Kitano, H. Systems biology: a brief overview. Science 2002, 295:1662–1664.

Aon, MA. From isolated to networked: a paradigmatic shift in mitochondrial physiology. Front Physiol 2010, 1:1–3.

Cortassa, S, Aon, MA, Iglesias, AA, Aon, JC, Lloyd, D. An Introduction to Metabolic and Cellular Engineering. 2nd ed. Singapore: World Scientific Publishers; 2012.

Kurz, FT, Aon, MA, O`Rourke, B, Armoundas, AA. Spatio‐temporal oscillations of individual mitochondria in cardiac myocytes reveal modulation of synchronized mitochondrial clusters. Proc Natl Acad Sci USA 2010, 107:14315–14320.

Kurz, FT, Derungs, T, Aon, MA, O`Rourke, B, Armoundas, AA. Mitochondrial networks in cardiac myocytes reveal dynamic coupling behavior. Biophys J 2015, 108:1922–1933.

Lloyd, D, Williams, CF. New tunes from the heart. Biophys J 2015, 108:1841–1842.

Hood, L, Tian, Q. Systems approaches to biology and disease enable translational systems medicine. Genomics Proteomics Bioinformatics 2012, 10:181–185.

Hutt, M‐T, Luttge, U, Thellier, M. Noise‐induced phenomena and complex rhythms: A test scenario for plant systems biology. In: Mancuso SaS, S, ed. Rhythms in Plants. Springer Cham Heidelberg New York Dordrecht London: Springer International Publishing Switzerland; 2015, 279–321.

Cho, C, Choi, SY, Luo, ZW, Lee, SY. Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering. Biotechnol Adv 2015, 33:1455–1466.

Cortassa, S, Caceres, V, Bell, LN, O`Rourke, B, Paolocci, N, Aon, MA. From metabolomics to fluxomics: a computational procedure to translate metabolite profiles into metabolic fluxes. Biophys J 2015, 108:163–172.

Fendt, SM, Maranas, CD. Editorial overview: systems biology: advances diseases understanding and metabolic engineering. Curr Opin Biotechnol 2015, 34:v–vi.

Jullesson, D, David, F, Pfleger, B, Nielsen, J. Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals. Biotechnol Adv 2015, 33:1395–1402.

Aon, MA, Cortassa, S. Systems biology of the fluxome. Processes 2015, 607‐618.

Erdos, P, Renyi, A. On the evolution of random graphs. Publ Math Inst Hung Acad Sci 1960, 5:17–61.

Barabasi, AL. Linked. New York: Plume; 2003.

Barabasi, AL. Scale‐free networks: a decade and beyond. Science 2009, 325:412–413.

Watts, DJ, Strogatz, SH. Collective dynamics of `small‐world` networks. Nature 1998, 393:440–442.

Aon, MA, Roussel, MR, Cortassa, S, O`Rourke, B, Murray, DB, Beckmann, M, Lloyd, D. The scale‐free dynamics of eukaryotic cells. PLoS One 2008, 3:e3624.

Strogatz, SH. Exploring complex networks. Nature 2001, 410:268–276.

Butts, CT. Revisiting the foundations of network analysis. Science 2009, 325:414–416.

Ehrenberg, M, Elf, J, Hohmann, S. Systems biology: nobel symposium 146. FEBS Lett 2009, 583:3881.

Hutt, M‐T, Luttge, U. Network dynamics in plant biology: current progress and perspectives. Prog Bot 2005, 66:277–310.

Wiley, DA, Strogatz, SH, Girvan, M. The size of the sync basin. Chaos 2006, 16:015103.

Aon, MA. Complex systems biology of networks: the riddle and the challenge. In: Aon, MA, Saks, V, Schlattner, U, eds. Systems Biology of Metabolic and Signaling Networks: Energy, Mass and Information Transfer. 1st ed. Heidelberg, New York, Dordrecht, London: Springer‐Verlag Berlin Heidelberg; 2013, 19–35.

Aon, MA, Cortassa, S, Lloyd, D. Chaos in biochemistry and physiology. In: Meyers, R, ed. Encyclopedia of Molecular Cell Biology and Molecular Medicine. Systems Biology Weinheim: Wiley‐VCH Verlag GmbH %26 Co. KGaA, Weinham; 2011.

Kembro, JM, Cortassa, S, Aon, MA. Complex oscillatory redox dynamics with signaling potential at the edge between normal and pathological mitochondrial function. Front Physiol 2014, 5:257.

