Rinkel, GJ, Djibuti, M, Algra, A, Van Gijn, J. Prevalence and risk of rupture of intracranial aneurysms a systematic review. Stroke 1998, 29:251–256.
Krings, T, Mandell, DM, Kiehl, T‐R, Geibprasert, S, Tymianski, M, Alvarez, H, Hans, F‐J. Intracranial aneurysms: from vessel wall pathology to therapeutic approach. Nat Rev Neurol 2011, 7:547–559.
Gabriel, RA, Kim, H, Sidney, S, McCulloch, CE, Singh, V, Johnston, SC, Ko, NU, Achrol, AS, Zaroff, JG, Young, WL. Ten‐year detection rate of brain arteriovenous malformations in a large, multiethnic, defined population. Stroke 2010, 41:21–26.
Bederson, JB, Awad, IA, Wiebers, DO, Piepgras, D, Haley, EC, Brott, T, Hademenos, G, Chyatte, D, Rosenwasser, R, Caroselli, C. Recommendations for the management of patients with unruptured intracranial aneurysms: a statement for healthcare professionals from the stroke council of the American Heart Association. Circulation 2000, 102:2300–2308.
Steiner, T, Juvela, S, Unterberg, A, Jung, C, Forsting, M, Rinkel, G. European Stroke Organization guidelines for the management of intracranial aneurysms and subarachnoid haemorrhage. Cerebrovasc Dis 2013, 35:93–112.
Chang, H‐H, Duckwiler, GR, Valentino, DJ, Chu, WC. Computer‐assisted extraction of intracranial aneurysms on 3D rotational angiograms for computational fluid dynamics modeling. Med Phys 2009, 36:5612–5621.
Firouzian, A, Manniesing, R, Flach, ZH, Risselada, R, van Kooten, F, Sturkenboom, MC, van der Lugt, A, Niessen, WJ. Intracranial aneurysm segmentation in 3D CT angiography: method and quantitative validation with and without prior noise filtering. Eur J Radiol 2011, 79:299–304.
Hernandez, M, Frangi, AF. Non‐parametric geodesic active regions: method and evaluation for cerebral aneurysms segmentation in 3DRA and CTA. Med Image Anal 2007, 11:224–241.
Bouillot, P, Brina, O, Ouared, R, Yilmaz, H, Farhat, M, Erceg, G, Lovblad, K‐O, Vargas, MI, Kulcsar, Z, Pereira, VM. Geometrical deployment for braided stent. Med Image Anal 2016, 30:85–94.
Larrabide, I, Kim, M, Augsburger, L, Villa‐Uriol, MC, Rüfenacht, D, Frangi, AF. Fast virtual deployment of self‐expandable stents: method and in vitro evaluation for intracranial aneurysmal stenting. Med Image Anal 2012, 16:721–730.
Ma, D, Dargush, GF, Natarajan, SK, Levy, EI, Siddiqui, AH, Meng, H. Computer modeling of deployment and mechanical expansion of neurovascular flow diverter in patient‐specific intracranial aneurysms. J Biomech 2012, 45:2256–2263.
Morales, HG, Larrabide, I, Aguilar, ML, Geers, AJ, Macho, JM, San Roman, L, Frangi, AF. Comparison of two techniques of endovascular coil modeling in cerebral aneurysms using CFD. In: ISBI. Barcelona, Spain: IEEE; 2012, 1216–1219.
Cebral, JR, Castro, MA, Appanaboyina, S, Putman, CM, Millan, D, Frangi, AF. Efficient pipeline for image‐based patient‐specific analysis of cerebral aneurysm hemodynamics: technique and sensitivity. IEEE Trans Med Imaging 2005, 24:457–467.
Villa‐Uriol, M, Larrabide, I, Pozo, J, Kim, M, De Craene, M, Camara, O, Zhang, C, Geers, A, Bogunović, H, Morales, H. Cerebral aneurysms: a patient‐specific and image‐based management pipeline. In: Tavares JMRS, Natal Jorge RM, eds. Computational Vision and Medical Image Processing. Netherlands: Springer; 2011, 327–349.
Villa‐Uriol, M‐C, Larrabide, I, Pozo, J, Kim, M, Camara, O, De Craene, M, Zhang, C, Geers, A, Morales, H, Bogunović, H. Toward integrated management of cerebral aneurysms. Philos Trans R Soc A 2010, 368:2961–2982.
Walcott, BP, Reinshagen, C, Stapleton, CJ, Choudhri, O, Rayz, V, Saloner, D, Lawton, MT. Predictive modeling and in vivo assessment of cerebral blood flow in the management of complex cerebral aneurysms. J Cereb Blood Flow Metab 2016, 36:998–1003.
Bhogal, P, Pérez, MA, Ganslandt, O, Bäzner, H, Henkes, H, Fischer, S. Treatment of posterior circulation non‐saccular aneurysms with flow diverters: a single‐center experience and review of 56 patients. J Neurointerv Surg (Epub ahead of print; November 11, 2016). doi:10.1136/neurintsurg‐2016‐012781.
Shapiro, M, Becske, T, Riina, HA, Raz, E, Zumofen, D, Nelson, PK. Non‐saccular vertebrobasilar aneurysms and dolichoectasia: a systematic literature review. J Neurointerv Surg 2014, 6:389–393.
Iosif, C, Ponsonnard, S, Roussie, A, Saleme, S, Carles, P, Ponomarjova, S, Pedrolo‐Silveira, E, Mendes, G, Waihrich, E, Couquet, C. Jailed artery ostia modifications after flow‐diverting stent deployment at arterial bifurcations: a scanning electron microscopy translational study. Neurosurgery 2016, 79:473–480.
Meng, H, Tutino, V, Xiang, J, Siddiqui, A. High WSS or low WSS? Complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: toward a unifying hypothesis. Am J Neuroradiol 2014, 35:1254–1262.
Kulcsár, Z, Houdart, E, Bonafe, A, Parker, G, Millar, J, Goddard, A, Renowden, S, Gál, G, Turowski, B, Mitchell, K. Intra‐aneurysmal thrombosis as a possible cause of delayed aneurysm rupture after flow‐diversion treatment. Am J Neuroradiol 2011, 32:20–25.
Xiang, J, Ma, D, Snyder, KV, Levy, EI, Siddiqui, AH, Meng, H. Increasing flow diversion for cerebral aneurysm treatment using a single flow diverter. Neurosurgery 2014, 75:286–294.
de Sousa, DR, Vallecilla, C, Chodzynski, K, Jerez, RC, Malaspinas, O, Eker, OF, Ouared, R, Vanhamme, L, Legrand, A, Chopard, B. Determination of a shear rate threshold for thrombus formation in intracranial aneurysms. J Neurointerv Surg 2015, 8:853–858.
