Eisenbach, M, Lengeler, JW, Varon, M, Gutnick, D, Meili, R, Firtel, RA, Segall, JE, Omann, GM, Tamada, A, Murakami, F. Chemotaxis. London: Imperial College Press; 2004.
Rao, CV, Glekas, GD, Ordal, GW. The three adaptation systems of Bacillus subtilis chemotaxis. Trends Microbiol 2008, 16:480–487.
Porter, SL, Wadhams, GH, Armitage, JP. Signalling processing in complex chemotaxis pathways. Nat Rev Microbiol 2011, 9:153–165.
Francis, NR, Levit, M, Shaikh, TR, Melanson, LA, Stock, JB. Subunit organization in a soluble complex of Tar, CheW and CheA by electron microscopy. J Biol Chem 2002, 277:36755–36759.
Shrout, AL, Montefusco, DJ, Weis, RM. Template‐directed assembly of receptor signalling complexes. Biochemistry 2003, 42:13379–13385.
Stewart, RC, Jahreis, K, Parkinson, JS. Rapid phosphotransfer to CheY from a CheA protein lacking the CheY‐binding domain. Biochemistry 2000, 39:13157–13165.
Li, M, Hazelbauer, GL. Cellular stoichiometry of the components of the chemotaxis signalling complex. J Bacteriol 2004, 186:3687–3694.
Sourjik, V, Berg, HC. Binding of the Escherichia coli response regulator CheY to its target measured in vivo by fluorescence resonance energy transfer. Proc Nat Acad Sci 2002, 99:12669–12674.
Smith, JG, Latiolais, JA, Guanga, GP, Citineni, S, Silversmith, RE, Bourret, RB. Investigation of the role of electrostatic charge in activation of the Escherichia coli response regulator CheY. J Bacteriol 2003, 185:6385–6391.
Stewart, RC, van Bruggen, R. Rapid phosphotransfer to CheY from a CheA protein lacking the CheY‐binding domain. Biochemistry 2004, 43:8766–8777.
Elowitz, MB, Surette, MG, Wolf, P, Stock, JB, Leibler, S. Protein mobility in the cytoplasm of Escherichia coli. J Bacteriol 1999, 181:197–203.
Segall, JE, Ishihara, A, Berg, HC. Chemotactic signalling in filamentous cells of Escherichia coli. J Bacteriol 1985, 161:51–59.
Liebal, UW, Millat, T, de Jong, IG, Kuipers, OP, Völker, U, Wolkenhauer, O. How mathematical modelling elucidates signalling in Bacillus subtilis. Mol Microbiol 2010, 77:1083–1095.
Tindall, MJ, Porter, SL, Maini, PK, Gaglia, G, Armitage, JP. Overview of mathematical approaches used to model bacterial chemotaxis I: the single cell. Bull Math Biol 2008, 70:1525–1569.
Block, SM, Segall, JE, Berg, HC. Adaptation kinetics in bacterial chemotaxis. J Bacteriol 1983, 154:312–323.
Goldbeter, A, Koshland, DE. Simple molecular model for sensing and adaptation based on receptor modification with application to bacterial chemotaxis. J Math Biol 1982, 161:395–416.
Asakura, S, Honda, H. Two‐state model for bacterial chemoreceptor proteins: the role of multiple methylation. J Math Biol 1984, 176:349–367.
Hauri, DC, Ross, J. A model of excitation and adaptation in bacterial chemotaxis. Biophys J 1995, 68:708–722.
Spiro, PA, Parkinson, JS, Othmer, HG. A model of excitation and adaptation in bacterial chemotaxis. Proc Nat Acad Sci 1997, 94:7263–7268.
Barkai, N, Leibler, S. Robustness in simple biochemical networks. Nature 1997, 387:913–917.
Rao, CV, Kirby, JR, Arkin, AP. Phosphatase localization in bacterial chemotaxis: divergent mechanisms, convergent principles. Phys Biol 2005, 2:148–158.
Tindall, MJ, Porter, SL, Wadhams, GH, Maini, PK, Armitage, JP. Spatiotemporal modelling of CheY complexes in Escherichia coli chemotaxis. Prog Biophys Mol Biol 2009, 100:40–46.
Endres, RG, Wingreen, NS. Precise adaptation in bacterial chemotaxis through “assistance neighbourhoods”. Proc Nat Acad Sci 2006, 103:13040–13044.
Hansen, CH, Endres, RG, Wingreen, NS. Chemotaxis in Escherichia coli: a molecular model for robust precise adaptation. PLoS Comput Biol 2008, 4:e1.