Aon, MA, Saks, V, Schlattner, U, eds. Systems Biology of Metabolic and signaling Networks: Energy, Mass and Information Transfer. Berlin Heidelberg: Springer; 2014.

Gruning, NM, Lehrach, H, Ralser, M. Regulatory crosstalk of the metabolic network. Trends Biochem Sci 2010, 35:220–227.

Karlebach, G, Shamir, R. Modelling and analysis of gene regulatory networks. Nat Rev Mol Cell Biol 2008, 9:770–780.

Larhlimi, A, Blachon, S, Selbig, J, Nikoloski, Z. Robustness of metabolic networks: a review of existing definitions. Biosystems 2011, 106:1–8.

Rolland, T, Tasan, M, Charloteaux, B, Pevzner, SJ, Zhong, Q, Sahni, N, Yi, S, Lemmens, I, Fontanillo, C, Mosca, R, et al. A proteome‐scale map of the human interactome network. Cell 2014, 159:1212–1226.

Aon, MA, Stanley, BA, Sivakumaran, V, Kembro, JM, O`Rourke, B, Paolocci, N, Cortassa, S. Glutathione/thioredoxin systems modulate mitochondrial H_{2}O_{2} emission: an experimental‐computational study. J Gen Physiol 2012, 139:479–491.

Aon, MA, Cortassa, S. Mitochondrial network energetics in the heart. Wiley Interdiscip Rev Syst Biol Med 2012, 4:599–613.

Chrol‐Cannon, J, Jin, Y. Computational modeling of neural plasticity for self‐organization of neural networks. Biosystems 2014, 125:43–54.

Comin, CH, da Fontoura Costa, L. Shape, connectedness and dynamics in neuronal networks. J Neurosci Methods 2013, 220:100–115.

Osswald, M, Jung, E, Sahm, F, Solecki, G, Venkataramani, V, Blaes, J, Weil, S, Horstmann, H, Wiestler, B, Syed, M, et al. Brain tumour cells interconnect to a functional and resistant network. Nature 2015, 528:93–98.

Barabasi, AL, Oltvai, ZN. Network biology: understanding the cell`s functional organization. Nat Rev Genet 2004, 5:101–113.

Milo, R, Shen‐Orr, S, Itzkovitz, S, Kashtan, N, Chklovskii, D, Alon, U. Network motifs: simple building blocks of complex networks. Science 2002, 298:824–827.

Barrat, A, Barthelemy, M, Vespignani, A. Dynamical Processes on Complex Networks. Cambridge: Cambridge University Press; 2008.

Bandyopadhyay, S, Mehta, M, Kuo, D, Sung, MK, Chuang, R, Jaehnig, EJ, Bodenmiller, B, Licon, K, Copeland, W, Shales, M, et al. Rewiring of genetic networks in response to DNA damage. Science 2010, 330:1385–1389.

Chao, SY, Chiang, JH, Huang, AM, Chang, WS. An integrative approach to identifying cancer chemoresistance‐associated pathways. BMC Med Genomics 2011, 4:23.

Chuang, HY, Lee, E, Liu, YT, Lee, D, Ideker, T. Network‐based classification of breast cancer metastasis. Mol Syst Biol 2007, 3:140.

Gottlieb, A, Stein, GY, Ruppin, E, Sharan, R. PREDICT: a method for inferring novel drug indications with application to personalized medicine. Mol Syst Biol 2011, 7:496.

Gyurko, DM, Veres, DV, Modos, D, Lenti, K, Korcsmaros, T, Csermely, P. Adaptation and learning of molecular networks as a description of cancer development at the systems‐level: potential use in anti‐cancer therapies. Semin Cancer Biol 2013, 23:262–269.

Tuck, DP, Kluger, HM, Kluger, Y. Characterizing disease states from topological properties of transcriptional regulatory networks. BMC Bioinformatics 2006, 7:236.

Baitaluk, M, Sedova, M, Ray, A, Gupta, A. BiologicalNetworks: visualization and analysis tool for systems biology. Nucleic Acids Res 2006, 34:W466–W471.

Fukushima, A, Kanaya, S, Nishida, K. Integrated network analysis and effective tools in plant systems biology. Front Plant Sci 2014, 5:598.

Aon, MA, Cortassa, S, Akar, FG, O`Rourke, B. Mitochondrial criticality: a new concept at the turning point of life or death. Biochim Biophys Acta 1762, 2006:232–240.