Ouared, R, Chopard, B, Stahl, B, Rüfenacht, DA, Yilmaz, H, Courbebaisse, G. Thrombosis modeling in intracranial aneurysms: a lattice Boltzmann numerical algorithm. Comput Phys Commun 2008, 179:128–131.
Rayz, V, Boussel, L, Lawton, M, Acevedo‐Bolton, G, Ge, L, Young, W, Higashida, R, Saloner, D. Numerical modeling of the flow in intracranial aneurysms: prediction of regions prone to thrombus formation. Ann Biomed Eng 2008, 36:1793–1804.
Bedekar, A, Pant, K, Ventikos, Y, Sundaram, S. A computational model combining vascular biology and haemodynamics for thrombosis prediction in anatomically accurate cerebral aneurysms. Food Bioprod Process 2005, 83:118–126.
Ngoepe, M, Ventikos, Y. Computational modelling of clot development in patient‐specific cerebral aneurysm cases. J Thromb Haemost 2016, 14:262–272.
Kallmes, DF. Point: CFD—computational fluid dynamics or confounding factor dissemination. Am J Neuroradiol 2012, 33:395–396.
Borenstein, M, Hedges, LV, Higgins, J, Rothstein, HR. Introduction to Meta‐Analysis. Hoboken, NJ: John Wiley & Sons, Ltd; 2009, 1–421. doi:10.1002/9780470743386.
Chappell, ET, Moure, FC, Good, MC. Comparison of computed tomographic angiography with digital subtraction angiography in the diagnosis of cerebral aneurysms: a meta‐analysis. Neurosurgery 2003, 52:624–631.
Sailer, AM, Wagemans, BA, Nelemans, PJ, de Graaf, R, van Zwam, WH. Diagnosing intracranial aneurysms with MR angiography systematic review and meta‐analysis. Stroke 2014, 45:119–126.
van Rooij, WJ, Sprengers, M, de Gast, AN, Peluso, J, Sluzewski, M. 3D rotational angiography: the new gold standard in the detection of additional intracranial aneurysms. Am J Neuroradiol 2008, 29:976–979.
Piotin, M, Gailloud, P, Bidaut, L, Mandai, S, Muster, M, Moret, J, Rüfenacht, D. CT angiography, MR angiography and rotational digital subtraction angiography for volumetric assessment of intracranial aneurysms. An experimental study. Neuroradiology 2003, 45:404–409.
Ramachandran, M, Retarekar, R, Harbaugh, RE, Hasan, D, Policeni, B, Rosenwasser, R, Ogilvy, C, Raghavan, ML. Sensitivity of quantified intracranial aneurysm geometry to imaging modality. Cardiovasc Eng Technol 2013, 4:75–86.
Anxionnat, R, Bracard, S, Ducrocq, X, Trousset, Y, Launay, L, Kerrien, E, Braun, M, Vaillant, R, Scomazzoni, F, Lebedinsky, A. Intracranial aneurysms: clinical value of 3D digital subtraction angiography in the therapeutic decision and endovascular treatment. Radiology 2001, 218:799–808.
Missler, U, Hundt, C, Wiesmann, M, Mayer, T, Brückmann, H. Three‐dimensional reconstructed rotational digital subtraction angiography in planning treatment of intracranial aneurysms. Eur Radiol 2000, 10:564–568.
Tanoue, S, Kiyosue, H, Kenai, H, Nakamura, T, Yamashita, M, Mori, H. Three‐dimensional reconstructed images after rotational angiography in the evaluation of intracranial aneurysms: surgical correlation. Neurosurgery 2000, 47:866–871.
Castro, MA, Putman, CM, Cebral, JR. Patient‐specific computational modeling of cerebral aneurysms with multiple avenues of flow from 3D rotational angiography images. Acad Radiol 2006, 13:811–821.
Geers, A, Larrabide, I, Radaelli, AG, Bogunovic, H, Kim, M, van Andel, HG, Majoie, C, VanBavel, E, Frangi, A. Patient‐specific computational hemodynamics of intracranial aneurysms from 3D rotational angiography and CT angiography: an in vivo reproducibility study. Am J Neuroradiol 2011, 32:581–586.
Bogunović, H, Pozo, JM, Villa‐Uriol, MC, Majoie, CB, van den Berg, R, van Andel, HAG, Macho, JM, Blasco, J, San Román, L, Frangi, AF. Automated segmentation of cerebral vasculature with aneurysms in 3DRA and TOF‐MRA using geodesic active regions: an evaluation study. Med Phys 2011, 38:210–222.
Steinman, DA, Milner, JS, Norley, CJ, Lownie, SP, Holdsworth, DW. Image‐based computational simulation of flow dynamics in a giant intracranial aneurysm. Am J Neuroradiol 2003, 24:559–566.
Sen, Y, Qian, Y, Zhang, Y, Morgan, M. A comparison of medical image segmentation methods for cerebral aneurysm computational hemodynamics. In: 2011 4th International Conference on Biomedical Engineering and Informatics (BMEI), Shanghai, China, 15–17 October, 2011, pp. 901–904.
Castro, M, Putman, C, Cebral, J. Computational fluid dynamics modeling of intracranial aneurysms: effects of parent artery segmentation on intra‐aneurysmal hemodynamics. Am J Neuroradiol 2006, 27:1703–1709.
Gambaruto, AM, Janela, J, Moura, A, Sequeira, A. Sensitivity of hemodynamics in a patient specific cerebral aneurysm to vascular geometry and blood rheology. Math Biosci Eng 2011, 8:409–423.
Geers, AJ, Larrabide, I, Radaelli, A, Bogunovic, H, Van Andel, H, Majoie, C, Frangi, AF. Reproducibility of image‐based computational hemodynamics in intracranial aneurysms: comparison of CTA and 3DRA. In: IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2009. ISBI `09, Boston, MA, 28 June 1 July 2009, pp. 610–613.
Spiegel, M, Redel, T, Zhang, Y, Struffert, T, Hornegger, J, Grossman, RG, Doerfler, A, Karmonik, C. Tetrahedral and polyhedral mesh evaluation for cerebral hemodynamic simulation–a comparison. Conf Proc IEEE Eng Med Biol Soc 2009, 2009:2787–2790. doi: 10.1109/IEMBS.2009.5333829.
Taylor, CA, Steinman, DA. Image‐based modeling of blood flow and vessel wall dynamics: applications, methods and future directions. Ann Biomed Eng 2010, 38:1188–1203.
Janiga, G, Berg, P, Beuing, O, Neugebauer, M, Gasteiger, R, Preim, B, Rose, G, Skalej, M, Thévenin, D. Recommendations for accurate numerical blood flow simulations of stented intracranial aneurysms. Biomed Tech (Berl) 2013, 58:303–314.