Hansen, CH, Sourjik, V, Wingreen, NS. A dynamic‐signaling‐team model for chemotaxis receptors in Escherichia coli. Proc Nat Acad Sci 2010, 107:17170–17175.
Bray, D, Duke, T. Conformational spread: the propagation of allosteric states in large multiprotein complexes. Annu Rev Biophys Biomol Struct 2004, 33:53–73.
Goldman, J, Andrews, S, Bray, D. Size and composition of membrane protein clusters predicted by Monte Carlo analysis. Eur Biophys J 2004, 33:506–512.
Lipkow, K, Andrews, SS, Bray, D. Simulated diffusion of phosphorylated CheY through the cytoplasm of Escherichia coli. J Bacteriol 2005, 187:45–53.
Lipkow, K. Changing cellular location of CheZ predicted by molecular simulations. PLoS Comput Biol 2006, 2:301–310.
Clausznitzer, D, Oleksiuk, O, Lvdok, L, Sourjik, V, Endres, RG. Chemotactic response and adaptation dynamics in Escherichia coli. PLoS Comput Biol 2010, 6:e1000784.
Tindall, MJ, Porter, SL, Maini, PK, Armitage, JP. Modeling chemotaxis reveals the role of reversed phosphotransfer and a bi‐functional kinase‐phosphatase. PLoS Comput Biol 2010, 6:e100896.
Rao, CV, Kirby, JR, Arkin, AP. Design and diversity in bacterial chemotaxis: a comparative study in Escherichia coli and Bacillus subtilis. PLoS Biol 2004, 2:239–252.
Hamadeh, A, Roberts, MA, August, E, McSharry, PE, Maini, PK, Armitage, JP, Papachristodoulou, A. Feedback control architecture and the bacterial chemotaxis network. PLoS Comput Biol 2011, 7:e1001130.
Roberts, MA, August, E, Hamadeh, A, Maini, PK, McSharry, PE, Armitage, JP, Papachristodoulou, A. A model invalidation‐based approach for elucidating biological signalling pathways, applied to the chemotaxis pathway in R. sphaeroides. BMC Syst Biol 2009, 31:105.
Segel, LA. Incorporation of receptor kinetics into a model for bacterial chemotaxis. J Theor Biol 1976, 57:23–42.
Block, SM, Segall, JE, Berg, HC. Impulse response in bacterial chemotaxis. Cell 1982, 31:215–226.
Bray, D, Bourret, RB, Simon, MI. Computer simulation of the phosphorylation cascade controlling bacterial chemotaxis. Mol Biol Cell 1993, 4:469–482.
Bray, D, Bourret, RB. Computer analysis of the binding reactions leading to a transmembrane receptor‐linked multiprotein complex involved in bacterial chemotaxis. Mol Biol Cell 1995, 6:1367–1380.
Bray, D, Levin, MD, Morton‐Firth, CJ. Receptor clustering as a cellular mechanism to control sensitivity. Nature 1998, 393:85–88.
Shi, Y, Duke, T. Cooperative model of bacteria sensing. Phys Rev E 1998, 58:6399–6406.
Duke, TAJ, Bray, D. Heightened sensitivity of a lattice of membrane receptors. Proc Nat Acad Sci 1999, 96:10104–10108.
Shi, Y. Adaptive Ising model and bacterial chemotactic receptor network. Eur Lett 2000, 50:113–119.
Shi, Y. Effects of thermal fluctuation and the receptor‐receptor interaction in bacterial chemotactic signalling and adaptation. Phys Rev E 2001, 64:1–8.
Shi, Y. Clustering and signalling of cell receptors. Physica A 2002, 311:199–212.
Skoge, ML, Endres, RG, Wingreen, NS. Receptor‐receptor coupling in bacterial chemotaxis: evidence for strongly coupled receptors. Biophys J 2006, 90:4317–4326.
Shimizu, TS, Tu, Y, Berg, HC. A modular gradient‐sensing network for chemotaxis in Escherichia coli revealed by responses to time‐varying stimuli. Mol Syst Biol 6:382–. doi:10.1039/msb.2010.37.
Tu, Y, Shimizu, TS, Berg, HC. Modeling the chemotactic response of Escherichia coli to time‐varying stimuli. Proc Nat Acad Sci USA 2008, 105:14855–14860.
Falke, JJ. Cooperativity between bacterial chemotaxis receptors. Proc Nat Acad Sci 2002, 99: 6530–6532.