Aon, MA, Cortassa, S, Marban, E, O`Rourke, B. Synchronized whole cell oscillations in mitochondrial metabolism triggered by a local release of reactive oxygen species in cardiac myocytes. J Biol Chem 2003, 278:44735–44744.

Aon, MA, Cortassa, S, O`Rourke, B. Percolation and criticality in a mitochondrial network. Proc Natl Acad Sci USA 2004, 101:4447–4452.

Aon, MA, Cortassa, S, O`Rourke, B. The fundamental organization of cardiac mitochondria as a network of coupled oscillators. Biophys J 2006, 91:4317–4327.

Aon, MA, Cortassa, S, Maack, C, O`Rourke, B. Sequential opening of mitochondrial ion channels as a function of glutathione redox thiol status. J Biol Chem 2007b, 282:21889–21900.

Kurz, FT, Aon, MA, O`Rourke, B, Armoundas, AA. Wavelet analysis reveals heterogeneous time‐dependent oscillations of individual mitochondria. Am J Physiol Heart Circ Physiol 2010, 299:H1736–H1740.

Kurz, FT, Aon, MA, O`Rourke, B, Armoundas, AA. Cardiac mitochondria exhibit dynamic functional clustering. Front Physiol 2014, 5:329.

Zhou, L, Aon, MA, Almas, T, Cortassa, S, Winslow, RL, O`Rourke, B. A reaction‐diffusion model of ROS‐induced ROS release in a mitochondrial network. PLoS Comput Biol 2010, 6:e1000657.

Zorov, DB, Filburn, CR, Klotz, LO, Zweier, JL, Sollott, SJ. Reactive oxygen species (ROS)‐induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J Exp Med 2000, 192:1001–1014.

Li, P, Yi, Z. Synchronization of Kuramoto oscillators in random complex networks. Physica A 2008, 387:1669–1674.

Neda, Z, Nikitin, A, Vicsek, T. Synchronization of two‐mode stochastic oscillators: a new model for rhythmic applause and much more. Physica A 2003, 321:238–247.

Lopaschuk, GD, Ussher, JR, Folmes, CD, Jaswal, JS, Stanley, WC. Myocardial fatty acid metabolism in health and disease. Physiol Rev 2010, 90:207–258.

Stanley, WC, Recchia, FA, Lopaschuk, GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 2005, 85:1093–1129.

Aon, MA, Tocchetti, CG, Bhatt, N, Paolocci, N, Cortassa, S. Protective mechanisms of mitochondria and heart function in diabetes. Antioxid Redox Signal 2015, 22:1563–1586.

Tocchetti, CG, Caceres, V, Stanley, BA, Xie, C, Shi, S, Watson, WH, O`Rourke, B, Spadari‐Bratfisch, RC, Cortassa, S, Akar, FG, et al. GSH or palmitate preserves mitochondrial energetic/redox balance, preventing mechanical dysfunction in metabolically challenged myocytes/hearts from type 2 diabetic mice. Diabetes 2012, 61:3094–3105.

Slodzinski, MK, Aon, MA, O`Rourke, B. Glutathione oxidation as a trigger of mitochondrial depolarization and oscillation in intact hearts. J Mol Cell Cardiol 2008, 45:650–660.

Romashko, DN, Marban, E, O`Rourke, B. Subcellular metabolic transients and mitochondrial redox waves in heart cells. Proc Natl Acad Sci USA 1998, 95:1618–1623.

Akar, FG, Aon, MA, Tomaselli, GF, O`Rourke, B. The mitochondrial origin of postischemic arrhythmias. J Clin Invest 2005, 115:3527–3535.

Aon, MA, Cortassa, S, Akar, FG, Brown, DA, Zhou, L, O`Rourke, B. From mitochondrial dynamics to arrhythmias. Int J Biochem Cell Biol 2009, 41:1940–1948.

Zhou, L, Solhjoo, S, Millare, B, Plank, G, Abraham, MR, Cortassa, S, Trayanova, N, O`Rourke, B. Effects of regional mitochondrial depolarization on electrical propagation: implications for arrhythmogenesis. Circ Arrhythm Electrophysiol 2014, 7:143–151.

Brandstatter, R. Encoding time of day and time of year by the avian circadian system. J Neuroendocrinol 2003, 15:398–404.

Goldberger, AL, Amaral, LA, Hausdorff, JM, Ivanov, P, Peng, CK, Stanley, HE. Fractal dynamics in physiology: alterations with disease and aging. Proc Natl Acad Sci USA 2002, 99(suppl 1):2466–2472.