Hodis, S, Uthamaraj, S, Smith, AL, Dennis, KD, Kallmes, DF, Dragomir‐Daescu, D. Grid convergence errors in hemodynamic solution of patient‐specific cerebral aneurysms. J Biomech 2012, 45:2907–2913.
Stuhne, GR, Steinman, DA. Finite‐element modeling of the hemodynamics of stented aneurysms. J Biomech Eng 2004, 126:382–387.
Larrabide, I, Geers, AJ, Morales, HG, Bijlenga, P, Rüfenacht, DA. Change in aneurysmal flow pulsatility after flow diverter treatment. Comput Med Imag Grap 2016, 50:2–8.
Janiga, G, Rössl, C, Skalej, M, Thévenin, D. Realistic virtual intracranial stenting and computational fluid dynamics for treatment analysis. J Biomech 2013, 46:7–12.
Löhner, R. Applied Computational Fluid Dynamics Techniques: An Introduction Based on Finite Element Methods. West Sussex, England: John Wiley %26 Sons; 2008.
Cebral, JR, Lohner, R. Efficient simulation of blood flow past complex endovascular devices using an adaptive embedding technique. IEEE Trans Med Imaging 2005, 24:468–476.
Appanaboyina, S, Mut, F, Löhner, R, Putman, C, Cebral, J. Computational fluid dynamics of stented intracranial aneurysms using adaptive embedded unstructured grids. Int J Numer Meth Fl 2008, 57:475–493.
Ford, MD, Alperin, N, Lee, SH, Holdsworth, DW, Steinman, DA. Characterization of volumetric flow rate waveforms in the normal internal carotid and vertebral arteries. Physiol Meas 2005, 26:477.
Gwilliam, MN, Hoggard, N, Capener, D, Singh, P, Marzo, A, Verma, PK, Wilkinson, ID. MR derived volumetric flow rate waveforms at locations within the common carotid, internal carotid, and basilar arteries. J Cereb Blood Flow Metab 2009, 29:1975–1982.
Hoi, Y, Wasserman, BA, Xie, YJ, Najjar, SS, Ferruci, L, Lakatta, EG, Gerstenblith, G, Steinman, DA. Characterization of volumetric flow rate waveforms at the carotid bifurcations of older adults. Physiol Meas 2010, 31:291.
Nichols, W, O`Rourke, M, Vlachopoulos, C. McDonald`s Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles. Boca Raton, FL: CRC Press; 2011.
Shi, Y, Lawford, P, Hose, R. Review of zero‐D and 1‐D models of blood flow in the cardiovascular system. Biomed Eng Online 2011, 10:33.
Grinberg, L, Karniadakis, GE. Outflow boundary conditions for arterial networks with multiple outlets. Ann Biomed Eng 2008, 36:1496–1514.
Olufsen, MS, Nadim, A, Lipsitz, LA. Dynamics of cerebral blood flow regulation explained using a lumped parameter model. Am J Physiol Reg I 2002, 282:R611–R622.
Formaggia, L, Lamponi, D, Quarteroni, A. One‐dimensional models for blood flow in arteries. J Eng Math 2003, 47:251–276.
Reymond, P, Bohraus, Y, Perren, F, Lazeyras, F, Stergiopulos, N. Validation of a patient‐specific one‐dimensional model of the systemic arterial tree. Am J Physiol Heart C 2011, 301:H1173–H1182.
Reymond, P, Merenda, F, Perren, F, Rüfenacht, D, Stergiopulos, N. Validation of a one‐dimensional model of the systemic arterial tree. Am J Physiol Heart C 2009, 297:H208–H222.
Blanco, P, Feijóo, R, Urquiza, S. A unified variational approach for coupling 3D–1D models and its blood flow applications. Comput Meth Appl M 2007, 196:4391–4410.
Dempere‐Marco, L, Oubel, E, Castro, M, Putman, C, Frangi, A, Cebral, J. CFD analysis incorporating the influence of wall motion: application to intracranial aneurysms. In: Larsen R, Nielsen M, Sporring J, eds. Medical Image Computing and Computer‐Assisted Intervention ‐ MICCAI 2006. Lecture Notes in Computer Science, vol 4191. Berlin, Heidelberg: Springer; 2006, 438–445.
Torii, R, Oshima, M, Kobayashi, T, Takagi, K, Tezduyar, TE. Fluid–structure interaction modeling of aneurysmal conditions with high and normal blood pressures. Comput Mech 2006, 38:482–490.
Torii, R, Oshima, M, Kobayashi, T, Takagi, K, Tezduyar, TE. Fluid–structure interaction modeling of a patient‐specific cerebral aneurysm: influence of structural modeling. Comput Mech 2008, 43:151–159.
Radaelli, A, Augsburger, L, Cebral, J, Ohta, M, Rüfenacht, D, Balossino, R, Benndorf, G, Hose, D, Marzo, A, Metcalfe, R. Reproducibility of haemodynamical simulations in a subject‐specific stented aneurysm model—a report on the Virtual Intracranial Stenting Challenge 2007. J Biomech 2008, 41:2069–2081.
Steinman, DA, Hoi, Y, Fahy, P, Morris, L, Walsh, MT, Aristokleous, N, Anayiotos, AS, Papaharilaou, Y, Arzani, A, Shadden, SC, et al. Variability of computational fluid dynamics solutions for pressure and flow in a giant aneurysm: the ASME 2012 Summer Bioengineering Conference CFD Challenge. J Biomech Eng 2013, 135:021016.
Martin, DG, Ferguson, EW, Wigutoff, S, Gawne, T, Schoomaker, EB. Blood viscosity responses to maximal exercise in endurance‐trained and sedentary female subjects. J Appl Physiol 1985, 59:348–353.
Kool, MJ, Hoeks, AP, Boudier, HAS, Reneman, RS, Van Bortel, LM. Short and long‐term effects of smoking on arterial wall properties in habitual smokers. J Am Coll Cardiol 1993, 22:1881–1886.
Bernsdorf, J, Wang, D. Non‐Newtonian blood flow simulation in cerebral aneurysms. Comput Math Appl 2009, 58:1024–1029.
Valencia, A, Zarate, A, Galvez, M, Badilla, L. Non‐Newtonian blood flow dynamics in a right internal carotid artery with a saccular aneurysm. Int J Numer Meth Fl 2006, 50:751–764.
Xiang, J, Tremmel, M, Kolega, J, Levy, EI, Natarajan, SK, Meng, H. Newtonian viscosity model could overestimate wall shear stress in intracranial aneurysm domes and underestimate rupture risk. J Neurointerv Surg 2011, 4:351–357.
Mazumdar, J. Biofluid Mechanics. Singapore: World Scientific; 2015.
