Farrugia, G. Interstitial cells of Cajal in health and disease. Neurogastroenterol Motil 2008, 20(suppl 1):54–63.
Huizinga, JD, Lammers, WJ. Gut peristalsis is governed by a multitude of cooperating mechanisms. Am J Physiol Gastrointest Liver Physiol 2009, 296:G1–G8.
Lin, X, Chen, JD. Abnormal gastric slow waves in patients with functional dyspepsia assessed by multichannel electrogastrography. Am J Physiol Gastrointest Liver Physiol 2001, 280:G1370–G1375.
O`Grady, G, Angeli, TR, Du, P, Lahr, C, Lammers, WEP, Windsor, JA, Farrugia, G, Abell, TL, Pullan, AJ, Cheng, LK. Aberrant initiation and conduction of slow wave activity in gastroparesis defined by high‐resolution electrical mapping. Gastroenterology 2012, 143:589–598.
Cheng, LK, O`Grady, G, Du, P, Egbuji, JU, Windsor, JA, Pullan, AJ. Gastrointestinal system. Wiley Interdiscip Rev Syst Biol Med 2010, 2:65–79.
Hunter, PJ. The IUPS Physiome Project: a framework for computational physiology. Prog Biophys Mol Biol 2004, 85:551–569.
Thomsen, L, Robinson, TL, Lee, JC, Farraway, LA, Hughes, MJ, Andrews, DW, Huizinga, JD. Interstitial cells of Cajal generate a rhythmic pacemaker current. Nat Med 1998, 4:848–851.
van Helden, DF, Laver, DR, Holdsworth, J, Imtiaz, MS. Generation and propagation of gastric slow waves. Clin Exp Pharmacol Physiol 2010, 37:516–524.
Egbuji, JU, O`Grady, G, Du, P, Cheng, LK, Lammers, WJEP, Windsor, JA, Pullan, AJ. Origin, propagation and regional characteristics of porcine gastric slow wave activity defined by high‐resolution mapping. Neurogastroenterol Motil 2010, 22:e292–e300.
Lammers, WJ, Ver Donck, L, Stephen, B, Smets, D, Schuurkes, JA. Origin and propagation of the slow wave in the canine stomach: the outlines of a gastric conduction system. Am J Physiol Gastrointest Liver Physiol 2009, 296:G1200–G1210.
Sarna, SK, Daniel, EE. Threshold curves and refractoriness properties of gastric relaxation oscillators. Am J Physiol 1974, 226:749–755.
Sarna, SK, Daniel, EE, Kingma, YJ. Effects of partial cuts on gastric electrical control activity and its computer model. Am J Physiol 1972, 223:332–340.
Corrias, A, Buist, ML. Quantitative cellular description of gastric slow wave activity. Am J Physiol Gastrointest Liver Physiol 2008, 294:G989–G995.
Fall, CP, Keizer, JE. Mitochondrial modulation of intracellular Ca(2+) signaling. J Theor Biol 2001, 210:151–165.
Hirst, GD, Edwards, FR. Role of interstitial cells of Cajal in the control of gastric motility. J Pharmacol Sci 2004, 96:1–10.
Lees‐Green, R, Du, P, O`Grady, G, Beyder, A, Farrugia, G, Pullan, AJ. Biophysically based modeling of the interstitial cells of Cajal: current status and future perspectives. Front Physiol 2011, 2:29.
Faville, RA, Pullan, AJ, Sanders, KM, Smith, NP. A biophysically based mathematical model of unitary potential activity in interstitial cells of Cajal. Biophys J 2008, 95:88–104.
Faville, RA, Pullan, AJ, Sanders, KM, Koh, SD, Lloyd, CM, Smith, NP. Biophysically based mathematical modeling of interstitial cells of Cajal slow wave activity generated from a discrete unitary potential basis. Biophys J 2009, 96:4834–4852.
Sanders, KM, Koh, SD, Ward, SM. Interstitial cells of Cajal as pacemakers in the gastrointestinal tract. Annu Rev Physiol 2006, 68:307–343.
Means, SA, Sneyd, J. Spatio‐temporal calcium dynamics in pacemaking units of the interstitial cells of Cajal. J Theor Biol 2010, 267: 137–152.
Corrias, A, Buist, ML. A quantitative model of gastric smooth muscle cellular activation. Ann Biomed Eng 2007, 35:1595–1607.
Poh, YC, Corrias, A, Cheng, N, Buist, ML. A quantitative model of human jejunal smooth muscle cell electrophysiology. PLOS One 2012, 7:e42385.