Kembro, JM, Flesia, AG, Gleiser, RM, Perillo, MA, Marin, RH. Assessment of long‐range correlation in animal behavior time series: the temporal pattern of locomotor activity of Japanese quail (Cotumix cotumix) and mosquito larva (Culex quinquefasciatus). Physica A 2013, 392:6400–6413.

Seely, AJ, Macklem, PT. Complex systems and the technology of variability analysis. Crit Care 2004, 8:R367–R384.

Hu, K, Ivanov, PC, Chen, Z, Carpena, P, Stanley, HE. Effect of trends on detrended fluctuation analysis. Phys Rev E 2001, 64:011114–011119.

Refinetti, R. Non‐stationary time series and the robustness of circadian rhythms. J Theor Biol 2004, 227:571–581.

Kantelhard, JW, Koscielny‐Bunde, E, Rego, HHA, Havlin, S, Bunde, A. Detecting long‐range correlations with detrended fluctuation analysis. Physica A 2001, 295:441–454.

Mourao, M, Satin, L, Schnell, S. Optimal experimental design to estimate statistically significant periods of oscillations in time course data. PLoS One 2014, 9:e93826.

Refinetti, R. Laboratory instrumentation and computing: comparison of six methods for the determination of the period of circadian rhythms. Physiol Behav 1993, 54:869–875.

Edmunds, LNJ. Cellular and Molecular Bases of Biological Clocks: Models and Mechanisms for Circadian Timekeeping. New York: Springer; 1988.

Lloyd, D, Aon, MA, Cortassa, S. Rhythms, Clocks and Deterministic Chaos in Unicellular Organisms. Springer Cham Heidelberg New York Dordrecht London: Springer International Publishing Switzerland; 2015.

Kembro, JM, Aon, MA, Winslow, RL, O`Rourke, B, Cortassa, S. Integrating mitochondrial energetics, redox and ROS metabolic networks: a two‐compartment model. Biophys J 2013, 104:332–343.

Cortassa, S, Aon, MA, Winslow, RL, O`Rourke, B. A mitochondrial oscillator dependent on reactive oxygen species. Biophys J 2004, 87:2060–2073.

Cortassa, S, Aon, MA, Marban, E, Winslow, RL, O`Rourke, B. An integrated model of cardiac mitochondrial energy metabolism and calcium dynamics. Biophys J 2003, 84:2734–2755.

Kembro, JM, Cortassa, S, Aon, MA. Mitochondrial Reactive Oxygen Species (ROS) and arrhythmias. In: Laher, I, ed. Systems Biology of Free Radicals and Antioxidants. Berlin, Germany: Springer; 2014, 1047–1076.

Roussel, MR, Lloyd, D. Observation of a chaotic multioscillatory metabolic attractor by real‐time monitoring of a yeast continuous culture. FEBS J 2007, 274:1011–1018.

Golombek, DA, Bussi, IL, Agostino, PV. Minutes, days and years: molecular interactions among different scales of biological timing. Philos Trans R Soc Lond B Biol Sci 2014, 369:20120465.

Hildebrandt, G. Reactive modifications of the autonomous time structure in the human organism. J Physiol Pharmacol 1991, 42:5–27.

Bass, J, Takahashi, JS. Circadian integration of metabolism and energetics. Science 2010, 330:1349–1354.

Klevecz, RR, Bolen, J, Forrest, G, Murray, DB. A genomewide oscillation in transcription gates DNA replication and cell cycle. Proc Natl Acad Sci USA 2004, 101:1200–1205.

Lloyd, D, Murray, DB. Redox rhythmicity: clocks at the core of temporal coherence. Bioessays 2007, 29:465–473.

Murray, DB, Amariel, C, Sasidharan, K, Machne, R, Aon, MA, Lloyd, D. Temporal partitioning of the yeast cellular network. In: Aon, MA, Saks, V, Schlattner, U, eds. Systems Biology of Metabolic and Signaling Networks: Energy, Mass and Information Transfer. Heidelberg, New York, Dordrecht, London: Springer‐Verlag Berlin Heidelberg; 2013, 323–349.

Leise, TL, Harrington, ME. Wavelet‐based time series analysis of circadian rhythms. J Biol Rhythms 2011, 26:454–463.

Refinetti, R, Lissen, GC, Halberg, F. Procedures for numerical analysis of circadian rhythms. Biol Rhythm Res 2007, 38:275–325.

Percival, DB, Walden, AT. Wavelet Methods for Time Series Analysis. New York: Cambridge University Press; 2000.