Castro, MA, Olivares, MCA, Putman, CM, Cebral, JR. Unsteady wall shear stress analysis from image‐based computational fluid dynamic aneurysm models under Newtonian and Casson rheological models. Med Biol Eng Comput 2014, 52:827–839.
Fisher, C, Rossmann, JS. Effect of non‐Newtonian behavior on hemodynamics of cerebral aneurysms. J Biomech Eng 2009, 131:091004.
Morales, HG, Larrabide, I, Geers, AJ, Aguilar, ML, Frangi, AF. Newtonian and non‐Newtonian blood flow in coiled cerebral aneurysms. J Biomech 2013, 46:2158–2164.
Huang, C, Chai, Z, Shi, B. Non‐newtonian effect on hemodynamic characteristics of blood flow in stented cerebral aneurysm. Commun Comput Phys 2013, 13:916–928.
Cavazzuti, M, Atherton, M, Collins, M, Barozzi, G. Beyond the virtual intracranial stenting challenge 2007: non‐Newtonian and flow pulsatility effects. J Biomech 2010, 43:2645–2647.
Cavazzuti, M, Atherton, M, Collins, M, Barozzi, G. Non‐Newtonian and flow pulsatility effects in simulation models of a stented intracranial aneurysm. Proc Inst Mech Eng H 2011, 225:597–609.
Morales, HG, Bonnefous, O. Unraveling the relationship between arterial flow and intra‐aneurysmal hemodynamics. J Biomech 2015, 48:585–591.
Cohen, J. A power primer. Psychol Bull 1992, 112:155–159.
Jansen, I, Schneiders, J, Potters, W, van Ooij, P, van den Berg, R, van Bavel, E, Marquering, H, Majoie, C. Generalized versus patient‐specific inflow boundary conditions in computational fluid dynamics simulations of cerebral aneurysmal hemodynamics. Am J Neuroradiol 2014, 35:1543–1548.
Marzo, A, Singh, P, Larrabide, I, Radaelli, A, Coley, S, Gwilliam, M, Wilkinson, ID, Lawford, P, Reymond, P, Patel, U. Computational hemodynamics in cerebral aneurysms: the effects of modeled versus measured boundary conditions. Ann Biomed Eng 2011, 39:884–896.
McGah, PM, Levitt, MR, Barbour, MC, Morton, RP, Nerva, JD, Mourad, PD, Ghodke, BV, Hallam, DK, Sekhar, LN, Kim, LJ. Accuracy of computational cerebral aneurysm hemodynamics using patient‐specific endovascular measurements. Ann Biomed Eng 2014, 42:503–514.
Karmonik, C, Yen, C, Diaz, O, Klucznik, R, Grossman, RG, Benndorf, G. Temporal variations of wall shear stress parameters in intracranial aneurysms—importance of patient‐specific inflow waveforms for CFD calculations. Acta Neurochir (Wien) 2010, 152:1391–1398.
Bowker, T, Watton, P, Summers, P, Byrne, J, Ventikos, Y. Rest versus exercise hemodynamics for middle cerebral artery aneurysms: a computational study. Am J Neuroradiol 2010, 31:317–323.
Geers, A, Larrabide, I, Morales, H, Frangi, A. Approximating hemodynamics of cerebral aneurysms with steady flow simulations. J Biomech 2014, 47:178–185.
Xiang, J, Siddiqui, A, Meng, H. The effect of inlet waveforms on computational hemodynamics of patient‐specific intracranial aneurysms. J Biomech 2014, 47:3882–3890.
Sarrami‐Foroushani, A, Lassila, T, Gooya, A, Geers, AJ, Frangi, AF. Uncertainty quantification of wall shear stress in intracranial aneurysms using a data‐driven statistical model of systemic blood flow variability. J Biomech 2016, 49:3815–3823.
Valen‐Sendstad, K, Piccinelli, M, KrishnankuttyRema, R, Steinman, DA. Estimation of inlet flow rates for image‐based aneurysm CFD models: where and how to begin? Ann Biomed Eng 2015, 43:1422–1431.
Pereira, V, Brina, O, Gonzales, AM, Narata, A, Bijlenga, P, Schaller, K, Lovblad, K, Ouared, R. Evaluation of the influence of inlet boundary conditions on computational fluid dynamics for intracranial aneurysms: a virtual experiment. J Biomech 2013, 46:1531–1539.
Hodis, S, Kargar, S, Kallmes, DF, Dragomir‐Daescu, D. Artery length sensitivity in patient‐specific cerebral aneurysm simulations. Am J Neuroradiol 2015, 36:737–743.
Van Ooij, P, Schneiders, J, Marquering, H, Majoie, C, van Bavel, E, Nederveen, A. 3D cine phase‐contrast MRI at 3T in intracranial aneurysms compared with patient‐specific computational fluid dynamics. Am J Neuroradiol 2013, 34:1785–1791.
Humphrey, J, Taylor, C. Intracranial and abdominal aortic aneurysms: similarities, differences, and need for a new class of computational models. Annu Rev Biomed Eng 2008, 10:221.
Torii, R, Oshima, M, Kobayashi, T, Takagi, K, Tezduyar, TE. Fluid–structure interaction modeling of blood flow and cerebral aneurysm: significance of artery and aneurysm shapes. Comput Method Appl M 2009, 198:3613–3621.
Takizawa, K, Brummer, T, Tezduyar, TE, Chen, PR. A comparative study based on patient‐specific fluid–structure interaction modeling of cerebral aneurysms. J Appl Mech 2012, 79:010908.
Bazilevs, Y, Hsu, M‐C, Zhang, Y, Wang, W, Kvamsdal, T, Hentschel, S, Isaksen, J. Computational vascular fluid–structure interaction: methodology and application to cerebral aneurysms. Biomech Model Mech 2010a, 9:481–498.
Bazilevs, Y, Hsu, M‐C, Zhang, Y, Wang, W, Liang, X, Kvamsdal, T, Brekken, R, Isaksen, J. A fully‐coupled fluid–structure interaction simulation of cerebral aneurysms. Comput Mech 2010b, 46:3–16.
Chung, B, Cebral, JR. CFD for evaluation and treatment planning of aneurysms: review of proposed clinical uses and their challenges. Ann Biomed Eng 2015, 43:122–138.
Torii, R, Oshima, M, Kobayashi, T, Takagi, K, Tezduyar, TE. Influence of wall thickness on fluid–structure interaction computations of cerebral aneurysms. Int J Numer Meth Biomed Eng 2010, 26:336–347.
Morales, HG, Bonnefous, O. Peak systolic or maximum intra‐aneurysmal hemodynamic condition? Implications on normalized flow variables. J Biomech 2014, 47:2362–2370.