Endres, RG, Oleksiuk, O, Hansen, CH, Meir, Y, Sourjik, V, Wingreen, NS. Variable sizes of Escherichia coli chemoreceptor signalling teams. Mol Syst Biol 2008, 4:211.
Sourjik, V, Armitage, JP. Spatial organization in bacterial chemotaxis. EMBO J 2010, 29:2724–2733.
Soh, S, Byrska, M, Kandere‐Grzybowska, K, Grzybowski, BA. Reaction‐diffusion systems in intracellular molecular transport and control. Angew Chem Int Ed Engl 2010, 49:4170–4198.
Kentner, D, Sourjik, V. Dynamic map of protein interactions in the Escherichia coli chemotaxis pathway. Mol Syst Biol 2009, 5. doi:10.1038/msb.2008.77.
Vaknin, A, Berg, HC. Single‐cell FRET imaging of phosphatase activity in the Escherichia coli chemotaxis system. Proc Nat Acad Sci 2004, 101:17072–17077.
Howard, M, Rutenberg, AD, de Vet, S. Dynamic compartmentalization of bacteria: accurate division in E. coli. Phys Rev Lett 2001, 87:2781021–2781024.
Meinhardt, H, de Boer, PAJ. Pattern formation in Escherichia coli: a model for the pole‐to‐pole oscillations of Min proteins and the localization of the division site. Proc Nat Acad Sci 2001, 98:14202–14207.
Howard, M, Rutenberg, AD. Pattern formation inside bacteria: fluctuations due to the low copy number of proteins. Phys Rev Lett 2003, 90:1281021–1281024.
Berry, RM, Armitage, JP. The bacterial flagellar motor. Adv Microbial Physiol 1999, 41:291–337.
Berg, HC. The rotary motor of bacterial flagella. Annu Rev Biochem 2003, 72:19–54.
Chen, S, Beeby, M, Murphy, GE, Leadbetter, JR, Hendrixson, DR, Briegel, A, Li, Z, Shi, J, Tocheva, EI, Müller, A, et al. Structural diversity of bacterial flagellar motors. EMBO J 2011. doi:10.1038.
Berry, RM. Theories of rotary motors. Phil Trans R Soc Lond B 2000, 355:503–509.
Sowa, Y, Berry, RM. Bacterial flagellar motor. Q Rev Biophys 2008, 41:103–132.
Meister, M, Caplan, SR, Berg, HC. Dynamics of a tightly coupled mechanism for flagellar rotation. Biophys J 1989, 55:905–914.
Elston, TC, Oster, G. Protein turbines. I: the bacterial flagellar motor. Biophys J 1997, 73:703–721.
Xing, J, Bai, F, Berry, R, Oster, G. Torque‐speed relationship of the bacterial flagellar motor. Proc Natl Acad Sci U S A 2006, 103:1260–1265.
Duke, TAJ, Le Novére, N, Bray, D. Conformational spread in a ring of proteins: a stochastic approach to allostery. J Mol Biol 2001, 308:541–553.
Bai, F, Branch, RW, Nicolau, DV Jr, Pilizota, T, Steel, BC, Maini, PK, Berry, RM. Conformational spread as a mechanism for cooperativity in the bacterial flagellar switch. Science 2010, 327:685–689.
Soyer, O. The promise of evolutionary systems biology: Lessons from bacterial chemotaxis. Sci Signal 2010, 3:pe23.
Ishikawa, T, Hoto, M. Interaction of two swimming Paramecia. J Expt Biol 2006, 209:4452–4463.
Dombrowski, C, Cisneros, L, Chatkaew, S, Goldstein, RE, Kessler, JO. Self‐concentration and large‐scale coherence in bacterial dynamics. Phys Rev Lett 2004, 93:098103.
Sokolov, A, Goldstein, RE, Feldchtein, FI, Aranson, IS. Enhanced mixing and spatial instability in concentrated bacterial suspensions. Phys Rev E 2009, 80:031903.
Magariyama, Y, Ichiba, M, Nakata, K, Baba, K, Ohtani, T, Kudo, S, Goto, T. Difference in bacterial motion between forward and backward swimming caused by the wall effect. Biophys J 2005, 88:3648–3658.
Lauga, E, DiLuzio, WR, Whitesides, GM, Stone, HA. Swimming in circles: motion of bacteria near solid boundaries. Biophys J 2006, 90:400–412.
Berke, AP, Turner, L, Berg, HC, Lauga, E. Hydrodynamic attraction of swimming microorganisms by surfaces. Phys Rev Lett 2008, 101:038102.