Dowse, HB. Analyses for physiological and behavioral rhythmicity. Methods Enzymol 2009, 454:141–174.

Mandelbrot, BB. The Fractal Geometry of Nature. New York: W.H. Freeman; 1983.

Bassingthwaighte, JB, Liebovitch, LS, West, BJ. Fractal Physiology. New York: Oxford University Press for the American Physiological Society; 1994.

Feder, J. Fractals. New York: Plenum Press; 1988.

West, BJ. Fractal physiology and the fractional calculus: a perspective. Front Physiol 2010, 1:12.

Aon, MA, Cortassa, S. Chaotic dynamics, noise and fractal space in biochemistry. In: Meyers, R, ed. Encyclopedia of Complexity and Systems Science. New York: Springer; 2009.

Schroeder, M. Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise. New York: W.H. Freeman and Company; 1991.

Bola, M, Gall, C, Sabel, BA. Disturbed temporal dynamics of brain synchronization in vision loss. Cortex 2015, 67:134–146.

Trenberth, K. Persistence of daily geopotential heights over the southern hemisphere. Mon Weather Rev 1985, 113:38–53.

West, BJ. Physiology, Promiscuity and Prophecy at The Millennium: A Tale of Tails, vol. 7. Singapore: World Scientific; 1999.

Maraun, D, Rust, HW, Timmer, J. Tempting long‐memory—on the interpretation of DFA results. Nonlinear Process Geophys 2004, 11:495–503.

Ghosh, S, Manimaran, P, Panigrahi, PK. Characterizing multi‐scale self‐similar behavior and non‐statistical properties of fluctuations in financial time series. Physica A 2011, 390:4304–4316.

Pering, TD, Tamburello, G, McGonigle, AJS, Hanna, E, Aiuppa, A. Correlation of oscillatory behavior in Matlab using wavelets. Comput Geosci 2014, 70:206–212.

Lilly, JM, Olhede, SC. On the analytic wavelet transform. IEEE Trans Inf Theory 2010, 56:4135–4156.

Ivanov, PC, Rosenblum, MG, Peng, CK, Mietus, JE, Havlin, S, Stanley, HE, Goldberger, AL. Scaling and universality in heart rate variability distributions. Physica A 1998, 249:587–593.

Leise, TL. Wavelet analysis of circadian and ultradian behavioral rhythms. J Circadian Rhythms 2013, 11:5.

Sanderson, J, Fryzlewicz, P, Jones, MW. Estimating linear dependence between nonstationary time series using the locally stationary wavelet model. Biometrika 2010, 97:435–446.

Soucek, J, Dudok de Wit, T, Dunlop, M, D`ecreau, P. Local wavelet correlation: application to timing analysis of multi‐satellite CLUSTER data. Ann Geophys 2004, 22:4185–4196.

Maraun, D, Kurths, J, Holschneider, M. Nonstationary Gaussian processes in wavelet domain: synthesis, estimation, and significance testing. Phys Rev E 2007, 75:016707.

Pering, TD, Tamburello, G, McGonigle, AJS, Aiuppa, A, Cannata, A, Giudice, G, Patane, D. High time resolution fluctuations in volcanic carbon dioxide degassing from Mount Etna. J Volcanol Geotherm Res 2014b, 270:115–121.

Guzmán, DA, Pellegrini, S, Flesia, AG, Aon, MA, Marin, RH, Kembro, JM. High resolution, week‐long, locomotion time series from Japanese quail in a home‐box environment. Sci Data 2016, 3:160036.

Arneodo, A, d`Aubenton‐Carafa, Y, Bacry, E, Graves, PV, Muzy, JF, Thermes, C. Wavelet based fractal analysis of DNA sequences. Physica D 1996, 96:291–320.

Sekine, M, Tamura, T, Akay, M, Fujimoto, T, Togawa, T, Fukui, Y. Discrimination of walking patterns using wavelet‐based fractal analysis. IEEE Trans Neural Rehabil Eng 2002, 10:188–196.

Peng, CK, Buldyrev, SV, Havlin, S, Simons, M, Stanley, HE, Goldberger, AL. Mosaic organization of DNA nucleotides. Phys Rev E 1994, 49:1685–1689.

Kembro, JM, Guzman, DA, Pellegrin, S, Flesia, AG, Aon, MA, Marin, RH. High resolution distance ambulated time series in Japanese quail in a home‐cage environment over a 6.5 day period (ALL SERIES), Figshare 2015. Available at: https://dx.doi.org/10.6084/m9.figshare.1514983.v1.