Mohamied, Y, Rowland, EM, Bailey, EL, Sherwin, SJ, Schwartz, MA, Weinberg, PD. Change of direction in the biomechanics of atherosclerosis. Ann Biomed Eng 2015, 43:16–25.
Wang, C, Baker, BM, Chen, CS, Schwartz, MA. Endothelial cell sensing of flow direction. Arterioscler Thromb Vasc Biol 2013, 33:2130–2136.
Ando, J, Yamamoto, K. Vascular mechanobiology endothelial cell responses to fluid shear stress. Circ J 2009, 73:1983–1992.
Wu, KK, Thiagarajan, P. Role of endothelium in thrombosis and hemostasis. Annu Rev Med 1996, 47:315–331.
Ramalho, S, Moura, A, Gambaruto, A, Sequeira, A. Sensitivity to outflow boundary conditions and level of geometry description for a cerebral aneurysm. Int J Numer Meth Biomed Eng 2012, 28:697–713.
Schiavazzi, D, Arbia, G, Baker, C, Hlavacek, AM, Hsia, T‐Y, Marsden, A, Vignon‐Clementel, I. Uncertainty quantification in virtual surgery hemodynamics predictions for single ventricle palliation. Int J Numer Meth Biomed Eng 2015, 32:e02737.
Troianowski, G, Taylor, CA, Feinstein, JA, Vignon‐Clementel, IE. Three‐dimensional simulations in Glenn patients: clinically based boundary conditions, hemodynamic results and sensitivity to input data. J Biomech Eng 2011, 133:111006.
Janiga, G, Berg, P, Sugiyama, S, Kono, K, Steinman, D. The Computational Fluid Dynamics Rupture Challenge 2013—phase I: prediction of rupture status in intracranial aneurysms. Am J Neuroradiol 2015, 36:530–536.
Valen‐Sendstad, K, Steinman, D. Mind the gap: impact of computational fluid dynamics solution strategy on prediction of intracranial aneurysm hemodynamics and rupture status indicators. Am J Neuroradiol 2014, 35:536–543.
Feaver, RE, Gelfand, BD, Blackman, BR. Human haemodynamic frequency harmonics regulate the inflammatory phenotype of vascular endothelial cells. Nat Commun 2013, 4:1525.
Babiker, MH, Chong, B, Gonzalez, LF, Cheema, S, Frakes, DH. Finite element modeling of embolic coil deployment: multifactor characterization of treatment effects on cerebral aneurysm hemodynamics. J Biomech 2013, 46:2809–2816.
Dequidt, J, Duriez, C, Cotin, S, Kerrien, E. Towards interactive planning of coil embolization in brain aneurysms. In: Yang GZ, Hawkes D, Rueckert D, Noble A, Taylor C, eds. Medical Image Computing and Computer‐Assisted Intervention ‐ MICCAI 2009. Lecture Notes in Computer Science, vol 5761. Berlin, Heidelberg: Springer; 2009, 377–385.
Dequidt, J, Marchal, M, Duriez, C, Kerien, E, Cotin, S. Interactive simulation of embolization coils: modeling and experimental validation. In: Metaxas D, Axel L, Fichtinger G, Székely G, eds. Medical Image Computing and Computer‐Assisted Intervention ‐ MICCAI 2008. Lecture Notes in Computer Science, vol 5241. Berlin, Heidelberg: Springer; 2008, 695–702.
Wei, Y, Cotin, S, Dequidt, J, Duriez, C, Allard, J, Kerrien, E. A (Near) real‐time simulation method of aneurysm coil embolization. In: Murai Y, ed. Aneurysm. Rijeka, Croatia: InTech; 2012, 223–248. doi: 10.5772/48635.
Cha, KS, Balaras, E, Lieber, BB, Sadasivan, C, Wakhloo, AK. Modeling the interaction of coils with the local blood flow after coil embolization of intracranial aneurysms. J Biomech Eng 2007, 129:873–879.
Groden, C, Laudan, J, Gatchell, S, Zeumer, H. Three‐dimensional pulsatile flow simulation before and after endovascular coil embolization of a terminal cerebral aneurysm. J Cereb Blood Flow Metab 2001, 21:1464–1471.
Jou, L‐D, Saloner, D, Higashida, R. Determining intra‐aneurysmal flow for coiled cerebral aneurysms with digital fluoroscopy. Biomed Eng App Bas C 2004, 16:43–48.
Kakalis, NM, Mitsos, AP, Byrne, JV, Ventikos, Y. The haemodynamics of endovascular aneurysm treatment: a computational modelling approach for estimating the influence of multiple coil deployment. IEEE Trans Med Imaging 2008, 27:814–824.
Wei, Y, Cotin, S, Allard, J, Fang, L, Pan, C, Ma, S. Interactive blood‐coil simulation in real‐time during aneurysm embolization. Comput Graph 2011, 35:422–430.
Byun, HS, Rhee, K. CFD modeling of blood flow following coil embolization of aneurysms. Med Eng Phys 2004, 26:755–761.
Narracott, A, Smith, S, Lawford, P, Liu, H, Himeno, R, Wilkinson, I, Griffiths, P, Hose, R. Development and validation of models for the investigation of blood clotting in idealized stenoses and cerebral aneurysms. J Artif Organs 2005, 8:56–62.
Schirmer, CM, Malek, AM. Critical influence of framing coil orientation on intra‐aneurysmal and neck region hemodynamics in a sidewall aneurysm model. Neurosurgery 2010, 67:1692–1702.
Bernardini, A, Larrabide, I, Petrini, L, Pennati, G, Flore, E, Kim, M, Frangi, A. Deployment of self‐expandable stents in aneurysmatic cerebral vessels: comparison of different computational approaches for interventional planning. Comput Meth Biomech 2012, 15:303–311.
De Bock, S, Iannaccone, F, De Santis, G, De Beule, M, Mortier, P, Verhegghe, B, Segers, P. Our capricious vessels: the influence of stent design and vessel geometry on the mechanics of intracranial aneurysm stent deployment. J Biomech 2012, 45:1353–1359.
Flore, E, Larrabide, I, Petrini, L, Pennati, G, Frangi, A. Stent deployment in aneurysmatic cerebral vessels: assessment and quantification of the differences between Fast Virtual Stenting and Finite Element Analysis. In: CI2BM09‐MICCAI Workshop on Cardiovascular Interventional Imaging and Biophysical Modelling, Springer‐Verlag, Berlin, Germany, 2009, 790–797.
Kim, JH, Kang, TJ, Yu, W‐R. Mechanical modeling of self‐expandable stent fabricated using braiding technology. J Biomech 2008, 41:3202–3212.
Augsburger, L, Reymond, P, Rufenacht, D, Stergiopulos, N. Intracranial stents being modeled as a porous medium: flow simulation in stented cerebral aneurysms. Ann Biomed Eng 2011, 39:850–863.