Lauga, E, Powers, TR. The hydrodynamics of swimming microorganisms. Rep Prog Phys 2009, 72:096601.
Gaffney, EA, Gadhla, H, Smith, DJ, Blake, JR, Kirkman‐Brown, JC. Mammalian sperm motility: observation and theory. Ann Rev Fluid Mech 2011, 43:501–528.
Gray, J, Hancock, GJ. The propulsion of sea urchin spermatozoa. J Exp Biol 1955, 32:802–814.
Chwang, AT, Wu, TY. A note on the helical movement of microorganisms. Proc R Soc Lond B 1971, 178:327–346.
Lighthill, J. Flagellar Hydrodynamics ‐ JV Neumann Lecture. SIAM Rev 1976, 18:161–230.
Friedrich, BM, Riedel‐Kruse, IH, Riedel‐Kruse, J, Julicher, F. High‐precision tracking of sperm swimming fine structure provides strong test of resistive force theory. J Exp Biol 2010, 213:1226–1234.
Johnson, RE, Brokaw, CJ. Flagellar hydrodynamics: a comparison between resistive‐force theory and slender‐body theory. Biophys J 1979, 25:113–127.
Spagnolie, SE, Lauga, E. Comparative hydrodynamics of bacterial polymorphism. Phys Rev Lett 2011, 106:058103.
Higdon, JJL. Hydrodynamics of flagellar propulsion ‐ helical waves. J Fluid Mech 1979, 94:331–351.
Smith, DJ, Gaffney, EA, Blake, JR, Kirkman‐Brown, JC. Human sperm accumulation near surfaces: a simulation study. J Fluid Mech 2009, 621:289–320.
Johnson, RE. An improved slender‐body theory for stokes‐flow. J Fluid Mech 1980, 99:411–431.
Shum, H, Gaffney, EA. In: Kim, MJ, Steager, E, Agung Julius, A, eds. Mathematical Models for Individual Swimming Bacteria in Microbiorobotics: Biologically Inspired Microscale Robotic Systems. Elsevier; 2012. ISBN: 9781455778911.
Cortez, R, Fauci, L, Medovikov, A. The method of regularized Stokeslets in three dimensions: analysis, validation, and application to helical swimming. Phys Fluids 2005, 17:031504.
Hsu, C, Dillon, RH. A 3D motile rod‐shaped monotrichous bacterial model. Bull Math Biol 2009, 71:1228–1263.
Phan‐Thien, N, Tran‐Cong, T, Ramia, M. A boundary‐element analysis of flagellar propulsion. J Fluid Mech 1987, 184:533–549.
Ramia, M, Tullock, DL, Phan‐Thien, N. The role of hydrodynamic interaction in the locomotion of microorganisms. Biophys J 1993, 65:755–778.
Goto, T, Nakata, K, Baba, K, Nishimura, M, Magariyama, Y. A fluid‐dynamic interpretation of the asymmetric motion of singly flagellated bacteria swimming close to a boundary. Biophys J 2005, 89:3771–3779.
Ishikawa, T, Sekiya, G, Imai, Y, Yamaguchi, T. Hydrodynamic interactions between two swimming bacteria. Biophys J 2007, 93:2217–2225.
Shum, H, Gaffney, EA, Smith, DJ. Modelling bacterial behaviour close to a no‐slip plane boundary: the influence of bacterial geometry. Proc R Soc Lond A 2010, 466:1725–1748.
Hulme, SE, DiLuzio, WR, Shevkoplyas, SS, Turner, L, Mayer, M, Berg, HC, Whitesides, GM. Using ratchets and sorters to fractionate motile cells of Escherichia coli by length. Lab Chip 2008, 8:1888–1895.
Saintillan, D, Shelley, MJ. Instabilities and pattern formation in active particle suspensions: kinetic theory and continuum simulations. Phys Rev Lett 2008, 100:178103.
Saintillan, D, Shelley, MJ. Instabilities, pattern formation, and mixing in active suspensions. Phys Fluids 2008, 20:123304.
Subramanian, G, Koch, DL, Fitzgibbon, SR. The stability of a homogeneous suspension of chemotactic bacteria. Phys Fluids 2011, 23:041901.
Xue, C, Othmer, HG, Erban, R. From individual to collective behavior of unicellular organisms: recent results and open problems in multiscale phenomena in biology. AIP Conf Proc 2009, 1167:3–4.