Rutherford, KM, Haskell, M, Glasbey, C, Jones, RB, Lawrence, A. Detrended fluctuation analysis of behavioural responses to mild acute stressors in domestic hens. Appl Anim Behav Sci 2003, 83:125–139.

Douglass, JK, Wilkens, L, Pantazelou, E, Moss, F. Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance. Nature 1993, 365:337–340.

Gammaitoni, L, Hanggi, P, Jung, P, Marchesoni, F. Stochastic resonance. Rev Mod Phys 1998, 70:223–287.

Astumian, RD, Moss, F. Overview: the constructive role of noise in fluctuation driven transport and stochastic resonance. Chaos 1998, 8:533–538.

Moss, F, Ward, LM, Sannita, WG. Stochastic resonance and sensory information processing: a tutorial and review of application. Clin Neurophysiol 2004, 115:267–281.

Blake, WJ, Mads, KA, Cantor, CR, Collins, JJ. Noise in eukaryotic gene expression. Nature 2003, 422:633–637.

Kepler, TB, Elston, TC. Stochasticity in transcriptional regulation: origins, consequences, and mathematical representations. Biophys J 2001, 81:3116–3136.

Rosenfeld, S. Mathematical descriptions of biochemical networks: stability, stochasticity, evolution. Prog Biophys Mol Biol 2011, 106:400–409.

Aon, MA, Camara, AK. Mitochondria: hubs of cellular signaling, energetics and redox balance. A rich, vibrant, and diverse landscape of mitochondrial research. Front Physiol 2015, 6:94.

Picard, M, McManus, MJ, Csordas, G, Varnai, P, Dorn, GW 2nd, Williams, D, Hajnoczky, G, Wallace, DC. Trans‐mitochondrial coordination of cristae at regulated membrane junctions. Nat Commun 2015, 6:6259.

Bullmore, E, Sporns, O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 2009, 10:186–198.

Eguiluz, VM, Chialvo, DR, Cecchi, GA, Baliki, M, Apkarian, AV. Scale‐free brain functional networks. Phys Rev Lett 2005, 94:018102.

Fox, MD, Snyder, AZ, Vincent, JL, Corbetta, M, Van Essen, DC, Raichle, ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 2005, 102:9673–9678.

Greicius, MD, Krasnow, B, Reiss, AL, Menon, V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 2003, 100:253–258.

Percha, B, Dzakpasu, R, Zochowski, M, Parent, J. Transition from local to global phase synchrony in small world neural network and its possible implications for epilepsy. Phys Rev E 2005, 72:031909.

Siri, B, Quoy, M, Delord, B, Cessac, B, Berry, H. Effects of Hebbian learning on the dynamics and structure of random networks with inhibitory and excitatory neurons. J Physiol Paris 2007, 101:136–148.

Acebron, JA, Bonilla, LL, Vicente, P, Conrad, J, Ritort, F, Spigler, R. The Kuramoto model: a simple paradigm for synchronization phenomena. Rev Mod Phys 2005, 77:137–185.

Kuramoto, Y. Chemical Oscillations, Waves, and Turbulence. Berlin: Springer‐Verlag; 1984.

Rougemont, J, Naef, F. Collective synchronization in populations of globally coupled phase oscillators with drifting frequencies. Phys Rev E 2006, 73:011104.

Lago‐Fernandez, LF, Huerta, R, Corbacho, F, Siguenza, JA. Fast response and temporal coherent oscillations in small‐world networks. Phys Rev Lett 2000, 84:2758–2761.

Dorogovtsev, SN, Goltsev, AV, Mendes, JFF. Critical phenomena in complex networks. Rev Mod Phys 2008, 80:1275–1335.

Harenberg, S, Bello, G, Gjeltema, L, Ranshous, S, Harlalka, J, Seay, R, Padmanabhan, K, Samatova, N. Community detection in large‐scale networks: a survey and empirical evaluation. WIREs Comput Stat 2014, 6:426–439.

Lancichinetti, A, Fortunato, S. Community detection algorithms: a comparative analysis. Phys Rev E 2009, 80:056117.

Karrer, B, Newman, ME. Stochastic blockmodels and community structure in networks. Phys Rev E 2011, 83:016107.

Skardal, PS, Taylor, D, Sun, J. Optimal synchronization of complex networks. Phys Rev Lett 2014, 113:144101.