Gajendiran, V, Buist, ML. A quantitative description of active force generation in gastrointestinal smooth muscle. Int J Numer Meth Biomed Engng 2010, 27:450–460.
Buist, ML, Corrias, A, Poh, YC. A model of slow wave propagation and entrainment along the stomach. Ann Biomed Eng 2010, 38:3022–3030.
Du, P, O`Grady, G, Gibbons, SJ, Yassi, R, Lees‐Green, R, Farrugia, G, Cheng, LK, Pullan, AJ. Tissue‐specific mathematical models of slow wave entrainment in wild‐type and 5‐HT(2B) knockout mice with altered interstitial cells of Cajal networks. Biophys J 2010, 98:1772–1781.
Imtiaz, MS, Smith, DW, van Helden, DF. A theoretical model of slow wave regulation using voltage‐dependent synthesis of inositol 1,4,5‐trisphosphate. Biophys J 2002, 83:1877–1890.
Mazzone, A, Strege, PR, Tester, DJ, Bernard, CE, Faulkner, G, De Giorgio, R, Makielski, JC, Stanghellini, V, Gibbons, SJ, Ackerman, MJ, et al. A mutation in telethonin alters Nav1.5 function. J Biol Chem 2008, 283:16537–16544.
Jung, KT, Park, H, Kim, JH, Shin, DJ, Joung, BY, Lee, MH, Jang, YS. The relationship between gastric myoelectric activity and SCN5A mutation suggesting sodium channelopathy in patients with Brugada syndrome and functional dyspepsia—a pilot study. J Neurogastroenterol Motil 2012, 18:58–63.
Beyder, A, Rae, JL, Bernard, C, Strege, PR, Sachs, F, Farrugia, G. Mechanosensitivity of Nav1.5, a voltage‐sensitive sodium channel. J Physiol 2010, 588:4969–4985.
Poh, YC, Beyder, A, Strege, PR, Farrugia, G, Buist, ML. Quantification of gastrointestinal sodium channelopathy. J Theor Biol 2012, 293:41–48.
Du, P, Poh, Y, Lim, J, Gajendiran, V, O`Grady, G, Buist, M, Pullan, A, Cheng, L. A preliminary model of gastrointestinal electromechanical coupling. IEEE Trans Biomed Eng 2011, 58:3491–3495.
Sanders, KM. Regulation of smooth muscle excitation and contraction. Neurogastroenterol Motil 2008, 20: 39–53.
Hanani, M, Farrugia, G, Komuro, T. Intercellular coupling of interstitial cells of cajal in the digestive tract. Int Rev Cytol 2005, 242:249–282.
Komuro, T. Structure and organization of interstitial cells of Cajal in the gastrointestinal tract. J Physiol 2006, 576:653–658.
Thuneberg, L, Peters, S. Toward a concept of stretch‐coupling in smooth muscle. I. Anatomy of intestinal segmentation and sleeve contractions. Anat Rec 2001, 262:110–124.
Perc, M, Marhl, M. Local dissipation and coupling properties of cellular oscillators: a case study on calcium oscillations. Bioelectrochemistry 2004, 62:1–10.
Hirst, GD, Edwards, FR. Electrical events underlying organized myogenic contractions of the guinea pig stomach. J Physiol 2006, 576:659–665.
O`Grady, G, Du, P, Cheng, LK, Egbuji, JU, Lammers, WJ, Windsor, JA, Pullan, AJ. Origin and propagation of human gastric slow‐wave activity defined by high‐resolution mapping. Am J Physiol Gastrointest Liver Physiol 2010, 299:G585–G592.
Lammers, WJ, Ver Donck, L, Stephen, B, Smets, D, Schuurkes, JA. Focal activities and re‐entrant propagations as mechanisms of gastric tachyarrhythmias. Gastroenterology 2008, 135:1601–1611.
O`Grady, G, Du, P, Paskaranandavadivel, N, Angeli, TR, Lammers, WJ, Asirvatham, SJ, Windsor, JA, Farrugia, G, Pullan, AJ, Cheng, LK. Rapid high‐amplitude circumferential slow wave propagation during normal gastric pacemaking and dysrhythmias. Neurogastroenterol Motil 2012, 24:e299–e312.
Grover, M, Farrugia, G, Lurken, MS, Bernard, CE, Faussone‐Pellegrini, MS, Smyrk, TC, Parkman, HP, Abell, TL, Snape, WJ, Hasler, WL, et al. Cellular changes in diabetic and idiopathic gastroparesis. Gastroenterology 2011, 140:1575–1585, e1578.