Tindall, MJ, Maini, PK, Porter, SL, Armitage, JP. Overview of mathematical approaches used to model bacterial chemotaxis II: bacterial populations. Bull Math Biol 2008, 70:1570–607.
Alt, W. Biased random walk models for chemotaxis and related diffusion approximations. J Math Biol 1980, 9:147–177.
Rivero, MA, Tranquillo, RT, Buettner, HM, Lauffenburger, DA. Transport models for chemotactic cell populations based on individual cell behaviour. Chem Eng Sci 1989, 44:2881–2897.
Ford, RM, Cummings, PT. On the relationship between cell balance equations for chemotaxis cell populations. SIAM J Appl Math 1992, 52:1426–1441.
Brosilow, BJ, Ford, RM, Sarman, S, Cummings, PT. Numerical solution of transport equations for bacterial chemotaxis: Effect of discretization of directional motion. SIAM J Appl Math 1996, 56:1639–1663.
Chen, KC, Ford, RM, Cummings, PT. Mathematical models for motile bacterial transport in cylindrical tubes. J Theor Biol 1998, 195:481–504.
Chen, KC, Ford, RM, Cummings, PT. Perturbation expansion of Alt`s cell balance equations reduces to Segel`s one‐dimensional equations for shallow chemoattractant gradient. SIAM J Appl Math 1998, 59:35–57.
Chen, KC, Ford, RM, Cummings, PT. Spatial effect of tumbling frequencies for motile bacteria on cell ball equations. Chem Eng Sci 1999, 54:593–617.
Setayeshgar, S, Gear, CW, Othmer, HG, Kevrekidis, IG. Application of coarse integration to bacterial chemotaxis. Multiscale Model Simul 2005, 4:307–327.
Erban, R, Othmer, HG. From individual to collective behaviour in bacterial chemotaxis. SIAM J Appl Math 2004, 65:361–391.
Erban, R, Othmer, HG. From signal transduction to spatial pattern formation in E. coli: a paradigm for multiscale modelling in biology. Mol Syst Biol 2005, 3:362–394.
de Gennes, PG. Chemotaxis: the role of internal delays. Eur Biophys J 2004, 33:691–693.
Clark, DA, Grant, LC. The bacterial chemotactic response reflects a compromise between transient and steady‐state behaviour. Proc Nat Acad Sci 2005, 102:9150–9155.
Celani, A, Vergassola, M. Bacterial strategies for chemotaxis response. Proc Nat Acad Sci 2010, 107:1391–1396.
Bray, D, Levin, MD, Lipkow, K. The chemotactic behavior of computer‐based surrogate bacteria. Curr Biol 2007, 17:12–19.
Ben‐Jacob, E, Schochet, O, Tenenbaum, A, Cohen, I, Czirok, A, Vicsek, T. Generic modelling of cooperative growth patterns in bacterial colonies. Nature 1994, 368:46–49.
Ben‐Jacob, E, Cohen, I, Schochet, O. Complex bacterial patterns. Nature 1995, 373:566–569.
Berg, HC. Symmetries in bacterial motility. Proc Nat Acad Sci 1996, 93:14225–14228.
Budrene, E, Berg, H. Complex patterns formed by motile cells of Escherichia coli. Nature 1991, 349:630–633.
Keller, EF, Segel, LA. Initiation of slime mold aggregation viewed as an instability. J Theor Biol 1970, 26:399–415.
Brenner, MP, Levitov, LS, Budrene, EO. Physical mechanisms for chemotactic pattern formation by bacteria. Biophys J 1998, 74:1677–1693.
Hillesdon, AJ, Pedley, TJ, Kessler, JO. The development of concentration gradients in a suspension of chemotactic bacteria. Bull Math Biol 1995, 57:299–334.
Zhu, M, Murray, JD. Parameter domains for generating spatial pattern: a comparison of reaction‐diffusion and cell‐chemotaxis models. Int J Bifurc Chaos 1995, 5:1503–1524.
Leake, MC. Shining the spotlight on functional molecular complexes: the new science of single‐molecule cell biology. Commun Integr Biol 2010, 3:415–418.
Shoval, O, Goentoro, L, Hart, Y, Mayo, A, Sontag, E, Alon, U. Fold‐change detection and scalar symmetry of sensory input fields. Proc Nat Acad Sci 2010, 107:15995–16000.
Lazova, MD, Ahmed, T, Bellomo, D, Stocker, R, Shimizu, TS. Response rescaling in bacterial chemotaxis. Proc Nat Acad Sci USA 2011, 108:13870–13875.