Siettos, C, Anastassopoulou, C, Russo, L, Grigoras, C, Mylonakis, E. Modeling the 2014 Ebola virus epidemic—agent‐based simulations, temporal analysis and future predictions for Liberia and Sierra Leone. PLoS Curr 2015, 7:1–22.

Pastor‐Satorras, R, Castellano, C, Van Mieghem, P, Vespignani, A. Epidemic processes in complex networks. Rev Mod Phys 2015, 87:925–979.

Albert, R, Jeong, H, Barabasi, AL. Error and attack tolerance of complex networks. Nature 2000, 406:378–382.

Alon, U. Network motifs: theory and experimental approaches. Nat Rev Genet 2007, 8:450–461.

Kantz, H, Schreiber, T. Nonlinear Time Series Analysis. New York: Cambridge University Press; 2005.

Williams, GP. Chaos Theory Tamed. Washington, DC: Joseph Henry Press; 2003.

Cortassa, S, Aon, MA, O`Rourke, B, Jacques, R, Tseng, HJ, Marban, E, Winslow, RL. A computational model integrating electrophysiology, contraction, and mitochondrial bioenergetics in the ventricular myocyte. Biophys J 2006, 91:1564–1589.

Zhou, L, Cortassa, S, Wei, AC, Aon, MA, Winslow, RL, O`Rourke, B. Modeling cardiac action potential shortening driven by oxidative stress‐induced mitochondrial oscillations in guinea pig cardiomyocytes. Biophys J 2009, 97:1843–1852.

Aon, MA, Cortassa, S. Dynamic Biological Organization: Fundamentals as Applied to Cellular Systems. London: Chapman %26 Hall; 1997.

Schuster, HG. Deterministic Chaos: An Introduction. Physik‐Verlag: Weinheim; 1988.

Stam, CJ. Nonlinear dynamical analysis of EEG and MEG: review of an emerging field. Clin Neurophysiol 2005, 116:2266–2301.

Grassberger, P, Procaccia, I. Measuring the strangeness of strange attractors. Physica D 1983, 9:189–208.

Strogatz, SH. Nonlinear Dynamics and Chaos. Cambridge, MA: Westview Press, Perseus Books Group; 2000.

Rapp, PE, Albano, AM, Schmah, TI, Farwell, LA. Filtered Noise can mimic low‐dimensional chaotic attractors. Phys Rev E 1993, 47:2289–2297.

Wallace, DC. Bioenergetics in human evolution and disease: implications for the origins of biological complexity and the missing genetic variation of common diseases. Philos Trans R Soc Lond B Biol Sci 2013, 368:20120267.

Lloyd, AL, Lloyd, D. Hypothesis: the central oscillator of the circadian clock is a controlled chaotic attractor. Biosystems 1993, 29:77–85.

Lloyd, AL, Lloyd, D. Chaos: its significance and detection in biology. Biol Rhythm Res 1995, 26:233–252.

Ott, E, Grebogi, C, Yorke, JA. Controlling chaos. Phys Rev Lett 1990, 64:1196–1199.

Pyragas, K. Continuous control of chaos by self‐controlling feedback. Phys Lett 1992, 170:421–428.

Murray, DB, Lloyd, D. A tuneable attractor underlies yeast respiratory dynamics. Biosystems 2007, 90:287–294.

Murray, DB, Beckmann, M, Kitano, H. Regulation of yeast oscillatory dynamics. Proc Natl Acad Sci USA 2007, 104:2241–2246.

Amariei, C, Machne, R, Sasidharan, K, Gottstein, W, Tomita, M, Lloyd, D, Murray, DB. The dynamics of cellular energetics during continuous yeast cultures. Conf Proc IEEE Eng Med Biol Soc 2013:2708–2711.

Sasidharan, K, Tomita, M, Aon, M, Lloyd, D, Murray, DB. Time‐structure of the yeast metabolism in vivo. Adv Exp Med Biol 2012, 736:359–379.

Yates, FE. Fractal applications in biology: scaling time in biochemical networks. Methods Enzymol 1992, 210:636–675.

Yates, FE. Outline of a physical theory of physiological systems. Can J Physiol Pharm 1982, 60:217–248.

Aon, MA, Cortassa, S, Lloyd, D. Chaotic dynamics and fractal space in biochemistry: simplicity underlies complexity. Cell Biol Int 2000, 24:581–587.

Lloyd, D, Aon, MA, Cortassa, S. Why homeodynamics, not homeostasis? ScientificWorldJournal 2001, 1:133–145.

Yates, EF. Self‐Organizing Systems: The Emergence of Order. New York: Plenum Press; 1987.