Ordog, T. Interstitial cells of Cajal in diabetic gastroenteropathy. Neurogastroenterol Motil 2008, 20: 8–18.
Ordog, T, Takayama, I, Cheung, WK, Ward, SM, Sanders, KM. Remodeling of networks of interstitial cells of Cajal in a murine model of diabetic gastroparesis. Diabetes 2000, 49:1731–1739.
Gomez‐Pinilla, PJ, Gibbons, SJ, Sarr, MG, Kendrick, ML, Shen, KR, Cima, RR, Dozois, EJ, Larson, DW, Ordog, T, Pozo, MJ, et al. Changes in interstitial cells of Cajal with age in the human stomach and colon. Neurogastroenterol Motil 2011, 23:36–44.
Tharayil, VS, Wouters, MM, Stanich, JE, Roeder, JL, Lei, S, Beyder, A, Gomez‐Pinilla, PJ, Gershon, MD, Maroteaux, L, Gibbons, SJ, et al. Lack of serotonin 5‐HT2B receptor alters proliferation and network volume of interstitial cells of Cajal in vivo. Neurogastroenterol Motil 2010, 22: 462–469.
Gao, J, Du, P, Archer, R, O`Grady, G, Gibbons, SJ, Farrugia, G, Cheng, LK, Pullan, AJ. A stochastic multi‐scale model of electrical function in normal and depleted ICC networks. IEEE Trans Biomed Eng 2011, 58:3451–3455.
Du, P, O`Grady, G, Davidson, JB, Cheng, LK, Pullan, AJ. Multiscale modeling of gastrointestinal electrophysiology and experimental validation. Crit Rev Biomed Eng 2010, 38:225–254.
Buist, ML, Poh, YC. An extended bidomain framework incorporating multiple cell types. Biophys J 99:13–18.
Lee, HT, Hennig, GW, Fleming, NW, Keef, KD, Spencer, NJ, Ward, SM, Sanders, KM, Smith, TK. The mechanism and spread of pacemaker activity through myenteric interstitial cells of Cajal in human small intestine. Gastroenterology 2007, 132:1852–1865.
Szurszewski, JH, Farrugia, G. Carbon monoxide is an endogenous hyperpolarizing factor in the gastrointestinal tract. Neurogastroenterol Motil 2004, 16(suppl 1):81–85.
O`Grady, G, Egbuji, JU, Du, P, Lammers, WJ, Cheng, LK, Windsor, JA, Pullan, AJ. High‐resolution spatial analysis of slow wave initiation and conduction in porcine gastric dysrhythmia. Neurogastroenterol Motil 2011, 23: e345–e355.
Cheng, LK, Komuro, R, Austin, TM, Buist, ML, Pullan, AJ. Anatomically realistic multiscale models of normal and abnormal gastrointestinal electrical activity. World J Gastroenterol 2007, 13:1378–1383.
Du, P, O`Grady, G, Cheng, LK, Pullan, AJ. A multiscale model of the electrophysiological basis of the human electrogastrogram. Biophys J 2010, 99: 2784–2792.
Kim, JH, Bradshaw, LA, Pullan, AJ, Cheng, LK. Characterization of gastric electrical activity using magnetic field measurements: a simulation study. Ann Biomed Eng 2010, 38:177–186.
Kim, JH, Pullan, AJ, Cheng, LK. Reconstruction of multiple gastric electrical wave fronts using potential‐based inverse methods. Phys Med Biol 2012, 57:5205–5219.
Borovicka, J, Lehmann, R, Kunz, P, Fraser, R, Kreiss, C, Crelier, G, Boesiger, P, Spinas, GA, Fried, M, Schwizer, W. Evaluation of gastric emptying and motility in diabetic gastroparesis with magnetic resonance imaging: effects of cisapride. Am J Gastroenterol 1999, 94:2866–2873.
Lentle, RG, Janssen, PW. Physical characteristics of digesta and their influence on flow and mixing in the mammalian intestine: a review. J Comp Physiol B, Biochem, Systemic Environ Physiol 2008, 178:673–690.
Pal, A, Brasseur, JG, Abrahamsson, B. A stomach road or “Magenstrasse” for gastric emptying. J Biomech 2007, 40:1202–1210.
Ferrua, MJ, Singh, RP. Modeling the fluid dynamics in a human stomach to gain insight of food digestion. J Food sci 2010, 75:R151–R162.