Morales, HG, Bonnefous, O. Modeling hemodynamics after flow diverter with a porous medium. In: 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), Beijing, China, 29 April‐2 May 2014, pp. 1324–1327.
Flórez‐Valencia, L, Orkisz, M, Montagnat, J. 3D graphical models for vascular‐stent pose simulation. Mach Grap Vision 2004, 13:235–248.
Spranger, K, Ventikos, Y. Which spring is the best? Comparison of methods for virtual stenting. IEEE Trans Biomed Eng 2014, 61:1998–2010.
Jeong, W, Han, MH, Rhee, K. Effects of framing coil shape, orientation, and thickness on intra‐aneurysmal flow. Med Biol Eng Comput 2013, 51:981–990.
Aguilar, ML, Morales, HG, Larrabide, I, Macho, JM, San Roman, L, Frangi, AF. Effect of coil surface area on the hemodynamics of a patient‐specific intracranial aneurysm: a computational study. In: ISBI. IEEE; 2012, 1180–1183.
Morales, HG, Kim, M, Vivas, E, Villa‐Uriol, M‐C, Larrabide, I, Sola, T, Guimaraens, L, Frangi, A. How do coil configuration and packing density influence intra‐aneurysmal hemodynamics? Am J Neuroradiol 2011, 32:1935–1941.
Larrabide, I, Aguilar, M, Morales, H, Geers, A, Kulcsár, Z, Rüfenacht, D, Frangi, A. Intra‐aneurysmal pressure and flow changes induced by flow diverters: relation to aneurysm size and shape. Am J Neuroradiol 2013, 34:816–822.
Larrabide, I, Geers, AJ, Morales, HG, Aguilar, ML, Rüfenacht, DA. Effect of aneurysm and ICA morphology on hemodynamics before and after flow diverter treatment. J Neurointerv Surg 2014, 7:272–280.
Wu, Y‐F, Yang, P‐F, Shen, J, Huang, Q‐H, Zhang, X, Qian, Y, Liu, J‐M. A comparison of the hemodynamic effects of flow diverters on wide‐necked and narrow‐necked cerebral aneurysms. J Clin Neurosci 2012, 19:1520–1524.
Bouillot, P, Brina, O, Ouared, R, Yilmaz, H, Lovblad, K‐O, Farhat, M, Pereira, VM. Computational fluid dynamics with stents: quantitative comparison with particle image velocimetry for three commercial off the shelf intracranial stents. J Neurointerv Surg 2016, 8:309–315.
Kim, M, Taulbee, DB, Tremmel, M, Meng, H. Comparison of two stents in modifying cerebral aneurysm hemodynamics. Ann Biomed Eng 2008, 36:726–741.
Roszelle, BN, Gonzalez, LF, Babiker, MH, Ryan, J, Albuquerque, FC, Frakes, DH. Flow diverter effect on cerebral aneurysm hemodynamics: an in vitro comparison of telescoping stents and the Pipeline. Neuroradiology 2013, 55:751–758.
Tremmel, M, Xiang, J, Natarajan, SK, Hopkins, LN, Siddiqui, AH, Levy, EI, Meng, H. Alteration of intraaneurysmal hemodynamics for flow diversion using Enterprise and Vision stents. World Neurosurg 2010, 74:306–315.
Babiker, MH, Gonzalez, LF, Ryan, J, Albuquerque, F, Collins, D, Elvikis, A, Frakes, DH. Influence of stent configuration on cerebral aneurysm fluid dynamics. J Biomech 2012, 45:440–447.
Kim, M, Larrabide, I, Villa‐Uriol, M‐C, Frangi, AF. Hemodynamic alterations of a patient‐specific intracranial aneurysm induced by virtual deployment of stents in various axial orientation. In: 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, IEEE, 28 June‐1 July 2009, pp. 1215–1218.
Kono, K, Terada, T. Hemodynamics of 8 different configurations of stenting for bifurcation aneurysms. Am J Neuroradiol 2013, 34:1980–1986.
Roszelle, BN, Nair, P, Gonzalez, LF, Babiker, MH, Ryan, J, Frakes, D. Comparison among different high porosity stent configurations: hemodynamic effects of treatment in a large cerebral aneurysm. J Biomech Eng 2014, 136:021013.
Augsburger, L, Farhat, M, Reymond, P, Fonck, E, Kulcsar, Z, Stergiopulos, N, Rüfenacht, DA. Effect of flow diverter porosity on intraaneurysmal blood flow. Clin Neuroradiol 2009, 19:204–214.
Liou, T‐M, Li, Y‐C. Effects of stent porosity on hemodynamics in a sidewall aneurysm model. J Biomech 2008, 41:1174–1183.
Mut, F, Cebral, J. Effects of flow‐diverting device oversizing on hemodynamics alteration in cerebral aneurysms. Am J Neuroradiol 2012, 33:2010–2016.
Ma, D, Xiang, J, Choi, H, Dumont, TM, Natarajan, S, Siddiqui, A, Meng, H. Enhanced aneurysmal flow diversion using a dynamic push‐pull technique: an experimental and modeling study. Am J Neuroradiol 2014, 35:1779–1785.
Janiga, G, Daróczy, L, Berg, P, Thévenin, D, Skalej, M, Beuing, O. An automatic CFD‐based flow diverter optimization principle for patient‐specific intracranial aneurysms. J Biomech 2015, 48:3846–3852.
Li, C, Wang, S, Chen, J, Yu, H, Zhang, Y, Jiang, F, Mu, S, Li, H, Yang, X. Influence of hemodynamics on recanalization of totally occluded intracranial aneurysms: a patient‐specific computational fluid dynamic simulation study: laboratory investigation. J Neurosurg 2012, 117:276–283.
Luo, B, Yang, X, Wang, S, Li, H, Chen, J, Yu, H, Zhang, Y, Zhang, Y, Mu, S, Liu, Z. High shear stress and flow velocity in partially occluded aneurysms prone to recanalization. Stroke 2011, 42:745–753.
Graziano, F, Russo, V, Wang, W, Khismatullin, D, Ulm, A. 3D computational fluid dynamics of a treated vertebrobasilar giant aneurysm: a multistage analysis. Am J Neuroradiol 2013, 34:1387–1394.
Park, W, Song, Y, Park, KJ, Koo, H‐W, Yang, K, Suh, DC. Hemodynamic characteristics regarding recanalization of completely coiled aneurysms: computational fluid dynamic analysis using virtual models comparison. Neurointervention 2016, 11:30–36.
Chung, B, Mut, F, Kadirvel, R, Lingineni, R, Kallmes, DF, Cebral, JR. Hemodynamic analysis of fast and slow aneurysm occlusions by flow diversion in rabbits. J Neurointerv Surg 2015, 7:931–935.