Bhatt, NM, Aon, MA, Tocchetti, CG, Shen, X, Dey, S, Ramirez‐Correa, G, O`Rourke, B, Gao, WD, Cortassa, S. Restoring redox balance enhances contractility in heart trabeculae from type 2 diabetic rats exposed to high glucose. Am J Physiol Heart Circ Physiol 2015, 308:H291–H302.

Lloyd, D, Cortassa, S, O`Rourke, B, Aon, MA. What yeast and cardiomyocytes share: ultradian oscillatory redox mechanisms of cellular coherence and survival. Integr Biol (Camb) 2012, 4:65–74.

Cortassa, S, Aon, JC, Aon, MA. Fluxes of carbon, phosphorylation, and redox intermediates during growth of saccharomyces cerevisiae on different carbon sources. Biotechnol Bioeng 1995, 47:193–208.

Edwards, JS, Ibarra, RU, Palsson, BO. In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat Biotechnol 2001, 19:125–130.

Fell, DA, Small, JR. Fat synthesis in adipose tissue. An examination of stoichiometric constraints. Biochem J 1986, 238:781–786.

Savinell, JM, Palsson, BO. Optimal selection of metabolic fluxes for in vivo measurement. II. Application to Escherichia coli and hybridoma cell metabolism. J Theor Biol 1992, 155:215–242.

Cortassa, S, Aon, MA. Computational modeling of mitochondrial function. Methods Mol Biol 2012, 810:311–326.

Dhooge, A, Govaerts, W, Kuznetsov, YA, Meijer, HGE, Sautois, B. New features of the software MATCONT for bifurcation analysis of dynamical systems. Math Comput Model Dyn 2008, 14:147–175.

Kembro, JM, Aon, MA, Winslow, RL, O`Rourke, B, Cortassa, S. Integrating mitochondrial energetics, redox and ROS metabolic networks: a two‐compartment model. Biophys J 2013, 104:332–343.

Cortassa, S, O`Rourke, B, Winslow, RL, Aon, MA. Control and regulation of mitochondrial energetics in an integrated model of cardiomyocyte function. Biophys J 2009, 96:2466–2478.

Fell, DA. Understanding the Control of Metabolism. London: Portland Press; 1996.

Cortassa, S, O`Rourke, B, Winslow, RL, Aon, MA. Control and regulation of integrated mitochondrial function in metabolic and transport networks. Int J Mol Sci 2009, 10:1500–1513.

Reder, C. Metabolic control theory: a structural approach. J Theor Biol 1988, 135:175–201.

Barrow, JD. Impossibility: The Limits of Science and the Science of Limits. London: Vintage; 1999.

Abarbanel, HDI. Analysis of Observed Chaotic Data. New York: Springer‐Verlag; 1996.

Strogatz, SH. Nonlinear Dynamics and Chaos. With Applications to Physics, Biology, Chemistry, and Engineering. New York: Springer‐Verlag; 1994.

Brenner, S. Sequences and consequences. Philos Trans R Soc Lond B Biol Sci 2010, 365:207–212.

Kirk, PD, Babtie, AC, Stumpf, MP. Systems biology (un)certainties. Science 2015, 350:386–388.

de Domenico, M, Porter, MA, Arenas, A. MuxViz: a tool for multilayer analysis and visualization of networks. J Complex Networks 2014, 3:159–176.

Kivela, M, Arenas, A, Barthelemy, M, Gleeson, JP, Moreno, Y, Porter, MA. Multilayer networks. J Complex Networks 2014, 2:203–271.

Boccaletti, S, Bianconi, G, Criado, R, del Genio, CI, Gomez‐Gardenes, J, Romance, M, Sendina‐Nadal, I, Wang, Z, Zanin, M. The structure and dynamics of multilayer networks. Phys Rep 2014, 544:1–122.

Cortassa, S, Aon, MA. Dynamics of mitochondrial redox and energy networks: insights from an experimental‐computational synergy. In: Aon, MA, Saks, V, Schlattner, U, eds. Systems Biology of Metabolic and Signaling Networks: Energy, Mass and Information Transfer. 1st ed. Heidelberg, New York, Dordrecht, London: Springer‐Verlag Berlin Heidelberg; 2013, 115–144.

Tarantola, A. Popper, Bayes and the inverse problem. Nat Phys 2006, 2:492–494.

Shou, W, Bergstrom, CT, Chakraborty, AK, Skinner, FK. Theory, models and biology. eLife 2015, 4:e07158.