, Soldatov, A. Transcriptome analysis by strand‐specific sequencing of complementary DNA. Nucleic Acids Res 2009, 37:e123.
Cocquet, J, Chong, A, Zhang, G, Veitia, RA. Reverse transcriptase template switching and false alternative transcripts. Genomics 2006, 88:127–131.
Mader, RM, Schmidt, WM, Sedivy, R, Rizovski, B, Braun, J, Kalipciyan, M, Exner, M, Steger, GG, Mueller, MW. Reverse transcriptase template switching during reverse transcriptase‐polymerase chain reaction: artificial generation of deletions in ribonucleotide reductase mRNA. J Lab Clin Med 2001, 137:422–428.
Roy, SW, Irimia, M. When good transcripts go bad: artifactual RT‐PCR ‘splicing’ and genome analysis. Bioessays 2008, 30:601–605.
Roberts, JD, Preston, BD, Johnston, LA, Soni, A, Loeb, LA, Kunkel, TA. Fidelity of two retroviral reverse transcriptases during DNA‐dependent DNA synthesis in vitro. Mol Cell Biol 1989, 9:469–476.
Armour, CD, Castle, JC, Chen, R, Babak, T, Loerch, P, Jackson, S, Shah, JK, Dey, J, Rohl, CA, Johnson, JM, et al. Digital transcriptome profiling using selective hexamer priming for cDNA synthesis. Nat Methods 2009, 6:647–649.
Hansen, KD, Brenner, SE, Dudoit, S. Biases in Illumina transcriptome sequencing caused by random hexamer priming. Nucleic Acids Res 2010, 38:e131.
Faulhammer, D, Lipton, RJ, Landweber, LF. Fidelity of enzymatic ligation for DNA computing. J Comput Biol 2000, 7:839–848.
Housby, JN, Southern, EM. Fidelity of DNA ligation: a novel experimental approach based on the polymerisation of libraries of oligonucleotides. Nucleic Acids Res 1998, 26:4259–4266.
Kozarewa, I, Ning, Z, Quail, MA, Sanders, MJ, Berriman, M, Turner, DJ. Amplification‐free Illumina sequencing‐library preparation facilitates improved mapping and assembly of (G+C)‐biased genomes. Nat Methods 2009, 6:291–295.
Dohm, JC, Lottaz, C, Borodina, T, Himmelbauer, H. Substantial biases in ultra‐short read data sets from high‐throughput DNA sequencing. Nucleic Acids Res 2008, 36:e105.
Goren, A, Ozsolak, F, Shoresh, N, Ku, M, Adli, M, Hart, C, Gymrek, M, Zuk, O, Regev, A, Milos, PM, et al. Chromatin profiling by directly sequencing small quantities of immunoprecipitated DNA. Nat Methods 2010, 7:47–49.
Oshlack, A, Wakefield, MJ. Transcript length bias in RNA‐seq data confounds systems biology. Biol Direct 2009, 4:14.
Young, MD, Wakefield, MJ, Smyth, GK, Oshlack, A. Gene ontology analysis for RNA‐seq: accounting for selection bias. Genome Biol 2010, 11:R14.
Donis‐Keller, H, Maxam, AM, Gilbert, W. Mapping adenines, guanines, and pyrimidines in RNA. Nucleic Acids Res 1977, 4:2527–2538.
Bowers, J, Mitchell, J, Beer, E, Buzby, PR, Causey, M, Efcavitch, JW, Jarosz, M, Krzymanska‐Olejnik, E, Kung, L, Lipson, D, et al. Virtual terminator nucleotides for next‐generation DNA sequencing. Nat Methods 2009, 6:593–595.
Graber, JH, McAllister, GD, Smith, TF. Probabilistic prediction of Saccharomyces cerevisiae mRNA 3′‐processing sites. Nucleic Acids Res 2002, 30:1851–1858.
Lutz, CS. Alternative polyadenylation: a twist on mRNA 3′ end formation. ACS Chem Biol 2008, 3:609–617.
Tian, B, Hu, J, Zhang, H, Lutz, CS. A large‐scale analysis of mRNA polyadenylation of human and mouse genes. Nucleic Acids Res 2005, 33:201–212.
Nagalakshmi, U, Wang, Z, Waern, K, Shou, C, Raha, D, Gerstein, M, Snyder, M. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 2008, 320:1344–1349.
David, L, Huber, W, Granovskaia, M, Toedling, J, Palm, CJ, Bofkin, L, Jones, T, Davis, RW, Steinmetz, LM. A high‐resolution map of transcription in the yeast genome. Proc Natl Acad Sci U S A 2006, 103:5320–5325.
Ozsolak, F, Kapranov, P, Foissac, S, Kim, SW, Fishilevich, E, Monaghan, AP, John, B, Milos, PM. Comprehensive polyadenylation site maps in yeast and human reveal pervasive alternative polyadenylation. Cell 2010, 143:1018–1029.