Mut, F, Raschi, M, Scrivano, E, Bleise, C, Chudyk, J, Ceratto, R, Lylyk, P, Cebral, JR. Association between hemodynamic conditions and occlusion times after flow diversion in cerebral aneurysms. J Neurointerv Surg 2014, 7:286–290.
Kulcsár, Z, Augsburger, L, Reymond, P, Pereira, VM, Hirsch, S, Mallik, AS, Millar, J, Wetzel, SG, Wanke, I, Rüfenacht, DA. Flow diversion treatment: intra‐aneurismal blood flow velocity and WSS reduction are parameters to predict aneurysm thrombosis. Acta Neurochir (Wien) 2012, 154:1827–1834.
Ouared, R, Larrabide, I, Brina, O, Bouillot, P, Erceg, G, Yilmaz, H, Lovblad, K‐O, Pereira, VM. Computational fluid dynamics analysis of flow reduction induced by flow‐diverting stents in intracranial aneurysms: a patient‐unspecific hemodynamics change perspective. J Neurointerv Surg 2016, 8:1288–1293.
Tan, KT, Lip, GY. Red vs white thrombi: treating the right clot is crucial. Arch Intern Med 2003, 163:2534–2535.
Levitt, MR, Barbour, MC, du Roscoat, SR, Geindreau, C, Chivukula, VK, McGah, PM, Nerva, JD, Morton, RP, Kim, LJ, Aliseda, A. Computational fluid dynamics of cerebral aneurysm coiling using high‐resolution and high‐energy synchrotron X‐ray microtomography: comparison with the homogeneous porous medium approach. J Neurointerv Surg (Epub ahead of print; July 12, 2016). doi:10.1136/neurintsurg‐2016‐012479.
Raschi, M, Mut, F, Löhner, R, Cebral, J. Strategy for modeling flow diverters in cerebral aneurysms as a porous medium. Int J Numer Meth Biomed Eng 2014, 30:909–925.
Bouillot, P, Brina, O, Yilmaz, H, Farhat, M, Erceg, G, Lovblad, K‐O, Vargas, M, Kulcsar, Z, Pereira, V. Virtual‐versus‐real implantation of flow diverters: clinical potential and influence of vascular geometry. Am J Neuroradiol 2016, 37:2079–2086.
Gao, B, Baharoglu, M, Cohen, A, Malek, A. Stent‐assisted coiling of intracranial bifurcation aneurysms leads to immediate and delayed intracranial vascular angle remodeling. Am J Neuroradiol 2012, 33:649–654.
King, R, Chueh, J‐Y, van der Bom, I, Silva, C, Carniato, S, Spilberg, G, Wakhloo, A, Gounis, M. The effect of intracranial stent implantation on the curvature of the cerebrovasculature. Am J Neuroradiol 2012, 33:1657–1662.
Kono, K, Shintani, A, Terada, T. Hemodynamic effects of stent struts versus straightening of vessels in stent‐assisted coil embolization for sidewall cerebral aneurysms. PLoS One 2014, 9:e108033.
Fiorella, D, Woo, HH, Albuquerque, FC, Nelson, PK. Definitive reconstruction of circumferential, fusiform intracranial aneurysms with the Pipeline embolization device. Neurosurgery 2008, 62:1115–1121.
Mut, F, Ruijters, D, Babic, D, Bleise, C, Lylyk, P, Cebral, JR. Effects of changing physiologic conditions on the in vivo quantification of hemodynamic variables in cerebral aneurysms treated with flow diverting devices. Int J Numer Meth Biomed Eng 2014, 30:135–142.
Whittle, I, Dorsch, NW, Besser, M. Spontaneous thrombosis in giant intracranial aneurysms. J Neurol Neurosurg Psychiatry 1982, 45:1040–1047.
Brinjikji, W, Kallmes, DF, Kadirvel, R. Mechanisms of healing in coiled intracranial aneurysms: a review of the literature. Am J Neuroradiol 2015, 36:1216–1222.
Szikora, I, Berentei, Z, Kulcsar, Z, Marosfoi, M, Vajda, Z, Lee, W, Berez, A, Nelson, PK. Treatment of intracranial aneurysms by functional reconstruction of the parent artery: the Budapest experience with the Pipeline embolization device. Am J Neuroradiol 2010, 31:1139–1147.
Lylyk, P, Miranda, C, Ceratto, R, Ferrario, A, Scrivano, E, Luna, HR, Berez, AL, Tran, Q, Nelson, PK, Fiorella, D. Curative endovascular reconstruction of cerebral aneurysms with the Pipeline embolization device: the Buenos Aires experience. Neurosurgery 2009, 64:632–643.
Crobeddu, E, Lanzino, G, Kallmes, DF, Cloft, H. Review of 2 decades of aneurysm‐recurrence literature, part 1: reducing recurrence after endovascular coiling. Am J Neuroradiol 2013, 34:266–270.
Crobeddu, E, Lanzino, G, Kallmes, DF, Cloft, H. Review of 2 decades of aneurysm‐recurrence literature, part 2: managing recurrence after endovascular coiling. Am J Neuroradiol 2013, 34:481–485.
Siddiqui, AH, Abla, AA, Kan, P, Dumont, TM, Jahshan, S, Britz, GW, Hopkins, LN, Levy, EI. Panacea or problem: flow diverters in the treatment of symptomatic large or giant fusiform vertebrobasilar aneurysms: clinical article. J Neurosurg 2012, 116:1258–1266.
Fischer, S, Vajda, Z, Perez, MA, Schmid, E, Hopf, N, Bäzner, H, Henkes, H. Pipeline embolization device (PED) for neurovascular reconstruction: initial experience in the treatment of 101 intracranial aneurysms and dissections. Neuroradiology 2012, 54:369–382.
Frösen, J, Tulamo, R, Paetau, A, Laaksamo, E, Korja, M, Laakso, A, Niemelä, M, Hernesniemi, J. Saccular intracranial aneurysm: pathology and mechanisms. Acta Neuropathol 2012, 123:773–786.
Hoffman, M. A cell‐based model of coagulation and the role of factor VIIa. Blood Rev 2003, 17:S1–S5.
Himburg, HA, Dowd, SE, Friedman, MH. Frequency‐dependent response of the vascular endothelium to pulsatile shear stress. Am J Physiol Heart C 2007, 293:H645–H653.
Li, Y‐D, Ye, B‐Q, Zheng, S‐X, Wang, J‐T, Wang, J‐G, Chen, M, Liu, J‐G, Pei, X‐H, Wang, L‐J, Lin, Z‐X. NF‐κB transcription factor p50 critically regulates tissue factor in deep vein thrombosis. J Biol Chem 2009, 284:4473–4483.