Pal, A, Indireshkumar, K, Schwizer, W, Abrahamsson, B, Fried, M, Brasseur, JG. Gastric flow and mixing studied using computer simulation. Proc Biol Sci 2004, 271:2587–2594.
Du, P, O`Grady, G, Egbuji, JU, Lammers, WJ, Budgett, D, Nielsen, P, Windsor, JA, Pullan, AJ, Cheng, LK. High‐resolution mapping of in vivo gastrointestinal slow wave activity using flexible printed circuit board electrodes: methodology and validation. Ann Biomed Eng 2009, 37:839–846.
Parkman, HP, Hasler, WL, Barnett, JL, Eaker, EY. Electrogastrography: a document prepared by the gastric section of the American Motility Society Clinical GI Motility Testing Task Force. Neurogastroenterol Motil 2003, 15:89–102.
Kim, JH, Pullan, AJ, Bradshaw, LA, Cheng, LK. Influence of body parameters on gastric bioelectric and biomagnetic fields in a realistic volume conductor. Physiol Measure 2012, 33:545–556.
Smout, AJ, van der Schee, EJ, Grashuis, JL. What is measured in electrogastrography?. Dig Dis Sci 1980, 25:179–187.
Richards, WO, Bradshaw, LA, Staton, DJ, Garrard, CL, Liu, F, Buchanan, S, Wikswo, JP Jr. Magnetoenterography (MENG): noninvasive measurement of bioelectric activity in human small intestine. Dig Dis Sci 1996, 41:2293–2301.
Verhagen, MA, Van Schelven, LJ, Samsom, M, Smout, AJ. Pitfalls in the analysis of electrogastrographic recordings. Gastroenterology 1999, 117:453–460.
Babbs, CF. Optimizing electrode placement for hemodynamic benefit in cardiac resynchronization therapy. Pacing Clin Electrophysiol 2012, 35:1135–1145.
Bradley, CP, Pullan, AJ, Hunter, PJ. Effects of material properties and geometry on electrocardiographic forward simulations. Ann Biomed Eng 2000, 28:721–741.
Cheng, LK, Buist, ML, Richards, WO, Bradshaw, LA, Pullan, AJ. Noninvasive localization of gastric electrical activity. Int J Bioelectromagn 2005, 7:1–4.
Allescher, HD, Abraham‐Fuchs, K, Dunkel, RE, Classen, M. Biomagnetic 3‐dimensional spatial and temporal characterization of electrical activity of human stomach. Dig Dis Sci 1998, 43:683–693.
Pitt‐Francis, J, Bernabeu, MO, Cooper, J, Garny, A, Momtahan, L, Osborne, J, Pathmanathan, P, Rodriguez, B, Whiteley, JP, Gavaghan, DJ. Chaste: using agile programming techniques to develop computational biology software. Phil Trans Ser A, Math Phys Eng Sci 2008, 366:3111–3136.
Corrias, A, Pathmanathan, P, Gavaghan, DJ, Buist, ML. Modelling tissue electrophysiology with multiple cell types: applications of the extended bidomain framework. Integr Biol 2012, 4:192–201.
Blackett, SA, Bullivant, D, Stevens, C, Hunter, PJ. Open source software infrastructure for computational biology and visualization. IEEE Eng Med Biol Soc Conf 2005, 6:6079–6080.
Buist, M, Sands, G, Hunter, P, Pullan, A. A deformable finite element derived finite difference method for cardiac activation problems. Ann Biomed Eng 2003, 31:577–588.
Bradley, C, Bowery, A, Britten, R, Budelmann, V, Camara, O, Christie, R, Cookson, A, Frangi, AF, Gamage, TB, Heidlauf, T, et al. OpenCMISS: a multi‐physics %26 multi‐scale computational infrastructure for the VPH/Physiome project. Prog Biophys Mol Biol 2011, 107:32–47.
Chambers, JD, Bornstein, JC, Thomas, EA. Multiple neural oscillators and muscle feedback are required for the intestinal fed state motor program. PLOS One 2011, 6:e19597.
Koch, KL. The electrifying stomach. Neurogastroenterol Motil 2011, 23:815–818.
Faussone‐Pellegrini, MS, Grover, M, Pasricha, PJ, Bernard, CE, Lurken, MS, Smyrk, TC, Parkman, HP, Abell, TL, Snape, WJ, Hasler, WL, et al. Ultrastructural differences between diabetic and idiopathic gastroparesis. J Cell Mol Med 2012, 16:1573–1581.