Mackman, N. Role of tissue factor in hemostasis, thrombosis, and vascular development. Arterioscler Thromb Vasc Biol 2004, 24:1015–1022.
Biasetti, J, Gasser, TC, Auer, M, Hedin, U, Labruto, F. Hemodynamics of the normal aorta compared to fusiform and saccular abdominal aortic aneurysms with emphasis on a potential thrombus formation mechanism. Ann Biomed Eng 2010, 38:380–390.
Biasetti, J, Hussain, F, Gasser, TC. Blood flow and coherent vortices in the normal and aneurysmatic aortas: a fluid dynamical approach to intra‐luminal thrombus formation. J R Soc Interface 2011, 8:1449–1461.
Davies, PF. Flow‐mediated endothelial mechanotransduction. Physiol Rev 1995, 75:519–560.
Bodnár, T, Fasano, A, Sequeira, A. Mathematical models for blood coagulation. In: Bodnár T, Galdi GP, Nećasová Š, eds. Fluid–structure Interaction and Biomedical Applications. Basel, Switzerland: Springer Basel; 2014, 483–569.
Chatterjee, MS, Denney, WS, Jing, H, Diamond, SL. Systems biology of coagulation initiation: kinetics of thrombin generation in resting and activated human blood. PLoS Comput Biol 2010, 6:e1000950.
Chong, W, Zhang, Y, Qian, Y, Lai, L, Parker, G, Mitchell, K. Computational hemodynamics analysis of intracranial aneurysms treated with flow diverters: correlation with clinical outcomes. Am J Neuroradiol 2014, 35:136–142.
Malaspinas, O, Turjman, A, de Sousa, DR, Garcia‐Cardena, G, Raes, M, Nguyen, P‐T, Zhang, Y, Courbebaisse, G, Lelubre, C, Boudjeltia, KZ. A spatio‐temporal model for spontaneous thrombus formation in cerebral aneurysms. J Theor Biol 2016, 394:68–76.
Ou, C, Huang, W, Yuen, MM‐F. A computational model based on fibrin accumulation for the prediction of stasis thrombosis following flow‐diverting treatment in cerebral aneurysms. Med Biol Eng Comput 2016, 55:89–99.
Koskinas, KC, Chatzizisis, YS, Antoniadis, AP, Giannoglou, GD. Role of endothelial shear stress in stent restenosis and thrombosis: pathophysiologic mechanisms and implications for clinical translation. J Am Coll Cardiol 2012, 59:1337–1349.
Rayz, V, Boussel, L, Ge, L, Leach, J, Martin, A, Lawton, M, McCulloch, C, Saloner, D. Flow residence time and regions of intraluminal thrombus deposition in intracranial aneurysms. Ann Biomed Eng 2010, 38:3058–3069.
Ouared, R, Chopard, B. Lattice Boltzmann simulations of blood flow: non‐Newtonian rheology and clotting processes. J Stat Phys 2005, 121:209–221.
Zimny, S, Chopard, B, Malaspinas, O, Lorenz, E, Jain, K, Roller, S, Bernsdorf, J. A multiscale approach for the coupled simulation of blood flow and thrombus formation in intracranial aneurysms. Procedia Comput Sc 2013, 18:1006–1015.
Biasetti, J, Spazzini, PG, Swedenborg, J, Gasser, TC. An integrated fluid‐chemical model toward modeling the formation of intra‐luminal thrombus in abdominal aortic aneurysms. Front Physiol 2012, 3:266.
Ngoepe, MN, Ventikos, Y. Computational modelling of clot development in patient‐specific cerebral aneurysm cases. J Thromb Haemost 2015, 14:262–272.
Cito, S, Mazzeo, MD, Badimon, L. A review of macroscopic thrombus modeling methods. Thromb Res 2013, 131:116–124.
Danforth, CM, Orfeo, T, Mann, KG, Brummel‐Ziedins, KE, Everse, SJ. The impact of uncertainty in a blood coagulation model. Math Med Biol 2009, 26:323–336.
Luan, D, Szlam, F, Tanaka, KA, Barie, PS, Varner, JD. Ensembles of uncertain mathematical models can identify network response to therapeutic interventions. Mol Biosyst 2010, 6:2272–2286.
Luan, D, Zai, M, Varner, JD. Computationally derived points of fragility of a human cascade are consistent with current therapeutic strategies. PLoS Comput Biol 2007, 3:e142.
Moiseyev, G, Bar‐Yoseph, PZ. Computational modeling of thrombosis as a tool in the design and optimization of vascular implants. J Biomech 2013, 46:248–252.
Ogilvy, CS, Chua, MH, Fusco, MR, Griessenauer, CJ, Harrigan, MR, Sonig, A, Siddiqui, AH, Levy, EI, Snyder, K, Avery, M. Validation of a system to predict recanalization after endovascular treatment of intracranial aneurysms. Neurosurgery 2015, 77:168–174.
Ogilvy, CS, Chua, MH, Fusco, MR, Reddy, AS, Thomas, AJ. Stratification of recanalization for patients with endovascular treatment of intracranial aneurysms. Neurosurgery 2015, 76:390–395.
Arzani, A, Gambaruto, AM, Chen, G, Shadden, SC. Lagrangian wall shear stress structures and near‐wall transport in high‐Schmidt‐number aneurysmal flows. J Fluid Mech 2016, 790:158–172.
Cebral, JR, Meng, H. Counterpoint: realizing the clinical utility of computational fluid dynamics—closing the gap. Am J Neuroradiol 2012, 33:396–398.
Schneiders, J, Marquering, H, Antiga, L, Van den Berg, R, VanBavel, E, Majoie, C. Intracranial aneurysm neck size overestimation with 3D rotational angiography: the impact on intra‐aneurysmal hemodynamics simulated with computational fluid dynamics. Am J Neuroradiol 2013, 34:121–128.
Mikhal, J, Kroon, DJ, Slump, CH, Geurts, BJ. Flow prediction in cerebral aneurysms based on geometry reconstruction from 3D rotational angiography. Int J Numer Method Biomed Eng 2013, 29:777–805.
Sforza, DM, Löhner, R, Putman, C, Cebral, JR. Hemodynamic analysis of intracranial aneurysms with moving parent arteries: basilar tip aneurysms. Int J Numer Method Biomed Eng 2010, 26:1219–1227.
Hennig, P, Osborne, MA, Girolami, M. Probabilistic numerics and uncertainty in computations. Proc R Soc A 2015, 471:20150142.
Sankaran, S, Grady, L, Taylor, CA. Impact of geometric uncertainty on hemodynamic simulations using machine learning. Comput Meth Appl M 2015, 297:167–190.